Mathematics for Informatics

Introduction to fuzzy logic (lecture 8 of 12)

Francesco Dolce

[dolcefra@fit.cvut.cz](mailto:dolcefra@fjfi.cvut.cz)

Czech Technical University in Prague

Winter 2024/2025

created: September 11, 2024, 14:42

Introduction

Consider having a pot of water having temperature of x degrees Celsius.

Is the water **hot**? Is the water **cold**?

Consider having a pot of water having temperature of x degrees Celsius.

Is the water **hot**? Is the water **cold**?

Sometimes we want to describe systems by properties which are not evaluated as true or false (and we do not have the exact value of x).

Fuzzy logic / fuzzy control systems allow such description: truth and falsehood notions are graded and allow to state, for instance, that the water is "**tepid**".

Universe and crisp sets

Let U denote the universe, that is, our playground containing every set that we may consider.

A set A ⊂ U can be given by its **characteristic function**:

$$
\chi_A: U \to \{0, 1\}, \qquad \chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}
$$

Universe and crisp sets

Let U denote the universe, that is, our playground containing every set that we may consider.

A set A ⊂ U can be given by its **characteristic function**:

$$
\chi_A: U \to \{0, 1\}, \qquad \chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}
$$

There is a bijection between sets and characteristic functions, so we identify each set with its characteristic function.

A is a set in the ordinary sense, sometimes called a crisp set.

Fuzzy sets

Fuzzy sets generalize this concept and allow elements to belong to a given set with a certain *degree*.

We replace the characteristic function by a **membership function**

 $\mu_A: U \to [0,1].$

Fuzzy sets

Fuzzy sets generalize this concept and allow elements to belong to a given set with a certain *degree*.

We replace the characteristic function by a **membership function**

 $\mu_A: U \to [0, 1].$

A **fuzzy subset** A of a set X is a function $\mu_A : X \to [0,1]$.

For every element $x \in X$, the **degree of membership** of x to A is given by $\mu_A(x) \in [0,1].$

Example

Let $X = [0, 100]$ be the set of temperatures of water in our pot.

We consider three fuzzy subsets of X to describe **cold**, **tepid** and **hot** temperatures.

The membership functions may be given as follows:

Operations on crisp sets

Given a set X and its power set $\mathcal{P}(X)$ (the set of all subsets of X), the operations of **union**, **intersection**, and **complement** are given as follows (for usual sets):

$$
A \cup B = \{x : x \in A \text{ or } x \in B\},\
$$

$$
A \cap B = \{x : x \in A \text{ and } x \in B\},\
$$

$$
A^C = X \setminus A = \{x \in X : x \notin A\}.
$$

Operations on crisp sets

Given a set X and its power set $\mathcal{P}(X)$ (the set of all subsets of X), the operations of **union**, **intersection**, and **complement** are given as follows (for usual sets):

$$
A \cup B = \{x : x \in A \text{ or } x \in B\},\
$$

$$
A \cap B = \{x : x \in A \text{ and } x \in B\},\
$$

$$
A^C = X \setminus A = \{x \in X : x \notin A\}.
$$

How do these operations translate to characteristic functions?

Operations on crisp sets

Given a set X and its power set $\mathcal{P}(X)$ (the set of all subsets of X), the operations of **union**, **intersection**, and **complement** are given as follows (for usual sets):

$$
A \cup B = \{x : x \in A \text{ or } x \in B\},
$$

\n
$$
A \cap B = \{x : x \in A \text{ and } x \in B\},
$$

\n
$$
A^C = X \setminus A = \{x \in X : x \notin A\}.
$$

How do these operations translate to characteristic functions?

$$
\chi_{A \cup B} = \max\{\chi_A, \chi_B\},
$$

\n
$$
\chi_{A \cap B} = \min\{\chi_A, \chi_B\},
$$

\n
$$
\chi_{A^c} = 1 - \chi_A.
$$

Operations on fuzzy sets

For fuzzy sets, we can define the membership function of a union, intersection, or a complement in the same way.

```
Let A and B be two fuzzy subsets of X.
We set
```

```
\mu_{A\cup B} = \max\{\mu_A, \mu_B\},\\mu_{A \cap B} = \min\{\mu_A, \mu_B\},\\mu_{A}^{B} = 1 - \mu_{A}^{B}.
```
Examples

Examples

Examples

Operations revisited

Our choice for fuzzy set operation was fast. Let \overline{A} and \overline{B} be two subsets of \overline{X} . We have

$$
\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\}
$$

= $\chi_A(x) \cdot \chi_B(x)$
= max {0, $\chi_A(x) + \chi_B(x) - 1$ }.

Operations revisited

Our choice for fuzzy set operation was fast. Let \overline{A} and \overline{B} be two subsets of \overline{X} . We have

$$
\chi_{A \cap B}(x) = \min\{\chi_A(x), \chi_B(x)\}
$$

= $\chi_A(x) \cdot \chi_B(x)$
= max {0, $\chi_A(x) + \chi_B(x) - 1$ }.

We can extend the second definition to membership functions and obtain another definition of union and intersection of fuzzy sets. We shall do this in a more general fashion.

We have the following requirements of a mapping

 $\star : [0,1] \times [0,1] \to [0,1]$

```
\bigcirc 1 \star x = x for all x \in [0, 1],
```
We have the following requirements of a mapping

 $\star : [0,1] \times [0,1] \rightarrow [0,1]$

```
\bigcirc 1 \star x = x for all x \in [0, 1],
2. 0 \star x = 0 for all x \in [0, 1],
```
We have the following requirements of a mapping

 $\star : [0,1] \times [0,1] \rightarrow [0,1]$

```
\bigcirc 1 \star x = x for all x \in [0,1],
```
- 2. $0 \star x = 0$ for all $x \in [0, 1]$,
- $\bullet \quad x \star y = y \star x$ for all $x, y \in [0, 1]$ (commutativity),

We have the following requirements of a mapping

 $\star : [0,1] \times [0,1] \to [0,1]$

$$
1 \star x = x \text{ for all } x \in [0,1],
$$

- 2. $0 \star x = 0$ for all $x \in [0, 1]$,
- $3. \times \times \times$ *y* $\div \times$ *x* for all $x, y \in [0, 1]$ (commutativity),
- \bigcirc $(x * y) * z = x * (y * z)$ for all $x, y, z \in [0, 1]$ (associativity),

We have the following requirements of a mapping

 $\star : [0,1] \times [0,1] \to [0,1]$

- \bigcirc 1 $\star x = x$ for all $x \in [0,1]$,
- 2. $0 \star x = 0$ for all $x \in [0, 1]$,
- $3. \times \times \times$ *y* \div *x* for all $x, y \in [0, 1]$ (commutativity),
- \bigcirc $(x * y) * z = x * (y * z)$ for all $x, y, z \in [0, 1]$ (associativity),
- \bullet $x \le y$ and $w \le z$ implies $x \star w \le y \star z$ (*monotonicity*).

The following t-norms are usually considered.

Let $x, y \in [0, 1]$.

(0) Gödel t-norm: $x \star y = \min\{x, y\}$,

The following t-norms are usually considered.

Let $x, y \in [0, 1]$.

- **(0)** Gödel t-norm: $x \star y = \min\{x, y\}$,
- **(0) product** t-norm: $x * y = x \cdot y$,

The following t-norms are usually considered.

Let $x, y \in [0, 1]$.

- **(0)** Gödel t-norm: $x \star y = \min\{x, y\}$,
- **(iii) product** t-norm: $x \star y = x \cdot y$,
- **4** Łukasiewicz t-norm: $x \star y = \max\{0, x + y 1\}$,

The following t-norms are usually considered.

Let $x, y \in [0, 1]$.

(v) . . .

- **Gödel** t-norm: $x \star y = \min\{x, y\}$,
- **product** t-norm: $x \star y = x \cdot y$,
- **Łukasiewicz** t-norm: $x \star y = \max\{0, x + y 1\}$,

• Hamacher product t-norm: $x \star y =$ J

0 if $x = y = 0$

 $\frac{xy}{x+y-xy}$ otherwise '

 $\sqrt{ }$

xy

 \mathcal{L}

The following t-norms are usually considered.

Let $x, y \in [0, 1]$.

- **Gödel** t-norm: $x \star y = \min\{x, y\}$,
- **product** t-norm: $x \star y = x \cdot y$,
- **Łukasiewicz** t-norm: $x \star y = \max\{0, x + y 1\}$,

• Hamacher product t-norm: $x \star y =$ $\sqrt{ }$ J \mathcal{L} 0 if $x = y = 0$ xy $\frac{xy}{x+y-xy}$ otherwise ' (v) . . .

The distinct t-norms give us distinct strategies on how to interpret intersection of fuzzy sets.

If we have intersection and complement, we define union by $A\cup B=\left(A^\complement\cap B^\complement\right)^\complement$ (De Morgan's laws).

Reasoning in fuzzy logic

In classical logic we can have the following statements:

If "the water is cold" is true, then "my shower is bad" is true.

Reasoning in fuzzy logic

In classical logic we can have the following statements:

If "the water is cold" is true, then "my shower is bad" is true.

An implication is in fact a mapping

 $\{0, 1\} \times \{0, 1\} \rightarrow \{0, 1\}.$

Reasoning in fuzzy logic

In classical logic we can have the following statements:

If "the water is cold" is true, then "my shower is bad" is true.

An implication is in fact a mapping

 $\{0, 1\} \times \{0, 1\} \rightarrow \{0, 1\}.$

In fuzzy logic, to interpret such implications, we consider "the water is cold" and "my shower is bad" as fuzzy sets and we decide using an **implication** function

 $[0, 1] \times [0, 1] \rightarrow [0, 1]$.

This is sometimes called approximate reasoning.

Implication

An **implication** is a function $I : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions for all $x, y, z \in [0, 1]$:

- **1.** If $x \le z$, then $I(x, y) \ge I(z, y)$;
- **2.** if $y \le z$, then $I(x, y) \le I(x, z)$;
- \bullet $I(0, y) = 1;$
- \bullet $I(x, 1) = x;$
- \bullet $I(1,0) = 0.$

Implication

An **implication** is a function $I : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions for all $x, y, z \in [0, 1]$:

- **1.** If $x \leq z$, then $I(x, y) \geq I(z, y)$;
- **2.** if $y \le z$, then $I(x, y) \le I(x, z)$;
- 3. $I(0, y) = 1$;
- \bullet $I(x, 1) = x;$
- \bullet $I(1,0) = 0.$

Examples:

(iii) . . .

- \bigcirc Mamdani: $I(x, y) = \min\{x, y\}$ (this fails item [3,](#page-30-0) but usually in knowledge systems we are not interested in rules where the antecedent part is false),
- Willmott: $I(x, y) = \max\{1 x, \min\{x, y\}\},\$

A controller measures some inputs and gives an output following some rules. For instance, we have the following set of rules:

- **1.** If "water is cold", then "shower is bad".
- 2. If "water is tepid", then "shower is good".
- If "water is hot", then "shower is bad".

The fuzzy sets "shower is bad" and "shower is good" are subsets of $Y = [0, 100]$, measuring how good a shower is.

A controller measures some inputs and gives an output following some rules. For instance, we have the following set of rules:

- **1.** If "water is cold", then "shower is bad".
- 2. If "water is tepid", then "shower is good".
- **3.** If "water is hot", then "shower is bad".

The fuzzy sets "shower is bad" and "shower is good" are subsets of $Y = [0, 100]$, measuring how good a shower is.

- **4.** Measure the input variables, i.e., the temperature $x_0 \in X$.
- 2. Transform the measured values into fuzzy sets: we have fuzzy sets with constant membership functions $\mu_{cold}(x_0)$, $\mu_{tepid}(x_0)$, and $\mu_{hot}(x_0)$.
- **3.** Apply all the rules: we obtain 3 control fuzzy sets
	- $\mu_{r_1}(y) = I(\mu_{cold}(x_0), \mu_{bad}(y)),$
	- $\mu_{r_2}(y) = I(\mu_{\text{tepid}}(x_0), \mu_{\text{good}}(y)).$
	- $\mu_{r_3}(y) = I(\mu_{hot}(x_0), \mu_{bad}(y)).$
- \bullet Aggregate the control fuzzy sets into one fuzzy set C.
- Defuzzify C to obtain the output value $c \in Y$.

For each step, there are many possible choices:

- transformation to fuzzy sets (and application of operators to construct the antecedent of all implications in the rules);
- **•** implication itself;
- aggregation;
- **o** defuzzification.

For each step, there are many possible choices:

- transformation to fuzzy sets (and application of operators to construct the antecedent of all implications in the rules);
- implication itself;
- aggregation;
- **o** defuzzification.

A usual choice is Gödel t-norm and Mamdani for implication, union for aggregation, and a defuzzification by center of gravity:

$$
y_0 = \frac{\int_Y y \mu_C(y) dy}{\int_Y \mu_C(y) dy}
$$

(or replace by sums if Y is discrete).