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12 Linear regression

12.1 Covariance and correlation

Suppose we want to examine the connection between two variables.

Sometimes we expect that there is a relation, sometimes we can assume there is not.

Examples 12.1.

• Heights of sons and heights of fathers.

• Bodily weight and height.

• Mean temperature and latitude from city to city.

• Income and the number of years spent studying.

• Number of storks and number of newborns in a city.

First we model this connection using correlation.
The covariance of two random variables X and Y is defined as

cov(X,Y ) = E ((X − EX)(Y − EY ))

and can be computed as
cov(X,Y ) = E (XY )− EX EY.

The correlation coefficient is defined as

ρX,Y = cov(X,Y )√
varX

√
varY

and gives a measure of the linear dependence between X and Y .

Theorem 12.2. For the correlation coefficient ρX,Y it holds that

1. ρX,Y ∈ [−1, 1].

2. If X and Y are independent, then ρX,Y = 0.

3. If Y = a+ bX for b > 0, then ρX,Y = 1.

4. If Y = a+ bX for b < 0, then ρX,Y = −1.

Proof. See lecture 6.
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Correlation – sample of 1000 values
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Based on a random sample of pairs (X1, Y1), . . . , (Xn, Yn), the covariance can be estimated
using the sample covariance:

sX,Y = 1
n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn).

The correlation coefficient can be estimated using the sample correlation coefficient as

rX,Y = sX,Y
sXsY

,
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where sX =
√
s2
X and sY =

√
s2
Y are the sample standard deviations of X and Y , respectively.

The sample covariance can be rewritten as

sX,Y = 1
n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn)

= 1
n− 1

(
n∑
i=1

XiYi − nX̄nȲn

)

= n

n− 1

(
1
n

n∑
i=1

XiYi − X̄nȲn

)
.

From the law of large numbers it follows that it is a consistent estimator of the covariance.
Because the sample variances are consistent estimators of the actual variances, the sample

correlation is therefore a consistent estimator of the correlation coefficient itself.

Example 12.3 (– comparing heights of fathers and sons). Suppose we want to estimate
the correlation between the heights of fathers and their sons. We have observed five pairs of
fathers and their sons, now adults. Their heights were measured as follows:

height of father [cm] Xi 172 176 180 184 186
height of son [cm] Yi 178 183 180 188 190

We have computed the following characteristics from the data:
n∑
i=1

Xi = 898,
n∑
i=1

Yi = 919,

n∑
i=1

X2
i = 161412,

n∑
i=1

Y 2
i = 169017,

n∑
i=1

XiYi = 165156.

From the observed characteristics we compute the sample means, variances and the covariance:

X̄n = 1
n

n∑
i=1

Xi = 898
5 = 179.6, Ȳn = 1

n

n∑
i=1

Yi = 919
5 = 183.8,

s2
X = 1

n− 1

(
n∑
i=1

X2
i − nX̄2

n

)
= 1

4
(
161412− 5 · 179.62

)
= 32.8,

s2
Y = 1

n− 1

(
n∑
i=1

Y 2
i − nȲ 2

n

)
= 1

4
(
169017− 5 · 183.82

)
= 26.2,

sX,Y = 1
n− 1

(
n∑
i=1

XiYi − nX̄nȲn

)
= 1

4 (165156− 5 · 179.6 · 183.8) = 25.9.

The sample correlation coefficient is obtained as

rX,Y = sX,Y√
s2
Xs

2
Y

= 25.9√
32.8 · 26.2

.= 0.883.
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We can conclude that there is a positive correlation between the height of sons and their
fathers. The sample correlation coefficient can be computed in R using cor(height father,height son).
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We want to be able to determine whether the correlation between the variables is statis-
tically significant.

Theorem 12.4. When observing independent normally distributed pairs, then when ρX,Y =
0, the statistic

T = rX,Y√
1− r2

X,Y

√
n− 2

has the Student’s t-distribution with n− 2 degrees of freedom.

Proof. See literature.

We can then test the hypothesis H0 : ρX,Y = 0 and reject it in favor of HA : ρX,Y 6= 0 on
level of significance α if |T | > tα/2,n−2, i.e., if the standardised sample correlation coefficient
differs significantly from zero.

Is there a significant correlation between the heights of fathers and their sons? Test on
α = 5%.

We obtain
T = rX,Y√

1− r2
X,Y

√
n− 2 .= 0.883√

1− 0.8832

√
3 .= 3.267.

The critical value tα/2,n−2 = t0.025,3 = 3.182, thus

3.267 = |T | > t0.025,3 = 3.182.

We reject the null hypothesis that there is no correlation on level of significance 5%.

We say that there is a statistically significant positive correlation between the heights of
fathers and the heights of their sons.

c© 2011–2024 - BIE-PST, WS 2024/25 5



12 LINEAR REGRESSION BIE-PST, WS 2024/25, Lecture 12

Testing for zero correlation – example

Example 12.5 (– comparing heights of fathers and sons, continued). We can test the non-
correlation of the previous example in R using cor.test:

> cor.test(height_father,height_son)

Pearson’s product-moment correlation

data: height_father and height_son
t = 3.267, df = 3, p-value = 0.04688
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.00564631 0.99229297

sample estimates:
cor

0.8835115

The p-value is smaller than α = 5%, thus we reject the hypothesis that there is no correlation on
level of significance 5%. Alternatively we can decide based on the t-statistic T = 3.267.

12.2 Regression model

We are often also interested in observing and evaluating the dependence of a random variable
Y on an explanatory variable x, which is not random.

Examples 12.6. • The number of cars passing a bridge during various times of the day.

• Body height depending on the age of a person.

• Body weight depending on the height of a person.

• The wind speed depending on the altitude.

Suppose there is a linear dependence of a random variable Y = Y (x) on an explanatory
variable x. We measure n independent observations Yi = Y (xi) at points x1, . . . , xn and thus
we obtain pairs (x1, Y1), . . . , (xn, Yn).

Based on these pairs we want to analyze the linear dependence of Y = Y (x) on x.
For the description of the linear dependence we can use the linear regression model

Yi = α+ βxi + εi i = 1, . . . , n,

where:

• xi are given values – not all equal,

• εi are i.i.d. zero mean random variables (experimental errors, often N(0, σ2)),

• α and β are unknown parameters.

6 c© 2011–2024 - BIE-PST, WS 2024/25
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It follows that:
EYi = α+ βxi, varYi = var εi = σ2.

We want to find estimators a and b of the parameters α and β such that the values

Ŷi = a+ bxi

are the best approximations of Yi.

12.2.1 Least squares method

Parameters α and β are estimated using the least squares method.

Good estimators a and b are such values which minimize the residual sum of squares Se:

Se =
n∑
i=1

e2
i =

n∑
i=1

(Yi − Ŷi)2 =
n∑
i=1

(Yi − (a+ bxi))2.

e1
e2

e3

e4

e5 e6Residuals ei

The estimated regression line a+ bx has the minimal sum of the second powers (squares) of
the vertical distance from the measured values.

Theorem 12.7. Point estimators of the regression parameters obtained by the least squares
method are

b =
∑n
i=1(xi − x̄n)(Yi − Ȳn)∑n

i=1(xi − x̄n)2 and a = Ȳn − b x̄n,

where x̄n = 1
n

∑n
i=1 xi and Ȳn = 1

n

∑n
i=1 Yi.

An unbiased estimator of the variance varYi = σ2 is

s2 = 1
n− 2

n∑
i=1

(Yi − a− bxi)2 = 1
n− 2 Se

and is called the residual variance.

Proof. We proceed for concrete observations y1, . . . , yn: By differentiating Se with respect
to a and b we find the minimum:

∂Se
∂a

= 0, ∂Se
∂b

= 0.

−2
n∑
i=1

(yi − a− b · xi) = 0 → a = ȳn − b x̄n

−2
n∑
i=1

(yi − a− bxi)xi = 0

c© 2011–2024 - BIE-PST, WS 2024/25 7
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0 =
n∑
i=1

xiyi − ȳn
n∑
i=1

xi − b
n∑
i=1

x2
i + b x̄n

n∑
i=1

xi

b =
∑n
i=1 xiyi − nȳnx̄n∑n
i=1 x

2
i − nx̄2

n

=
∑n
i=1(yi − ȳn)(xi − x̄n)∑n

i=1(xi − x̄n)2

By computing the matrix of second derivatives and showing that it is positive definite it can
be proven that this point is indeed the minimum. For the proof of the unbiasedness of the
estimator of the variance see literature.

X It can be shown that the above mentioned estimators are the best unbiased estimators
of the regression parameters.

If we treated the explanatory variables as random, X1, . . . , Xn, the estimator of the re-
gression parameter β can be given by means of estimators of variances and the covariance:

b =
∑n
i=1(Xi − X̄n)(Yi − Ȳn)∑n

i=1(Xi − X̄n)2 = sX,Y
s2
X

= rX,Y
sY
sX

,

where sX,Y is the sample covariance and rX,Y is the sample correlation coefficient

sX,Y = 1
n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn), rX,Y = sX,Y
sXsY

and sX and sY are the sample standard deviations – square roots of sample variances

s2
X = 1

n− 1

n∑
i=1

(Xi − X̄n)2, s2
Y = 1

n− 1

n∑
i=1

(Yi − Ȳn)2.

Example 12.8 (– dependence of the heights of sons on the heights of their fathers). Suppose
we want to model the linear dependence of the heights of sons on the heights of their fathers from the
previous example. Their height was measured as follows:

height of father [cm] xi 172 176 180 184 186
height of son [cm] Yi 178 183 180 188 190

We find the sample variance and covariance as follows:

s2
X = 1

n − 1

n∑
i=1

(Xi − X̄n)2 = 32.8, sX,Y = 1
n − 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn) = 25.9.

The parameters of the regression line are then estimated as

b = sX,Y

s2
X

= 25.9
32.8

.= 0.79

a = Ȳn − b · X̄n
.= 183.8− 25.9

32.8 · 179.6 .= 41.98.

For every centimeter of difference between the fathers’ height, we expect an average difference of
0.79 centimeters between their sons.

The estimates can be called in R using lm(height son height father).
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12.2.2 Precision of the regression model

For evaluating the precision of a linear model we can use the coefficient of determination R2:

R2 = 1− Se
ST

,

where Se is the residual sum of squares and ST = (n− 1)s2
Y :

ST =
n∑
i=1

(Yi − Ȳn)2.

The closer R2 is to 1 the better the linear model fits the data. More precisely, it can be
compared with the critical values of its proper distribution – see literature.

R2 can be interpreted as the proportion of variability in the data which is explained by
the regression model.

12.2.3 Testing linear independence

Often we want to test the hypothesis

H0 : β = 0 versus HA : β 6= 0.

Which equivalently means testing

H0 : Yi = α+ εi versus HA : Yi = α+ βxi + εi.

In fact we test whether Y actually does linearly depend on x or not. Testing can be based on
the two-sided confidence interval for β. When the random errors εi are normally distributed,

c© 2011–2024 - BIE-PST, WS 2024/25 9
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then the corresponding confidence interval can be found as:b− tα/2,n−2

√
s2√

(n− 1)s2
X

, b+ tα/2,n−2

√
s2√

(n− 1)s2
X

 ,
where s2 is the residual variance from the last theorem and tα/2,n−2 is the critical value of
the Student’s t-distribution with n− 2 degrees of freedom. We can then check whether 0 lies
in the interval or not. Alternatively we can decide based on the p-value of the test.

Example 12.9 (– heights of fathers and sons, continued). We want to test whether the heights
of sons depend significantly on the heights of their fathers. In R we can call the properties of a fitted
linear model using summary(lm()):

> summary(lm(height_son˜height_father))

Call:
lm(formula = height_son ˜ height_father)

Residuals:
1 2 3 4 5

0.2012 2.0427 -4.1159 0.7256 1.1463

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.9817 43.4272 0.967 0.4050
height_father 0.7896 0.2417 3.267 0.0469 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.769 on 3 degrees of freedom
Multiple R-squared: 0.7806, Adjusted R-squared: 0.7075
F-statistic: 10.67 on 1 and 3 DF, p-value: 0.04688

The p-value corresponding to H0 : β = 0 is 0.0469 and is smaller than α = 5%. On level of
significance 5% we can thus reject the hypothesis that there is no dependence.

12.2.4 Prediction intervals

Suppose that we have estimated the parameters of the regression model from obtained data.
For a new value x for which we do not know the value Y we may be interested in a prediction
of Y and the confidence interval for the prediction.

Prediction Ŷ :
Ŷ = a+ b · x.

(1− α)100% confidence interval for the prediction

a+ b · x± tα/2,n−2
√
s2

√
1
n

+ (x− x̄n)2∑n
i=1(xi − x̄n)2 .

If we plot the regression line and the boundaries of the confidence interval of the prediction
as a function of x, we obtain the pointwise confidence intervals.

We can also construct a band in which the regression line lies with a probability 1 − α.
Such band is called the confidence band for the whole regression line. The corresponding
expression is based on the Fisher’s F-distribution (see literature), with tα/2,n−2 replaced with√

2Fα/2,2,n−2.
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Example 12.10 (– dependence of the heights of sons on the heights of their fathers). Suppose
we want to estimate the expected height of a son whose father is 175 centimeters tall. For

given x = 175 cm, we want to predict Ŷ :

Ŷ = a+ b · x
.= 41.98 + 0.79 · 175
.= 180.2 cm.

The 95% confidence interval for the prediction is then

(174.9, 185.5).

Example 12.11 (– concentration of lactic acid). It was studied how much lactic acid there
is in 100 ml of new mothers’ blood (values xi) and their newborn children (values Yi) directly
after birth.

xi 40 64 34 15 57 45
Yi 33 46 23 12 56 40

We consider a linear dependence between the concentration in mothers’ and their children’s
blood. The estimates of the regression parameters are:

b =
∑6
i=1(xi − x̄n)(Yi − Ȳn)∑6

i=1(xi − x̄n)2 = 0.8543

a = Ȳn − bx̄n = −1.3082

Let us test the hypothesis that the concentration in mother’s blood does not influence the
concentration in their children’s blood: H0 : β = 0 versus HA : β 6= 0

The 95% confidence interval for β is

0 /∈ (0.404, 1.305).

This means that we reject the null hypothesis. The dependence is thus significant.

Example 12.11 (– concentration of lactic acid, continued). Let us plot the measured data,
the estimated regression line and corresponding confidence bands:

y=a+b·x

pointwise confidence intervals

confidence band for the whole regression line
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