Interval estimation of parameters

Lecturer: Francesco Dolce

Department of Applied Mathematics

Faculty of Information Technology

Czech Technical University in Prague

(c) 2011–2024 - Rudolf B. Blažek, Francesco Dolce, Roman Kotecký, Jitka Hrabáková, Petr Novák, Daniel Vašata

Probability and Statistics

BIE-PST, WS 2024/25, Lecture 10

 299

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト

Content

• **Probability theory:**

- \blacktriangleright Events, probability, conditional probability, Bayes' Theorem, independence of events.
- **I.** Random variables, distribution function, functions of random variables, characteristics of random variables: expected value, variance, moments, generating function, quantiles, critical values, important discrete and continuous distributions.
- In Random vectors, joint and marginal distributions, independence of random variables, conditional distribution, functions of random vectors, covariance and correlation.
- Markov's and Chebyshev's inequality, weak law of large numbers, strong law of large numbers, Central limit theorem.

• **Mathematical statistics:**

- Point estimators, sample mean, sample variance, properties of point estimators, Maximum likelihood method.
- Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear regression, estimators of regression parameters, testing of linear model.

 Ω

イロメ イ何 メイヨメイヨメ

Recap

Suppose we observe a **random sample** X_1, \ldots, X_n (independent and identically distributed random variables) from an **unknown distribution**. We aim to estimate:

- The **shape** of the distribution its type and parametric family.
- The **parameters** of the distribution.

To get a graphical overview of the shape of the distribution, we can find:

- The **histogram**, which is an approximation of the **density**.
- The **empirical distribution function**, which estimates the real **distribution function**.

Most often we aim to estimate the expectation $\mathrm{E}\, X_i = \mu$ and the variance $\mathrm{var}\, X_i = \sigma^2.$ We have found **unbiased** and **consistent** estimators as:

• The **sample mean** as the estimator for the expectation:

$$
\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.
$$

The **sample variance** as the estimator for the variance:

$$
s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.
$$

つへへ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Confidence intervals

Instead of a point estimator of a parameter θ we can be interested in an interval, in which the true value of the parameter lies with a certain large probability $1 - \alpha$:

 299

メロメメ 御 メメ きょく きょう

Confidence intervals

Instead of a point estimator of a parameter θ we can be interested in an interval, in which the true value of the parameter lies with a certain large probability $1 - \alpha$:

Definition

Let X_1, \ldots, X_n be a random sample from a distribution with a parameter θ . The interval (L, U) with boundaries given by statistics $L \equiv L(\mathbf{X}) \equiv L(X_1, \ldots, X_n)$ and $U \equiv U(\mathbf{X}) \equiv U(X_1, \ldots, X_n)$ fulfilling

$$
P(L < \theta < U) = 1 - \alpha
$$

is called the $100 \cdot (1 - \alpha)\%$ confidence interval for θ .

Statistics L and U are called the **lower** and **upper** bound of the confidence interval.

The number $(1 - \alpha)$ is called **confidence level**.

 209

KORK REPAIRS

• It holds that

$$
P(\theta \in (L, U)) = 1 - \alpha.
$$

BIE-PST, WS 2024/25 (FIT CTU) [Probability and Statistics](#page-0-0) Lecture 10 5/33

÷

 299

メロメメ 御 メメ きょく きょう

• It holds that

$$
P(\theta \in (L, U)) = 1 - \alpha.
$$

• Which means that

$$
P(\theta \notin (L, U)) = \alpha.
$$

 299

メロトメ 御 トメ ミトメ ミト

• It holds that

$$
P(\theta \in (L, U)) = 1 - \alpha.
$$

• Which means that

$$
P(\theta \notin (L, U)) = \alpha.
$$

• For a symmetric or two-sided interval we choose L and U such that

$$
\mathrm{P}(\theta < L) = \frac{\alpha}{2} \quad \text{and} \quad \mathrm{P}(U < \theta) = \frac{\alpha}{2}.
$$

メロメメ 御 メメ きょく きょう

• It holds that

$$
P(\theta \in (L, U)) = 1 - \alpha.
$$

• Which means that

$$
P(\theta \notin (L, U)) = \alpha.
$$

• For a **symmetric** or **two-sided** interval we choose L and U such that

$$
\mathrm{P}(\theta < L) = \frac{\alpha}{2} \quad \text{and} \quad \mathrm{P}(U < \theta) = \frac{\alpha}{2}.
$$

• The most common values are $\alpha = 0.05$ and $\alpha = 0.01$, i.e., the ones that gives a 95% confidence interval or a 99% confidence interval.

つへへ

メロメメ 御 メメ 君 メメ 君 メー

One-sided confidence intervals

If we are interested only in a lower or upper bound, we construct statistics L or U such that

$$
P(L < \theta) = 1 - \alpha
$$
 or $P(\theta < U) = 1 - \alpha$.

This means that

$$
\mathrm{P}\left(\theta < L\right) = \alpha \quad \text{or} \quad \mathrm{P}\left(U < \theta\right) = \alpha,
$$

and intervals $(L, +\infty)$ or $(-\infty, U)$ are called the upper or lower **confidence intervals**. respectively.

In this case we speak about **one-sided confidence intervals**.

 QQ

メロメメ 倒 メメ きょく モメー

There are several possible ways how to construct confidence intervals, depending on the underlying distribution and meaning of estimated parameters. We will use the following approach:

- Find a statistics $H(\theta)$, which:
	- depends on the random sample X_1, \ldots, X_n ,

つへへ

KORK REPAIRS

There are several possible ways how to construct confidence intervals, depending on the underlying distribution and meaning of estimated parameters. We will use the following approach:

- Find a statistics $H(\theta)$, which:
	- depends on the random sample X_1, \ldots, X_n ,
	- \blacktriangleright depends on the estimated parameter θ ,

つへへ

KORK REPAIRS

There are several possible ways how to construct confidence intervals, depending on the underlying distribution and meaning of estimated parameters. We will use the following approach:

- Find a statistics $H(\theta)$, which:
	- depends on the random sample X_1, \ldots, X_n ,
	- \blacktriangleright depends on the estimated parameter θ ,
	- has a known distribution.

つへへ

There are several possible ways how to construct confidence intervals, depending on the underlying distribution and meaning of estimated parameters. We will use the following approach:

- Find a statistics $H(\theta)$, which:
	- depends on the random sample X_1, \ldots, X_n ,
	- \blacktriangleright depends on the estimated parameter θ ,
	- \blacktriangleright has a known distribution.
- Find such bounds h_L and h_U , for which

$$
P(h_L < H(\theta) < h_U) = 1 - \alpha.
$$

つへへ

There are several possible ways how to construct confidence intervals, depending on the underlying distribution and meaning of estimated parameters. We will use the following approach:

- Find a statistics $H(\theta)$, which:
	- depends on the random sample X_1, \ldots, X_n ,
	- \blacktriangleright depends on the estimated parameter θ ,
	- \blacktriangleright has a known distribution.
- Find such bounds h_L and h_U , for which

$$
P(h_L < H(\theta) < h_U) = 1 - \alpha.
$$

Rearrange the inequalities to separate θ and obtain

$$
P(L < \theta < U) = 1 - \alpha.
$$

つへへ

There are several possible ways how to construct confidence intervals, depending on the underlying distribution and meaning of estimated parameters. We will use the following approach:

- Find a statistics $H(\theta)$, which:
	- depends on the random sample X_1, \ldots, X_n ,
	- \blacktriangleright depends on the estimated parameter θ ,
	- \blacktriangleright has a known distribution.
- Find such bounds h_L and h_U , for which

 $P(h_L < H(\theta) < h_U) = 1 - \alpha.$

Rearrange the inequalities to separate θ and obtain

$$
P(L < \theta < U) = 1 - \alpha.
$$

The statistics $H(\theta)$ is often chosen using the distribution of a point estimate of the parameter θ , i.e., sample mean for the expectation or sample variance for the theoretical variance.

 Ω

If the variance σ^2 is **known:**

Theorem

 $\mathsf{Suppose}$ we have a random sample X_1,\ldots,X_n from the normal distribution $\mathsf{N}(\mu,\sigma^2)$ *and suppose that we know the value of* σ^2 . The two-sided symmetric $100 \cdot (1 - \alpha)\%$ *confidence interval for* µ *is*

$$
\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\,,\,\bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),\,
$$

where $z_{\alpha/2} = \Phi^{-1}(1-\alpha/2)$ is the critical value of the standard normal distribution, *i.e., such a number for which it holds that* $P(Z > z_{\alpha/2}) = \alpha/2$ *for* $Z \sim N(0, 1)$ *.*

The One-sided $100 \cdot (1 - \alpha)$ % *confidence intervals for* μ *are then*

$$
\left(\bar X_n-z_\alpha\frac{\sigma}{\sqrt n}\;,\;+\infty\right)\quad\text{and}\quad\left(-\infty\;,\;\bar X_n+z_\alpha\frac{\sigma}{\sqrt n}\right),
$$

using the same notation.

 QQ

 $($ ロ) $($ 何) $($ ミ) $)$ $($ Ξ $)$

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters.

 299

メロメメ 倒 メメ きょくきょ

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the *moment generating function* $M_X(s) = E[e^{sX}].$

 QQ

イロメ イ団 トイミメイミメ

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the *moment generating function* $M_X(s) = E[e^{sX}].$

The moment generating function of the normal distribution with parameters μ and σ^2 is:

$$
M_X(s) = E[e^{sX}] = \int_{-\infty}^{+\infty} e^{sx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx
$$

 Ω

 $\mathcal{A} \subseteq \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the *moment generating function* $M_X(s) = E[e^{sX}].$

The moment generating function of the normal distribution with parameters μ and σ^2 is:

$$
M_X(s) = \mathbb{E}[e^{sX}] = \int_{-\infty}^{+\infty} e^{sx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2 - 2x\mu + \mu^2 - 2\sigma^2 sx}{2\sigma^2}} dx
$$

 Ω

 $\mathcal{A} \subseteq \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the *moment generating function* $M_X(s) = E[e^{sX}].$

The moment generating function of the normal distribution with parameters μ and σ^2 is:

$$
M_X(s) = E[e^{sX}] = \int_{-\infty}^{+\infty} e^{sx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2 - 2x\mu + \mu^2 - 2\sigma^2 sx}{2\sigma^2}} dx
$$

=
$$
\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - (\mu + \sigma^2 s))^2 + \mu^2 - (\mu + \sigma^2 s)^2}{2\sigma^2}} dx
$$

г

 QQ

イロト イ押 トイヨ トイヨ トー

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the *moment generating function* $M_X(s) = E[e^{sX}].$

The moment generating function of the normal distribution with parameters μ and σ^2 is:

$$
M_X(s) = \mathbf{E}[e^{sX}] = \int_{-\infty}^{+\infty} e^{sx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2 - 2x\mu + \mu^2 - 2\sigma^2 sx}{2\sigma^2}} dx
$$

=
$$
\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - (\mu + \sigma^2 s))^2 + \mu^2 - (\mu + \sigma^2 s)^2}{2\sigma^2}} dx
$$

=
$$
e^{\mu s - \frac{\sigma^2 s^2}{2}} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x - (\mu + \sigma^2 s))^2}{2\sigma^2}} dx
$$

つへへ

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the *moment generating function* $M_X(s) = E[e^{sX}].$

The moment generating function of the normal distribution with parameters μ and σ^2 is:

$$
M_X(s) = E[e^{sX}] = \int_{-\infty}^{+\infty} e^{sx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2 - 2x\mu + \mu^2 - 2\sigma^2 sx}{2\sigma^2}} dx
$$

=
$$
\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - (\mu + \sigma^2 s))^2 + \mu^2 - (\mu + \sigma^2 s)^2}{2\sigma^2}} dx
$$

=
$$
e^{\mu s - \frac{\sigma^2 s^2}{2}} \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - (\mu + \sigma^2 s))^2}{2\sigma^2}} dx}_{1}
$$

 QQ

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \xrightarrow{\mathcal{P}} \mathcal{P} \times \mathcal{A} \xrightarrow{\mathcal{P}} \mathcal{P} \times \mathcal{A} \xrightarrow{\mathcal{P}} \mathcal{P}$

If the variance σ^2 is **known:**

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution, too, but with different parameters. The proof is obtained using the *moment generating function* $M_X(s) = E[e^{sX}].$

The moment generating function of the normal distribution with parameters μ and σ^2 is:

$$
M_X(s) = \mathbb{E}[e^{sX}] = \int_{-\infty}^{+\infty} e^{sx} \cdot \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{x^2 - 2x\mu + \mu^2 - 2\sigma^2 sx}{2\sigma^2}} dx
$$

\n
$$
= \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - (\mu + \sigma^2 s))^2 + \mu^2 - (\mu + \sigma^2 s)^2}{2\sigma^2}} dx
$$

\n
$$
= e^{\mu s - \frac{\sigma^2 s^2}{2}} \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x - (\mu + \sigma^2 s))^2}{2\sigma^2}} dx}_{1} = e^{\mu s - \frac{\sigma^2 s^2}{2}}.
$$

\n[to continue]

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

If the variance σ^2 is **known:**

Proof

The moment generating function of a sum of independent random variables is the product of their generating functions.

The moment generating function of a sum of i.i.d. normal variables is:

$$
M_{\text{sum}}(s) = \mathbf{E} \left[e^{s \sum_{i=1}^{n} X_i} \right] = \mathbf{E} \left[e^{sX_1} \cdot \dots \cdot e^{sX_n} \right]^{\text{ independence}} \mathbf{E} \left[e^{sX_1} \right] \cdot \dots \cdot \mathbf{E} \left[e^{sX_n} \right]
$$

$$
= \prod_{i=1}^{n} M_i(s) \stackrel{\text{identical distribution}}{=} (M(s))^n
$$

$$
= \left(e^{\mu s - \frac{\sigma^2 s^2}{2}} \right)^n = e^{n\mu s - \frac{n\sigma^2 s^2}{2}}.
$$

つへへ

メロトメ部 トメミトメミト

If the variance σ^2 is **known:**

Proof

The moment generating function of a sum of independent random variables is the product of their generating functions.

The moment generating function of a sum of i.i.d. normal variables is:

$$
M_{\text{sum}}(s) = \mathbf{E} \left[e^{s \sum_{i=1}^{n} X_i} \right] = \mathbf{E} \left[e^{sX_1} \cdot \dots \cdot e^{sX_n} \right] \stackrel{\text{independence}}{=} \mathbf{E} \left[e^{sX_1} \right] \cdot \dots \cdot \mathbf{E} \left[e^{sX_n} \right]
$$

$$
= \prod_{i=1}^{n} M_i(s) \stackrel{\text{identical distribution}}{=} (M(s))^n
$$

$$
= \left(e^{\mu s - \frac{\sigma^2 s^2}{2}} \right)^n = e^{n\mu s - \frac{n\sigma^2 s^2}{2}}.
$$

Comparing with the moment generating function of one normal variable we see that the generating function of the sum corresponds with the normal distribution $\mathrm{N}(n\mu,n\sigma^2).$ [to continue]

 Ω

 $\mathcal{A} \subseteq \mathcal{P} \times \mathcal{A} \xrightarrow{\mathcal{P}} \mathcal{P} \times \mathcal{A} \xrightarrow{\mathcal{P}} \mathcal{P} \times \mathcal{A} \xrightarrow{\mathcal{P}} \mathcal{P}$

If the variance σ^2 is **known:**

Proof

$$
\text{Thus } \sum_{i=1}^n X_i \sim \text{N}(n\mu,n\sigma^2) \text{ and therefore } \bar{X}_n \sim \text{N}\left(\mu,\frac{n\sigma^2}{n^2}\right) = \text{N}\left(\mu,\frac{\sigma^2}{n}\right).
$$

If the variance σ^2 is **known:**

Proof

$$
\text{Thus } \sum_{i=1}^n X_i \sim \text{N}(n\mu,n\sigma^2) \text{ and therefore } \bar{X}_n \sim \text{N}\left(\mu,\frac{n\sigma^2}{n^2}\right) = \text{N}\left(\mu,\frac{\sigma^2}{n}\right).
$$

 $\frac{i=1}{i}$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \text{N}(0, 1).
$$

If the variance σ^2 is **known:**

Proof

Thus
$$
\sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)
$$
 and therefore $\bar{X}_n \sim N\left(\mu, \frac{n\sigma^2}{n^2}\right) = N\left(\mu, \frac{\sigma^2}{n}\right)$.

Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$.

If the variance σ^2 is **known:**

Proof

Thus
$$
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
$$
 and therefore $\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{n\sigma^2}{n^2}\right) = \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$

 $\frac{i=1}{i}$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \text{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$. It means that

 $P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P(Z < z_{\alpha/2}) - P(Z < z_{1-\alpha/2}) = 1 - \alpha/2 - (1 - 1 + \alpha/2) = 1 - \alpha$.

If the variance σ^2 is **known:**

Proof

$$
\text{Thus } \sum_{i=1}^n X_i \sim \text{N}(n\mu,n\sigma^2) \text{ and therefore } \bar{X}_n \sim \text{N}\left(\mu,\frac{n\sigma^2}{n^2}\right) = \text{N}\left(\mu,\frac{\sigma^2}{n}\right).
$$

 $\frac{i=1}{i}$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \text{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$. It means that

 $P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P(Z < z_{\alpha/2}) - P(Z < z_{1-\alpha/2}) = 1 - \alpha/2 - (1 - 1 + \alpha/2) = 1 - \alpha$.

From the symmetry of N $(0, 1)$ it follows that $z_{1-\alpha/2} = -z_{\alpha/2}$.

If the variance σ^2 is **known:**

Proof

Thus
$$
\sum_{i=1}^n X_i \sim \mathcal{N}(n\mu, n\sigma^2)
$$
 and therefore
$$
\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{n\sigma^2}{n^2}\right) = \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).
$$

 $\frac{i=1}{i}$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$. It means that

 $P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P(Z < z_{\alpha/2}) - P(Z < z_{1-\alpha/2}) = 1 - \alpha/2 - (1 - 1 + \alpha/2) = 1 - \alpha$.

From the symmetry of N $(0, 1)$ it follows that $z_{1-\alpha/2} = -z_{\alpha/2}$. And we have

$$
1-\alpha = \mathrm{P}(z_{1-\alpha/2} < Z < z_{\alpha/2}) = \mathrm{P}\left(-z_{\alpha/2} < \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right)
$$

□

If the variance σ^2 is **known:**

Proof

Thus
$$
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
$$
 and therefore $\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{n\sigma^2}{n^2}\right) = \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$

 $\frac{i=1}{i}$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$. It means that

 $P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P(Z < z_{\alpha/2}) - P(Z < z_{1-\alpha/2}) = 1 - \alpha/2 - (1 - 1 + \alpha/2) = 1 - \alpha$.

From the symmetry of N(0, 1) it follows that $z_{1-\alpha/2} = -z_{\alpha/2}$. And we have

$$
1 - \alpha = P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P\left(-z_{\alpha/2} < \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right)
$$
\n
$$
= P\left(-z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X}_n - \mu < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)
$$

□

If the variance σ^2 is **known:**

Proof

Thus
$$
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
$$
 and therefore $\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{n\sigma^2}{n^2}\right) = \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$

 $\frac{i=1}{i}$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$. It means that

 $P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P(Z < z_{\alpha/2}) - P(Z < z_{1-\alpha/2}) = 1 - \alpha/2 - (1 - 1 + \alpha/2) = 1 - \alpha$.

From the symmetry of N(0, 1) it follows that $z_{1-\alpha/2} = -z_{\alpha/2}$. And we have

$$
1 - \alpha = P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P\left(-z_{\alpha/2} < \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right)
$$
\n
$$
= P\left(-z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X}_n - \mu < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = P\left(z_{\alpha/2} \frac{\sigma}{\sqrt{n}} > \mu - \bar{X}_n > -z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)
$$

□

If the variance σ^2 is **known:**

Proof

Thus
$$
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
$$
 and therefore $\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{n\sigma^2}{n^2}\right) = \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$

 $\frac{i=1}{i}$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$. It means that

 $P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P(Z < z_{\alpha/2}) - P(Z < z_{1-\alpha/2}) = 1 - \alpha/2 - (1 - 1 + \alpha/2) = 1 - \alpha$.

From the symmetry of N $(0, 1)$ it follows that $z_{1-\alpha/2} = -z_{\alpha/2}$. And we have

$$
1 - \alpha = P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P\left(-z_{\alpha/2} < \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right)
$$
\n
$$
= P\left(-z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \bar{X}_n - \mu < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right) = P\left(z_{\alpha/2} \frac{\sigma}{\sqrt{n}} > \mu - \bar{X}_n > -z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)
$$
\n
$$
= P\left(-z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu - \bar{X}_n < z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)
$$

Е
If the variance σ^2 is **known:**

Proof

Thus
$$
\sum_{i=1}^{n} X_i \sim \mathcal{N}(n\mu, n\sigma^2)
$$
 and therefore $\bar{X}_n \sim \mathcal{N}\left(\mu, \frac{n\sigma^2}{n^2}\right) = \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right).$

 $i=1 \n_i$ Thus after standardization we have

$$
Z = \frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

From the definition of the **critical value** $z_{\alpha/2}$ we have $P(Z > z_{\alpha/2}) = \alpha/2$. It follows that $P(Z < z_{\alpha/2}) = 1 - P(Z > z_{\alpha/2}) = 1 - \alpha/2$. It means that

 $P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P(Z < z_{\alpha/2}) - P(Z < z_{1-\alpha/2}) = 1 - \alpha/2 - (1 - 1 + \alpha/2) = 1 - \alpha$.

From the symmetry of N $(0, 1)$ it follows that $z_{1-\alpha/2} = -z_{\alpha/2}$. And we have

$$
1 - \alpha = P(z_{1-\alpha/2} < Z < z_{\alpha/2}) = P\left(-z_{\alpha/2} < \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}\right)
$$
\n
$$
= P\left(-z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \bar{X}_n - \mu < z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = P\left(z_{\alpha/2}\frac{\sigma}{\sqrt{n}} > \mu - \bar{X}_n > -z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)
$$
\n
$$
= P\left(-z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu - \bar{X}_n < z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right) = P\left(\bar{X}_n - z_{\alpha/2}\frac{\sigma}{\sqrt{n}} < \mu < \bar{X}_n + z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right).
$$

г

If the variance σ^2 is **known:**

 299

メロメメ 倒 メメ きょくきょ

If the variance σ^2 is **known:**

 299

If the variance σ^2 is **known:**

To obtain the confidence interval for the expectation, we used the fact that for $X_i \sim {\sf N}(\mu,\sigma^2)$ the sample mean has the normal distribution:

$$
\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

 QQ

メロメメ 御 メメ きょくきょう

If the variance σ^2 is **known:**

To obtain the confidence interval for the expectation, we used the fact that for $X_i \sim {\sf N}(\mu,\sigma^2)$ the sample mean has the normal distribution:

$$
\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

The **central limit theorem** tells us that for any random sample with expectation μ and finite variance σ^2 , the sample mean converges to the normal distribution with increasing sample size:

$$
\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \stackrel{n \to \infty}{\longrightarrow} \mathsf{N}(0,1).
$$

 Ω

メロメメ 倒 トメ ミメメ ミメー

If the variance σ^2 is **known:**

To obtain the confidence interval for the expectation, we used the fact that for $X_i \sim {\sf N}(\mu,\sigma^2)$ the sample mean has the normal distribution:

$$
\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \sim \mathsf{N}(0, 1).
$$

The **central limit theorem** tells us that for any random sample with expectation μ and finite variance σ^2 , the sample mean converges to the normal distribution with increasing sample size:

$$
\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}} \stackrel{n \to \infty}{\longrightarrow} \mathsf{N}(0,1).
$$

This fact can be utilized to form confidence intervals also for other than normal distributions.

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

If the variance σ^2 is **known:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence intervals even for a random sample from any distribution with a finite variance:

 299

メロトメ部 トメミトメミト

If the variance σ^2 is **known:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence intervals even for a random sample from any distribution with a finite variance:

Suppose we have a random sample X_1, \ldots, X_n from a distribution with $\mathrm{E}[X_i] = \mu$ and $\text{var}\, X_i = \sigma^2$, and suppose that we know the variance $\sigma^2.$

 QQ

KORK REPAIRS

If the variance σ^2 is **known:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence intervals even for a random sample from any distribution with a finite variance:

Suppose we have a random sample X_1, \ldots, X_n from a distribution with $\mathrm{E}[X_i] = \mu$ and $\text{var}\, X_i = \sigma^2$, and suppose that we know the variance $\sigma^2.$

For n large enough, the **two-sided** $100 \cdot (1 - \alpha)\%$ **confidence interval** for μ can be taken as

$$
\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\;,\; \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),\;
$$

where $z_{\alpha/2}$ is the critical value of $N(0, 1)$. The one-sided confidence intervals are constructed analogously.

つくへ

イロメイ団 メイミメイミメー

If the variance σ^2 is **known:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence intervals even for a random sample from any distribution with a finite variance:

Suppose we have a random sample X_1, \ldots, X_n from a distribution with $\mathrm{E}[X_i] = \mu$ and $\text{var}\, X_i = \sigma^2$, and suppose that we know the variance $\sigma^2.$

For n large enough, the **two-sided** $100 \cdot (1 - \alpha)\%$ **confidence interval** for μ can be taken as

$$
\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\;,\; \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),\;
$$

where $z_{\alpha/2}$ is the critical value of $N(0, 1)$. The one-sided confidence intervals are constructed analogously.

• The **approximate** confidence level of such intervals $P(\mu \in (\cdots))$ is then $1 - \alpha$.

 209

メロメメ団 メメミメメミメン 差

If the variance σ^2 is **known:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence intervals even for a random sample from any distribution with a finite variance:

Suppose we have a random sample X_1, \ldots, X_n from a distribution with $\mathrm{E}[X_i] = \mu$ and $\text{var}\, X_i = \sigma^2$, and suppose that we know the variance $\sigma^2.$

For *n* large enough, the **two-sided** $100 \cdot (1 - \alpha)$ % **confidence interval** for μ can be taken as

$$
\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\;,\; \bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),\;
$$

where $z_{\alpha/2}$ is the critical value of $N(0, 1)$. The one-sided confidence intervals are constructed analogously.

- The **approximate** confidence level of such intervals $P(\mu \in (\cdots))$ is then 1α .
- *Large enough* usually means $n = 30$ or $n = 50$. For some distributions which are further away from the normal distribution (e.g., not unimodal, skewed), n must be even larger.

 QQ

If the variance σ^2 is **unknown:**

Most often in practice we do not know the variance σ^2 , but only have the observed data at our disposal.

As seen last time, the variance can be estimated using the sample variance

$$
s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.
$$

We will now show how to utilize the sample variance and adjust the intervals so that the confidence level would be exactly $1 - \alpha$.

 209

メロメメ 倒 トメ ミメメ ミメー

Chi-square and Student's t-distribution

We use the following new distributions:

Definition

Suppose we have a random sample Y_1, \ldots, Y_n from the normal distribution $N(0, 1)$. Then we say that the random variable

$$
Y = \sum_{i=1}^{n} Y_i^2
$$

has the *chi-square (*χ 2 *) distribution with* n *degrees of freedom*.

 QQ

KOX KORKA EX KEX

Chi-square and Student's t-distribution

We use the following new distributions:

Definition

Suppose we have a random sample Y_1, \ldots, Y_n from the normal distribution $N(0, 1)$. Then we say that the random variable

$$
Y = \sum_{i=1}^{n} Y_i^2
$$

has the *chi-square (*χ 2 *) distribution with* n *degrees of freedom*.

Definition

Suppose we have a random sample Y_1, \ldots, Y_n from $\mathsf{N}(0,1),$ $Y = \sum_{i=1}^n Y_i^2$ and an independent variable Z also from $N(0, 1)$. Then we say that the random variable

$$
T = \frac{Z}{\sqrt{Y/n}}
$$

has the *Student's t-distribution with* n *degrees of freedom*.

The critical values for both distributions can be found in tabl[es.](#page-48-0) $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

BIE-PST, WS 2024/25 (FIT CTU) [Probability and Statistics](#page-0-0) Lecture 10 16/33

つくへ

Chi-square distribution and the variance

We estimate the unknown variance σ^2 using the sample variance

$$
s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2.
$$

The distribution of the sample variance is connected with the chi-square distribution:

Theorem

Suppose we have a random sample X_1, \ldots, X_n *from the normal distribution* N (μ, σ^2) *. Then*

$$
\frac{(n-1)s_n^2}{\sigma^2}
$$

has the chi-square distribution with $n - 1$ *degrees of freedom.*

Student's t-distribution and the expectation

The distribution of the sample mean with σ replaced by $s_n=\sqrt{s_n^2}$ is connected with the t-distribution:

Theorem

Suppose we have a random sample X_1, \ldots, X_n *from the normal distribution* N (μ, σ^2) *. Then*

$$
T = \frac{\bar{X}_n - \mu}{s_n / \sqrt{n}}
$$

has the Student's t-distribution with $n - 1$ *degrees of freedom.*

Proof

We can rewrite T as:

$$
T = \frac{\bar{X}_n - \mu}{\sqrt{s_n^2/n}} = \frac{\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}}{\sqrt{\frac{(n-1)s_n^2}{\sigma^2(n-1)}}}.
$$

The numerator has standard normal distribution N $(0,1)$, under the square root in the denominator we have χ^2_{n-1} divided by $(n-1).$ The distributions of \bar{X}_n and s_n^2 are independent (see literature), thus the whole fraction has indeed the t_{n-1} distribution.

If the variance σ^2 is **unknown:** If the variance σ^2 is unknown we estimate the σ by taking the square root of the sample variance $s_n=\sqrt{s_n^2}.$ Standardization of \bar{X}_n with s_n leads to the **Student's t-distribution**:

 QQ

メロメメ 倒 メメ きょくきょ

If the variance σ^2 is **unknown:** If the variance σ^2 is unknown we estimate the σ by taking the square root of the sample variance $s_n=\sqrt{s_n^2}.$ Standardization of \bar{X}_n with s_n leads to the **Student's t-distribution**:

Theorem

 S uppose we have a random sample X_1, \ldots, X_n from the normal distribution $\mathsf{N}(\mu,\sigma^2)$ with *unknown variance. The two-sided symmetric* $100 \cdot (1 - \alpha)\%$ *confidence interval for* μ *is*

$$
\left(\bar{X}_n-t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}},\ \bar{X}_n+t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}}\right),
$$

where $t_{\alpha/2,n-1}$ *is the critical value of the Student's t-distribution with* $n-1$ *degrees of freedom.*

If the variance σ^2 is **unknown:** If the variance σ^2 is unknown we estimate the σ by taking the square root of the sample variance $s_n=\sqrt{s_n^2}.$ Standardization of \bar{X}_n with s_n leads to the **Student's t-distribution**:

Theorem

 S uppose we have a random sample X_1, \ldots, X_n from the normal distribution $\mathsf{N}(\mu,\sigma^2)$ with *unknown variance. The two-sided symmetric* $100 \cdot (1 - \alpha)\%$ *confidence interval for* μ *is*

$$
\left(\bar{X}_n-t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}},\ \bar{X}_n+t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}}\right),
$$

where $t_{\alpha/2,n-1}$ *is the critical value* of the *Student's t-distribution with* $n-1$ *degrees of freedom.*

The one-sided $100 \cdot (1 - \alpha)$ % *confidence intervals for* μ *are*

$$
\left(\bar X_n-t_{\alpha, n-1} \frac{s_n}{\sqrt n}\;,\; +\infty\right) \quad \text{and} \quad \left(-\infty\;,\; \bar X_n+t_{\alpha, n-1} \frac{s_n}{\sqrt n}\right)
$$

using the same notation.

BIE-PST, WS 2024/25 (FIT CTU) [Probability and Statistics](#page-0-0) Lecture 10 19 / 33

If the variance σ^2 is **unknown:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence interval even for a random sample from any distribution.

 299

メロトメ 御 トメ ミトメ ミト

If the variance σ^2 is **unknown:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence interval even for a random sample from any distribution.

Suppose we observe a random sample X_1, \ldots, X_n from any distribution with $E X_i = \mu$ and $\mathrm{var}\, X_i = \sigma^2$ and suppose that we do not know the variance $\sigma^2.$

つへへ

If the variance σ^2 is **unknown:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence interval even for a random sample from any distribution.

Suppose we observe a random sample X_1, \ldots, X_n from any distribution with $\mathrm{E}[X_i] = \mu$ and $\mathrm{var}\, X_i = \sigma^2$ and suppose that we do not know the variance $\sigma^2.$

For n large enough, the **two-sided** symmetric $100 \cdot (1 - \alpha)\%$ confidence interval for μ can be taken as

$$
\left(\bar{X}_n-t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}},\ \bar{X}_n+t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}}\right),
$$

where $t_{\alpha/2}$ is the critical value of the Student's t-distribution with $n-1$ degrees of freedom t_{n-1} . The one-sided confidence intervals are constructed analogously.

 209

イロメ イ団 メイモメイモメー

If the variance σ^2 is **unknown:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence interval even for a random sample from any distribution.

Suppose we observe a random sample X_1, \ldots, X_n from any distribution with $\mathrm{E}[X_i] = \mu$ and $\mathrm{var}\, X_i = \sigma^2$ and suppose that we do not know the variance $\sigma^2.$

For n large enough, the **two-sided** symmetric $100 \cdot (1 - \alpha)\%$ confidence interval for μ can be taken as

$$
\left(\bar{X}_n-t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}},\ \bar{X}_n+t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}}\right),
$$

where $t_{\alpha/2}$ is the critical value of the Student's t-distribution with $n-1$ degrees of freedom t_{n-1} . The one-sided confidence intervals are constructed analogously.

• For the interval it holds that $\mathrm{P}\left(\mu \in (\cdots)\right) \approx 1-\alpha.$

 Ω

If the variance σ^2 is **unknown:**

As a consequence of the **central limit theorem**, for large n we can use the same confidence interval even for a random sample from any distribution.

Suppose we observe a random sample X_1, \ldots, X_n from any distribution with $\mathrm{E}[X_i] = \mu$ and $\mathrm{var}\, X_i = \sigma^2$ and suppose that we do not know the variance $\sigma^2.$

For n large enough, the **two-sided** symmetric $100 \cdot (1 - \alpha)\%$ confidence interval for μ can be taken as

$$
\left(\bar{X}_n-t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}},\ \bar{X}_n+t_{\alpha/2,n-1}\frac{s_n}{\sqrt{n}}\right),
$$

where $t_{\alpha/2}$ is the critical value of the Student's t-distribution with $n-1$ degrees of freedom t_{n-1} . The one-sided confidence intervals are constructed analogously.

- For the interval it holds that $\mathrm{P}\left(\mu \in (\cdots)\right) \approx 1-\alpha.$
- Large enough usually means $n = 30$ or $n = 50$. For distributions which are further away from the normal distribution (e.g., not unimodal, skewed), n must be even larger.

 QQ

If the variance σ^2 is **unknown:**

 290

メロメメ 倒 メメ きょくきょ

If the variance σ^2 is **unknown:**

 299

Comparison of the critical values of N $(0, 1)$ and t_{n-1} :

- Confidence intervals for μ for unknown variance σ^2 are wider than for σ^2 known.
- For $n \to +\infty$ both distributions (and thus also their critical values) coincide.

 QQ

イロメ イ団メ イモメ イモメ

Example – fishes' weights

Suppose that the carps' weights in a certain pond in south Bohemia are random with normal distribution N (μ,σ^2) . From 10 previously caught carps we know that:

$$
\sum_{i=1}^{10} X_i = 45.65 \text{ kg} \quad \text{and} \quad \sum_{i=1}^{10} X_i^2 = 208.70 \text{ kg}^2.
$$

Find point estimates and two-sided 90% confidence interval estimates for μ *and* σ^2 *.*

 Ω

Example – fishes' weights

Suppose that the carps' weights in a certain pond in south Bohemia are random with normal distribution N (μ,σ^2) . From 10 previously caught carps we know that:

$$
\sum_{i=1}^{10} X_i = 45.65 \text{ kg} \quad \text{and} \quad \sum_{i=1}^{10} X_i^2 = 208.70 \text{ kg}^2.
$$

Find point estimates and two-sided 90% confidence interval estimates for μ *and* σ^2 *.* **Point estimates:**

•
$$
\bar{X}_{10} = \frac{1}{10} \sum_{i=1}^{10} X_i = \frac{45.65}{10} = 4.565
$$
 kg.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Example – fishes' weights

Suppose that the carps' weights in a certain pond in south Bohemia are random with normal distribution N (μ,σ^2) . From 10 previously caught carps we know that:

$$
\sum_{i=1}^{10} X_i = 45.65 \text{ kg} \quad \text{and} \quad \sum_{i=1}^{10} X_i^2 = 208.70 \text{ kg}^2.
$$

Find point estimates and two-sided 90% confidence interval estimates for μ *and* σ^2 *.* **Point estimates:**

•
$$
\bar{X}_{10} = \frac{1}{10} \sum_{i=1}^{10} X_i = \frac{45.65}{10} = 4.565 \text{ kg.}
$$

\n• $s_{10}^2 = \frac{1}{10 - 1} \sum_{i=1}^{10} (X_i - \bar{X}_n)^2 = \frac{1}{10 - 1} \left(\sum_{i=1}^{10} X_i^2 - n(\bar{X}_n)^2 \right)$
\n $= \frac{208.7 - 10 \cdot (4.565)^2}{9} = 0.0342 \text{ kg}^2.$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Example – fishes' weights – continuation

Find the two-sided 90% confidence interval for µ*:*

$$
\left(\bar{X}_n - t_{\alpha/2, n-1} \frac{s_n}{\sqrt{n}}, \ \bar{X}_n + t_{\alpha/2, n-1} \frac{s_n}{\sqrt{n}}\right) \qquad \qquad \bar{X}_{10} = 4.565 \text{ kg}
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\left(4.565 - 1.833 \frac{\sqrt{0.0342}}{\sqrt{10}}, \ 4.565 + 1.833 \frac{\sqrt{0.0342}}{\sqrt{10}}\right) \qquad \qquad \alpha = 10\% = 0.1
$$
\n
$$
t_{0.05, 9} = 1.833
$$

つへへ

イロメイ部メイ君メイ君メー

Example – fishes' weights – continuation

Find the two-sided 90% confidence interval for µ*:*

$$
\left(\bar{X}_n - t_{\alpha/2, n-1} \frac{s_n}{\sqrt{n}}, \ \bar{X}_n + t_{\alpha/2, n-1} \frac{s_n}{\sqrt{n}}\right) \qquad \begin{aligned}\n\bar{X}_{10} &= 4.565 \text{ kg} \\
s_{10}^2 &= 0.0342 \text{ kg}^2 \\
\left(4.565 - 1.833 \frac{\sqrt{0.0342}}{\sqrt{10}}, \ 4.565 + 1.833 \frac{\sqrt{0.0342}}{\sqrt{10}}\right) \qquad & \alpha = 10\% = 0.1 \\
t_{0.05, 9} &= 1.833\n\end{aligned}
$$

The **two-sided 90% confidence interval for** μ is

(4.4578 , 4.6722) kg.

 QQ

メロメメ 御 メメ 君 メメ 君 メー

Table of the critical values of the Student's t-distribution t_{n−1}

メロトメ 御 トメ 君 トメ 君 ト

Example – fishes' weights – continuation

Find the lower 90% confidence interval for µ*:*

$$
\left(-\infty, \ \bar{X}_n + t_{\alpha, n-1} \frac{s_n}{\sqrt{n}}\right)
$$
\n
$$
\bar{X}_{10} = 4.565 \text{ kg}
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\left(-\infty, \ 4.565 + 1.383 \frac{\sqrt{0.0342}}{\sqrt{10}}\right)
$$
\n
$$
\alpha = 10\% = 0.1
$$
\n
$$
t_{0.1,9} = 1.383
$$

 QQ

メロメメ 倒 メメ きょくきょ

Example – fishes' weights – continuation

Find the lower 90% confidence interval for µ*:*

$$
\left(-\infty, \ \bar{X}_n + t_{\alpha, n-1} \frac{s_n}{\sqrt{n}}\right)
$$
\n
$$
\bar{X}_{10} = 4.565 \text{ kg}
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\left(-\infty, \ 4.565 + 1.383 \frac{\sqrt{0.0342}}{\sqrt{10}}\right)
$$
\n
$$
\alpha = 10\% = 0.1
$$
\n
$$
t_{0.1,9} = 1.383
$$

The **lower 90% confidence interval for** μ is then

 $(-\infty, 4.646)$ kg.

 Ω

イロメ イ団メ イモメ イモメ

Example – fishes' weights – continuation

Find the lower 90% confidence interval for µ*:*

$$
\left(-\infty, \ \bar{X}_n + t_{\alpha, n-1} \frac{s_n}{\sqrt{n}}\right)
$$
\n
$$
\bar{X}_{10} = 4.565 \text{ kg}
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\left(-\infty, \ 4.565 + 1.383 \frac{\sqrt{0.0342}}{\sqrt{10}}\right)
$$
\n
$$
\alpha = 10\% = 0.1
$$
\n
$$
t_{0.1,9} = 1.383
$$

The **lower 90% confidence interval for** μ is then

$$
(-\infty\;,\;4.646) \;\mathrm{kg}.
$$

If the fish seller tell us that the expected weight is 4.8 kg, we can say with 90% certainty that it is not true.

つくへ

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶
Example – fishes' weights – continuation

Find the lower 90% confidence interval for µ*:*

$$
\left(-\infty, \ \bar{X}_n + t_{\alpha, n-1} \frac{s_n}{\sqrt{n}}\right)
$$
\n
$$
\bar{X}_{10} = 4.565 \text{ kg}
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\left(-\infty, \ 4.565 + 1.383 \frac{\sqrt{0.0342}}{\sqrt{10}}\right)
$$
\n
$$
\alpha = 10\% = 0.1
$$
\n
$$
t_{0.1,9} = 1.383
$$

The **lower 90% confidence interval for** μ is then

$$
(-\infty\;,\;4.646) \;\,\rm{kg}.
$$

If the fish seller tell us that the expected weight is 4.8 kg, we can say with 90% certainty that it is not true.

Such considerations form the basis of *hypothesis testing* (see later).

 Ω

イロト イ押ト イヨト イヨト

Theorem

Suppose we observe a random sample X_1, \ldots, X_n *from the normal distribution* $\mathsf{N}(\mu, \sigma^2).$ *The two-sided* $100 \cdot (1 - \alpha) \%$ *confidence interval for* σ^2 *is*

$$
\left(\frac{(n-1)s_n^2}{\chi^2_{\alpha/2,n-1}},\,\frac{(n-1)s_n^2}{\chi^2_{1-\alpha/2,n-1}}\right),\,
$$

where $\chi^2_{\alpha/2,n-1}$ is the critical value of the χ^2 distribution with $n-1$ degrees of freedom, *i.e.,* $P(X > \chi^2_{\alpha/2,n-1}) = \alpha/2$ *if* $X \sim \chi^2_{n-1}$ *.*

The one-sided $100 \cdot (1 - \alpha) \%$ *confidence intervals for* σ^2 *are then*

$$
\left(\frac{(n-1)s_n^2}{\chi^2_{\alpha,n-1}}\right),+\infty\right) \quad \text{and} \quad \left(0,\ \frac{(n-1)s_n^2}{\chi^2_{1-\alpha,n-1}}\right).
$$

 Ω

メロメメ 倒 トメ ミメメ ミメー

Theorem

Suppose we observe a random sample X_1, \ldots, X_n *from the normal distribution* $\mathsf{N}(\mu, \sigma^2).$ *The two-sided* $100 \cdot (1 - \alpha) \%$ *confidence interval for* σ^2 *is*

$$
\left(\frac{(n-1)s_n^2}{\chi^2_{\alpha/2,n-1}},\,\frac{(n-1)s_n^2}{\chi^2_{1-\alpha/2,n-1}}\right),\,
$$

where $\chi^2_{\alpha/2,n-1}$ is the critical value of the χ^2 distribution with $n-1$ degrees of freedom, *i.e.,* $P(X > \chi^2_{\alpha/2,n-1}) = \alpha/2$ *if* $X \sim \chi^2_{n-1}$ *.*

The one-sided $100 \cdot (1 - \alpha) \%$ *confidence intervals for* σ^2 *are then*

$$
\left(\frac{(n-1)s_n^2}{\chi^2_{\alpha,n-1}}\,\,+\infty\right)\quad\text{and}\quad\left(0\,,\,\frac{(n-1)s_n^2}{\chi^2_{1-\alpha,n-1}}\right).
$$

 $\sqrt{\ }$ The statement holds only for the normal distribution!

 Ω

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

Proof

We know that

$$
\frac{(n-1)s_n^2}{\sigma^2}
$$

has the chi-square distribution $\chi^2_{n-1}.$ Then the confidence interval can be established using the critical values:

$$
P\left(\chi^2_{1-\alpha/2,n-1} < \frac{(n-1)s_n^2}{\sigma^2} < \chi^2_{\alpha/2,n-1}\right) = 1 - \alpha.
$$

By multiplying all parts by σ^2 and dividing with the critical values we get that indeed:

$$
P\left(\frac{(n-1)s_n^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)s_n^2}{\chi^2_{1-\alpha/2,n-1}}\right) = 1 - \alpha.
$$

 QQ

メロメメ 御きメモ トメモメー

 290

メロメメ 御き メミメメ 差す

 299

Example – fishes' weights – continuation

Find the two-sided 90% confidence interval for the variance σ^2 *of the carps' weights:*

$$
\left(\frac{(n-1)s_n^2}{\chi_{\alpha/2,n-1}^2}, \frac{(n-1)s_n^2}{\chi_{1-\alpha/2,n-1}^2}\right)
$$
\n
$$
\frac{s_{10}^2 = 0.0342 \text{ kg}^2}{\alpha = 10\% = 0.1}
$$
\n
$$
\left(\frac{9 \cdot 0.0342}{16.919}, \frac{9 \cdot 0.0342}{3.325}\right)
$$
\n
$$
\chi_{0.95,9}^2 = 16.919
$$
\n
$$
\chi_{0.95,9}^2 = 3.325
$$

つへへ

メロトメ 御 トメ 君 トメ 君 ト

Example – fishes' weights – continuation

Find the two-sided 90% confidence interval for the variance σ^2 *of the carps' weights:*

$$
\left(\frac{(n-1)s_n^2}{\chi_{\alpha/2,n-1}^2}, \frac{(n-1)s_n^2}{\chi_{1-\alpha/2,n-1}^2}\right)
$$
\n
$$
\frac{s_{10}^2 = 0.0342 \text{ kg}^2}{\alpha = 10\% = 0.1}
$$
\n
$$
\left(\frac{9 \cdot 0.0342}{16.919}, \frac{9 \cdot 0.0342}{3.325}\right)
$$
\n
$$
\chi_{0.05,9}^2 = 16.919
$$
\n
$$
\chi_{0.95,9}^2 = 3.325
$$

The two-sided 90% confidence interval for σ^2 is

 $(0.0182, 0.0926)$ kg².

 QQ

メロメメ 御 メメ きょく きょう

Table of the critical values of the χ^2 distribution

 QQ

メロメメ 倒 メメ きょくきょ

Example – fishes' weights – continuation

Find the upper one-sided 90% confidence interval for the variance σ^2 *of the carps' weights:*

$$
\left(\frac{(n-1)s_n^2}{\chi_{\alpha,n-1}^2}, +\infty\right)
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\alpha = 10\% = 0.1
$$
\n
$$
\left(\frac{9 \cdot 0.0342}{14.684}, +\infty\right)
$$
\n
$$
\chi_{0.1,9}^2 = 14.684
$$

つへへ

メロトメ 御 トメ ミトメ ミト

Example – fishes' weights – continuation

Find the upper one-sided 90% confidence interval for the variance σ^2 *of the carps' weights:*

$$
\left(\frac{(n-1)s_n^2}{\chi_{\alpha,n-1}^2}, +\infty\right)
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\alpha = 10\% = 0.1
$$
\n
$$
\left(\frac{9 \cdot 0.0342}{14.684}, +\infty\right)
$$
\n
$$
\chi_{0.1,9}^2 = 14.684
$$

The upper one-sided 90% confidence interval for σ^2 is then

 $(0.0210, +\infty)$ kg².

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

Example – fishes' weights – continuation

Find the upper one-sided 90% confidence interval for the variance σ^2 *of the carps' weights:*

$$
\left(\frac{(n-1)s_n^2}{\chi_{\alpha,n-1}^2}, +\infty\right)
$$
\n
$$
s_{10}^2 = 0.0342 \text{ kg}^2
$$
\n
$$
\alpha = 10\% = 0.1
$$
\n
$$
\left(\frac{9 \cdot 0.0342}{14.684}, +\infty\right)
$$
\n
$$
\chi_{0.1,9}^2 = 14.684
$$

The upper one-sided 90% confidence interval for σ^2 is then

$$
(0.0210\,+\infty)\, \mathrm{kg}^2.
$$

If the fish seller tell us that the variance of the weights is 0.01 kg², meaning that the standard deviation is 100 grams, we could say with 90% certainty that it is not true.

 QQ

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Recap

Confidence intervals or **interval estimates** for a parameter θ of a distribution are such bounds $L = L(X), U = U(X)$, for which

$$
P(L < \theta < U) = 1 - \alpha.
$$

 α is chosen as small, typically 5% or 1%. Then we speak of $(1-\alpha)\%$ confidence intervals. The **two-sided** confidence intervals for the expectation μ of a random sample from the **normal distribution** with **known variance** can be found as

$$
\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\,,\,\bar{X}_n + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right),\,
$$

where z denotes the corresponding critical value of the standard normal distribution.

Further cases:

- If the variance is **unknown**, use the **sample standard deviation** s_n instead of σ and critical values of the **Student's t-distribution** t_{n-1} instead of z.
- For a **one-sided** lower or upper interval, replace one bound with ±∞ and in the other bound use α instead of $\alpha/2$.
- To obtain confidence intervals for the **variance** σ 2 , use the approach based on the **chi-square** distribution χ^2_{n-1} . 4 ロ > 4 個 > 4 ミ > 4 ミ > 2990