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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, independence of random variables,
conditional distribution, functions of random vectors, covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap
Suppose we observe a random sample X1, . . . , Xn (independent and identically distributed
random variables) from an unknown distribution. We aim to estimate:

• The shape of the distribution – its type and parametric family.

• The parameters of the distribution.

To get a graphical overview of the shape of the distribution, we can find:

• The histogram, which is an approximation of the density.

• The empirical distribution function, which estimates the real distribution function.

Most often we aim to estimate the expectation EXi = µ and the variance varXi = σ2. We have
found unbiased and consistent estimators as:

• The sample mean as the estimator for the expectation:

X̄n =
1

n

n∑
i=1

Xi.

• The sample variance as the estimator for the variance:

s2
n =

1

n− 1

n∑
i=1

(
Xi − X̄n

)2
.
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Interval estimation Confidence intervals

Confidence intervals

Instead of a point estimator of a parameter θ we can be interested in an interval, in which
the true value of the parameter lies with a certain large probability 1− α:

Definition

Let X1, . . . , Xn be a random sample from a distribution with a parameter θ. The interval
(L,U) with boundaries given by statistics L ≡ L(X) ≡ L(X1, . . . , Xn) and
U ≡ U(X) ≡ U(X1, . . . , Xn) fulfilling

P
(
L < θ < U

)
= 1− α

is called the 100 · (1− α)% confidence interval for θ.

Statistics L and U are called the lower and upper bound of the confidence interval.

The number (1− α) is called confidence level.
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Interval estimation Confidence intervals

Confidence intervals – notes

• It holds that
P
(
θ ∈ (L,U)

)
= 1− α.

• Which means that
P
(
θ /∈ (L,U)

)
= α.

• For a symmetric or two-sided interval we choose L and U such that

P(θ < L) =
α

2
and P(U < θ) =

α

2
.

• The most common values are α = 0.05 and α = 0.01, i.e., the ones that gives a
95% confidence interval or a 99% confidence interval.
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Interval estimation Confidence intervals

One-sided confidence intervals

If we are interested only in a lower or upper bound, we construct statistics L or U such that

P
(
L < θ

)
= 1− α or P

(
θ < U

)
= 1− α.

This means that
P
(
θ < L

)
= α or P

(
U < θ

)
= α,

and intervals (L,+∞) or (−∞, U) are called the upper or lower confidence intervals,
respectively.

In this case we speak about one-sided confidence intervals.
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Interval estimation Confidence intervals

Construction of confidence intervals
There are several possible ways how to construct confidence intervals, depending on the
underlying distribution and meaning of estimated parameters. We will use the following
approach:

• Find a statistics H(θ), which:
I depends on the random sample X1, . . . , Xn,

I depends on the estimated parameter θ,
I has a known distribution.

• Find such bounds hL and hU , for which

P
(
hL < H(θ) < hU

)
= 1− α.

• Rearrange the inequalities to separate θ and obtain

P
(
L < θ < U

)
= 1− α.

The statistics H(θ) is often chosen using the distribution of a point estimate of the
parameter θ, i.e., sample mean for the expectation or sample variance for the theoretical
variance.
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is known:

Theorem

Suppose we have a random sample X1, . . . , Xn from the normal distribution N(µ, σ2)

and suppose that we know the value of σ2. The two-sided symmetric 100 · (1− α)%

confidence interval for µ is(
X̄n − zα/2

σ√
n
, X̄n + zα/2

σ√
n

)
,

where zα/2 = Φ−1(1− α/2) is the critical value of the standard normal distribution,
i.e., such a number for which it holds that P(Z > zα/2) = α/2 for Z ∼ N(0, 1).

The One-sided 100 · (1− α)% confidence intervals for µ are then(
X̄n − zα

σ√
n
, +∞

)
and

(
−∞ , X̄n + zα

σ√
n

)
,

using the same notation.
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is known:

Proof

First we show that the sample mean of i.i.d. random variables with a normal distribution has a normal distribution,
too, but with different parameters.

The proof is obtained using the moment generating function
MX(s) = E[esX ].

The moment generating function of the normal distribution with parameters µ and σ2 is:

MX(s) = E[esX ] =

∫ +∞

−∞
esx · 1√

2πσ2
e
− (x−µ)2

2σ2 dx

=

∫ +∞

−∞

1√
2πσ2

e
− x

2−2xµ+µ2−2σ2sx

2σ2 dx

=

∫ +∞

−∞

1√
2πσ2

e
− (x−(µ+σ2s))2+µ2−(µ+σ2s)2

2σ2 dx

= eµs−
σ2s2

2 = eµs−
σ2s2

2 .

[to continue]
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2 .

[to continue]
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1
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2 .

[to continue]
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is known:

Proof

The moment generating function of a sum of independent random variables is the product of their generating
functions.

The moment generating function of a sum of i.i.d. normal variables is:

Msum(s) = E
[
es

∑n
i=1Xi

]
= E[esX1 · · · · · esXn ]

independence
= E[esX1 ] · · · · · E[esXn ]

=
n∏
i=1

Mi(s)
identical distribution

= (M(s))n

=

(
eµs−

σ2s2

2

)n
= enµs−

nσ2s2

2 .

Comparing with the moment generating function of one normal variable we see that the generating function of the
sum corresponds with the normal distribution N(nµ, nσ2).
[to continue]
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is known:

Proof

Thus
n∑
i=1

Xi ∼ N(nµ, nσ2) and therefore X̄n ∼ N

(
µ,
nσ2

n2

)
= N

(
µ,
σ2

n

)
.

Thus after standardization we have

Z =
X̄n − µ
σ/
√
n
∼ N(0, 1).

From the definition of the critical value zα/2 we have P(Z > zα/2) = α/2.
It follows that P(Z < zα/2) = 1− P(Z > zα/2) = 1− α/2. It means that

P(z1−α/2 < Z < zα/2) = P(Z < zα/2)− P(Z < z1−α/2) = 1− α/2− (1− 1 + α/2) = 1− α.

From the symmetry of N(0, 1) it follows that z1−α/2 = −zα/2. And we have

1− α = P(z1−α/2 < Z < zα/2) = P

(
−zα/2 <

X̄n − µ
σ/
√
n

< zα/2

)

= P

(
−zα/2

σ√
n
< X̄n − µ < zα/2

σ√
n

)
= P

(
zα/2

σ√
n
> µ− X̄n > −zα/2

σ√
n

)
= P

(
−zα/2

σ√
n
< µ− X̄n < zα/2

σ√
n

)
= P

(
X̄n − zα/2

σ√
n
< µ < X̄n + zα/2

σ√
n

)
.
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Confidence intervals for the expectation
If the variance σ2 is known:

Two-sided

α/2
1− α

α/2

Z = X̄n−µ
σ/
√
n
∼ N(0, 1)

0 zα/2−zα/2 = z1−α/2

One-sided

1− α
α

0 zα−∞
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is known:

To obtain the confidence interval for the expectation, we used the fact that for
Xi ∼ N(µ, σ2) the sample mean has the normal distribution:

X̄n − µ
σ/
√
n
∼ N(0, 1).

The central limit theorem tells us that for any random sample with expectation µ and finite
variance σ2, the sample mean converges to the normal distribution with increasing sample
size:

X̄n − µ
σ/
√
n

n→∞−→ N(0, 1).

This fact can be utilized to form confidence intervals also for other than normal distributions.
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is known:

As a consequence of the central limit theorem, for large n we can use the same
confidence intervals even for a random sample from any distribution with a finite variance:

Suppose we have a random sample X1, . . . , Xn from a distribution with EXi = µ and
varXi = σ2, and suppose that we know the variance σ2.

For n large enough, the two-sided 100 · (1−α)% confidence interval for µ can be taken
as (

X̄n − zα/2
σ√
n
, X̄n + zα/2

σ√
n

)
,

where zα/2 is the critical value of N(0, 1). The one-sided confidence intervals are
constructed analogously.

• The approximate confidence level of such intervals P
(
µ ∈ (· · · )

)
is then 1− α.

• Large enough usually means n = 30 or n = 50. For some distributions which are
further away from the normal distribution (e.g., not unimodal, skewed), n must be even
larger.
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is unknown:

Most often in practice we do not know the variance σ2, but only have the observed data at
our disposal.

As seen last time, the variance can be estimated using the sample variance

s2n =
1

n− 1

n∑
i=1

(Xi − X̄n)2.

We will now show how to utilize the sample variance and adjust the intervals so that the

confidence level would be exactly 1− α.
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Interval estimation Confidence intervals for the expectation

Chi-square and Student’s t-distribution

We use the following new distributions:

Definition

Suppose we have a random sample Y1, . . . , Yn from the normal distribution N(0, 1). Then
we say that the random variable

Y =

n∑
i=1

Y 2
i

has the chi-square (χ2) distribution with n degrees of freedom.

Definition

Suppose we have a random sample Y1, . . . , Yn from N(0, 1), Y =
∑n
i=1 Y

2
i and

an independent variable Z also from N(0, 1). Then we say that the random variable

T =
Z√
Y/n

has the Student’s t-distribution with n degrees of freedom.

The critical values for both distributions can be found in tables.
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Interval estimation Confidence intervals for the expectation

Chi-square distribution and the variance

We estimate the unknown variance σ2 using the sample variance

s2n =
1

n− 1

n∑
i=1

(Xi − X̄n)2.

The distribution of the sample variance is connected with the chi-square distribution:

Theorem

Suppose we have a random sample X1, . . . , Xn from the normal distribution N(µ, σ2).
Then

(n− 1)s2n
σ2

has the chi-square distribution with n− 1 degrees of freedom.

Proof

See literature.
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Interval estimation Confidence intervals for the expectation

Student’s t-distribution and the expectation
The distribution of the sample mean with σ replaced by sn =

√
s2n is connected with the

t-distribution:

Theorem

Suppose we have a random sample X1, . . . , Xn from the normal distribution N(µ, σ2).
Then

T =
X̄n − µ
sn/
√
n

has the Student’s t-distribution with n− 1 degrees of freedom.

Proof

We can rewrite T as:

T =
X̄n − µ√
s2n/n

=

X̄n−µ
σ/
√
n√

(n−1)s2n
σ2(n−1)

.

The numerator has standard normal distribution N(0, 1), under the square root in the denominator we have χ2
n−1

divided by (n− 1). The distributions of X̄n and s2n are independent (see literature), thus the whole fraction has
indeed the tn−1 distribution.
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is unknown:

If the variance σ2 is unknown we estimate the σ by taking the square root of the sample
variance sn =

√
s2n. Standardization of X̄n with sn leads to the Student’s t-distribution:

Theorem

Suppose we have a random sampleX1, . . . , Xn from the normal distribution N(µ, σ2) with
unknown variance. The two-sided symmetric 100 · (1− α)% confidence interval for µ is(

X̄n − tα/2,n−1
sn√
n
, X̄n + tα/2,n−1

sn√
n

)
,

where tα/2,n−1 is the critical value of the Student’s t-distribution with n− 1 degrees of
freedom.

The one-sided 100 · (1− α)% confidence intervals for µ are(
X̄n − tα,n−1

sn√
n
, +∞

)
and

(
−∞ , X̄n + tα,n−1

sn√
n

)
using the same notation.
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Interval estimation Confidence intervals for the expectation

Confidence intervals for expectation
If the variance σ2 is unknown:

As a consequence of the central limit theorem, for large n we can use the same
confidence interval even for a random sample from any distribution.

Suppose we observe a random sample X1, . . . , Xn from any distribution with EXi = µ

and varXi = σ2 and suppose that we do not know the variance σ2.

For n large enough, the two-sided symmetric 100 · (1− α)% confidence interval for µ
can be taken as (

X̄n − tα/2,n−1
sn√
n
, X̄n + tα/2,n−1

sn√
n

)
,

where tα/2 is the critical value of the Student’s t-distribution with n− 1 degrees of freedom
tn−1. The one-sided confidence intervals are constructed analogously.

• For the interval it holds that P
(
µ ∈ (· · · )

)
≈ 1− α.

• Large enough usually means n = 30 or n = 50. For distributions which are further
away from the normal distribution (e.g., not unimodal, skewed), n must be even larger.
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation
If the variance σ2 is unknown:

Two-sided

α/2
1− α

α/2

T = X̄n−µ
sn/
√
n
∼ tn−1

0 tα/2,n−1−tα/2,n−1

One-sided

1− α
α

0 tα,n−1−∞
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Interval estimation Confidence intervals for the expectation

Confidence intervals for the expectation

Comparison of the critical values of N(0, 1) and tn−1:

α/2

1− α

α/2

0

tα/2,n−1−tα/2,n−1

zα/2−zα/2

• Confidence intervals for µ for unknown variance σ2 are wider than for σ2 known.

• For n→ +∞ both distributions (and thus also their critical values) coincide.
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Interval estimation Confidence intervals for the expectation

Estimates of µ and σ2 – normal distribution – example

Example – fishes’ weights

Suppose that the carps’ weights in a certain pond in south Bohemia are random with
normal distribution N(µ, σ2). From 10 previously caught carps we know that:

10∑
i=1

Xi = 45.65 kg and
10∑
i=1

X2
i = 208.70 kg2.

Find point estimates and two-sided 90% confidence interval estimates for µ and σ2.

Point estimates:

• X̄10 =
1

10

10∑
i=1

Xi =
45.65

10
= 4.565 kg.

• s210 =
1

10− 1

10∑
i=1

(Xi − X̄n)2 =
1

10− 1

(
10∑
i=1

X2
i − n(X̄n)2

)
=

208.7− 10 · (4.565)2

9
= 0.0342 kg2.
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Interval estimation Confidence intervals for the expectation

Estimates of µ and σ2 – normal distribution – example

Example – fishes’ weights – continuation

Find the two-sided 90% confidence interval for µ:

(
X̄n − tα/2,n−1

sn√
n
, X̄n + tα/2,n−1

sn√
n

)
(

4.565− 1.833

√
0.0342√

10
, 4.565 + 1.833

√
0.0342√

10

)
X̄10 = 4.565 kg

s210 = 0.0342 kg2

α = 10% = 0.1

t0.05,9 = 1.833

The two-sided 90% confidence interval for µ is

(4.4578 , 4.6722) kg.
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Interval estimation Confidence intervals for the expectation

Table of the critical values
of the Student’s t-distribution tn−1

tα,n−1

α

n t.100 t.050 t.025 t.010 t.005

1 3.078 6.314 12.706 31.821 63.657
2 1.886 2.920 4.303 6.965 9.925
3 1.638 2.353 3.182 4.541 5.841
4 1.533 2.132 2.776 3.747 4.604
5 1.476 2.015 2.571 3.365 4.032

6 1.440 1.943 2.447 3.143 3.707
7 1.415 1.895 2.365 2.998 3.499
8 1.397 1.860 2.306 2.896 3.355
9 1.383 1.833 2.262 2.821 3.250
10 1.372 1.812 2.228 2.764 3.169

11 1.363 1.796 2.201 2.718 3.106
12 1.356 1.782 2.179 2.681 3.055
13 1.350 1.771 2.160 2.650 3.012
14 1.345 1.761 2.145 2.624 2.977
15 1.341 1.753 2.131 2.602 2.947

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 10 25 / 33



Interval estimation Confidence intervals for the expectation

Estimates of µ and σ2 – normal distribution – example

Example – fishes’ weights – continuation

Find the lower 90% confidence interval for µ:(
−∞ , X̄n + tα,n−1

sn√
n

)
(
−∞ , 4.565 + 1.383

√
0.0342√

10

)
X̄10 = 4.565 kg

s210 = 0.0342 kg2

α = 10% = 0.1

t0.1,9 = 1.383

The lower 90% confidence interval for µ is then

(−∞ , 4.646) kg.

If the fish seller tell us that the expected weight is 4.8 kg, we can say with 90% certainty that
it is not true.

Such considerations form the basis of hypothesis testing (see later).
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Interval estimation Confidence intervals for the variance

Confidence intervals for the variance

Theorem

Suppose we observe a random sample X1, . . . , Xn from the normal distribution N(µ, σ2).
The two-sided 100 · (1− α)% confidence interval for σ2 is(

(n− 1)s2n
χ2
α/2,n−1

,
(n− 1)s2n
χ2
1−α/2,n−1

)
,

where χ2
α/2,n−1 is the critical value of the χ2 distribution with n− 1 degrees of freedom,

i.e., P(X > χ2
α/2,n−1) = α/2 if X ∼ χ2

n−1.

The one-sided 100 · (1− α)% confidence intervals for σ2 are then(
(n− 1)s2n
χ2
α,n−1

, +∞
)

and

(
0 ,

(n− 1)s2n
χ2
1−α,n−1

)
.

X The statement holds only for the normal distribution!
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Interval estimation Confidence intervals for the variance

Confidence intervals for the variance

Proof

We know that
(n− 1)s2n

σ2

has the chi-square distribution χ2
n−1. Then the confidence interval can be established using the critical values:

P

(
χ2

1−α/2,n−1 <
(n− 1)s2n

σ2
< χ2

α/2,n−1

)
= 1− α.

By multiplying all parts by σ2 and dividing with the critical values we get that indeed:

P

(
(n− 1)s2n
χ2
α/2,n−1

< σ2 <
(n− 1)s2n
χ2

1−α/2,n−1

)
= 1− α.
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Interval estimation Confidence intervals for the variance

Confidence intervals for the variance

α/2
1− α

α/2

(n−1)s2n
σ2 ∼ χ2

n−1

0 χ2
1−α/2,n−1 χ2

α/2,n−1

1− α
α

0 χ2
α,n−1

(n−1)s2n
σ2 < χ2

α,n−1 ⇒ (n−1)s2n
χ2
α,n−1

< σ2
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Interval estimation Confidence intervals for the variance

Confidence intervals for the variance

α/2
1− α

α/2

(n−1)s2n
σ2 ∼ χ2

n−1

0 χ2
1−α/2,n−1 χ2

α/2,n−1

1− α
α

0 χ2
α,n−1

(n−1)s2n
σ2 < χ2

α,n−1 ⇒ (n−1)s2n
χ2
α,n−1

< σ2
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Interval estimation Confidence intervals for the variance

Estimates of µ and σ2 – normal distribution – example

Example – fishes’ weights – continuation

Find the two-sided 90% confidence interval for the variance σ2 of the carps’ weights:(
(n− 1)s2n
χ2
α/2,n−1

,
(n− 1)s2n
χ2
1−α/2,n−1

)
(

9 · 0.0342

16.919
,

9 · 0.0342

3.325

)
s210 = 0.0342 kg2

α = 10% = 0.1

χ2
0.05,9 = 16.919

χ2
0.95,9 = 3.325

The two-sided 90% confidence interval for σ2 is

(0.0182 , 0.0926) kg2.
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Interval estimation Confidence intervals for the variance

Table of the critical values
of the χ2 distribution

0 χ2
α,n−1

α

n χ
2
.995 χ

2
.990 χ

2
.975 χ

2
.950 χ

2
.900 χ

2
.100 χ

2
.050 χ

2
.025 χ

2
.010 χ

2
.005

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801
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Interval estimation Confidence intervals for the variance

Estimates of µ and σ2 – normal distribution – example

Example – fishes’ weights – continuation

Find the upper one-sided 90% confidence interval for the variance σ2 of the carps’ weights:(
(n− 1)s2n
χ2
α,n−1

, +∞
)

(
9 · 0.0342

14.684
, +∞

)
s210 = 0.0342 kg2

α = 10% = 0.1

χ2
0.1,9 = 14.684

The upper one-sided 90% confidence interval for σ2 is then

(0.0210 , +∞) kg2.

If the fish seller tell us that the variance of the weights is 0.01 kg2, meaning that the

standard deviation is 100 grams, we could say with 90% certainty that it is not true.
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Interval estimation Confidence intervals for the variance

Recap
Confidence intervals or interval estimates for a parameter θ of a distribution are such bounds
L = L(X), U = U(X), for which

P(L < θ < U) = 1− α.

α is chosen as small, typically 5% or 1%. Then we speak of (1− α)% confidence intervals.
The two-sided confidence intervals for the expectation µ of a random sample from the normal
distribution with known variance can be found as(

X̄n − zα/2
σ√
n
, X̄n + zα/2

σ√
n

)
,

where z denotes the corresponding critical value of the standard normal distribution.

Further cases:

• If the variance is unknown, use the sample standard deviation sn instead of σ and critical
values of the Student’s t-distribution tn−1 instead of z.

• For a one-sided lower or upper interval, replace one bound with±∞ and in the other bound
use α instead of α/2.

• To obtain confidence intervals for the variance σ2, use the approach based on the chi-square
distribution χ2

n−1.
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