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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, covariance and correlation, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, conditional expected value.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Recap

Recap

A random experiment is represented using a probability space (Ω,F ,P):

• Ω is the set of possible results;

• F is a system of subsets of Ω;

• elements A ∈ F are called random events;

• the probability measure P is a function, which assigns to the random events a real
value from 0 to 1, representing the ideal proportion of cases, in which the events occur.

If there is only a finite many possible results with equal probabilities, then

P(A) =
|A|
|Ω| .
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Conditional probability and independence Conditional probability

Conditional probability

How does the probability change if we have partial information about the result of the
experiment?

Example

When rolling a balanced die with no additional information, we know that P(4) = 1/6.

If we know that an even number was rolled, then it is clear that P(4 | even) = 1/3.
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Conditional probability and independence Conditional probability

Conditional probability
Consider the uniform distribution on a set Ω with a finite “size” (e.g., the number of
elements, length, area, capacity, time, etc.).

The probability of an event A is then defined as the by ratio of “sizes” as

P(A) = size(A)/size(Ω).

If we know that an event B surely occurred, we are in fact interested only in outcomes of
the experiment favorable to the event B. Favorable outcomes to the event A are now in
A ∩B and all of them must be in B (B surely occurred). We have

P(A|B) =
size(A ∩B)

size(B)
=

size(A ∩B)/size(Ω)

size(B)/size(Ω)
=

P(A ∩B)

P(B)
.

Definition

Let A,B be events and P(B) > 0. The conditional probability of the event A given (the
event) B is denoted by P(A|B) and is defined as

P(A|B) =
P(A ∩B)

P(B)
.
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Conditional probability and independence Conditional probability

Conditional probability – Venn diagram
Ω

A
P(A) =

area(A)

area(Ω)

Ω
BA P(A given B) =

area(part of A inside B)

area(B)

P(A|B) =
area(A ∩B)

area(B)

/ area(Ω)

/ area(Ω)

P(A|B) =
P(A ∩B)

P(B)
P(A ∩B) = P(A|B) P(B)

P(A ∩B) = P(B|A) P(A)

P(intersection) = P(event | condition) P(condition)
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Conditional probability and independence Conditional probability

Conditional probability – examples

Example – rolling two dice

Consider two rolls of a die. What is P(sum > 6 | first = 3)?

The answer is surely 1/2, since the second rolled number must be 4, 5, or 6.

Formally: Ω = {1, 2, 3, 4, 5, 6}2,
P(A) = |A|/36 for each A ⊂ Ω.
Let B = {(3, ω2) : 1 ≤ ω2 ≤ 6}, A = {(ω1, ω2) : ω1 + ω2 > 6}.
Then

P(A | B) =
P(A ∩B)

P(B)
=
|A∩B|

36
|B|
36

=
|A ∩B|
|B| =

3

6
.
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Conditional probability and independence Conditional probability

Conditional probability – examples

Example – family with two children

A trickier example:
A family has two children. What is the probability that both are boys, given that at least one
of them is a boy? I.e., what is the value of P(both boys | at least one is a boy)?

Ω = {GG,GB,BG,BB}.

P(BB|BG ∪GB ∪BB) =
P(BB ∩ (BG ∪GB ∪BB))

P(BG ∪BG ∪BB)

=
P(BB)

P(BG ∪GB ∪BB)
=

1/4

3/4
=

1

3
.

Incorrect: P(BB|older is boy) = P(BB|BG ∪BB) =
P(BB ∩ (BG ∪BB))

P(BG ∪BB)
=

1

2
.
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Conditional probability and independence Conditional probability

Properties of conditional probability

Lemma

Let P(B) > 0. Then the conditional probability P(·|B) is a probability measure, i.e.,
P(·|B) ∈ [0, 1] and it fulfills the axioms of probability.

Proof

We need to prove the following:

i) P(·|B) : F → R,

ii) non-negativity: for all A ∈ F it holds P(A|B) ≥ 0,

iii) normalization: P(Ω|B) = 1, P(Ω|B) =
P(Ω ∩B)

P(B)
=

P(B)

P(B)
= 1,

iv) σ−additivity: IfA1, A2, . . . ∈ F are mutually disjoint events (i.e.,Ai ∩Aj = ∅ for ∀ i, j : i 6= j), then

P

(
+∞⋃
i=1

Ai

∣∣∣B) =
P
((⋃+∞

i=1 Ai

)
∩B

)
P(B)

=
P
(⋃+∞

i=1 (Ai ∩B)
)

P(B)
= · · · =

+∞∑
i=1

P(Ai|B).
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Conditional probability and independence Conditional probability

Properties of conditional probability

Conditional probability fulfills all mentioned properties of probability as well:

• if A1 and A2 are mutually disjoint, then P(A1 ∪A2|B) = P(A1|B) + P(A2|B),

• P(A1 ∪A2|B) = P(A1|B) + P(A2|B)− P(A1 ∩A2|B),

• P(Ac|B) = 1− P(A|B),

• etc.

Moreover, the probability P(A|B) “lives” on B: for A ∩B = ∅ we have P(A|B) = 0.

Furthermore, P(A ∩B|B) =
P(A ∩B ∩B)

P(B)
=

P(A ∩B)

P(B)
= P(A|B).
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Conditional probability and independence Case distinct formula and Bayes’ Theorem

Case distinct formula (Law of total probability)

Ω = B1 ∪B2 ∪B3 (disjoint partition)

B1 B2 B3

Recall:

P(A|Bi) =
P(A ∩Bi)

P(Bi)

P(A ∩Bi) = P(A|Bi) P(Bi)

A = A ∩ Ω = A ∩ (B1 ∪B2 ∪B3)

A = (A ∩B1) ∪ (A ∩B2) ∪ (A ∩B3)

P(A) = P(A ∩B1) + P(A ∩B2) + P(A ∩B3)

P(A) = P(A|B1) P(B1) + P(A|B2) P(B2) + P(A|B3) P(B3)
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Conditional probability and independence Case distinct formula and Bayes’ Theorem

Bayes’ Theorem = converse procedure
At the end we observe A and we ask ourselves, what is the probability that the event Bj occurred.

Ω = B1 ∪B2 ∪B3 (disjoint partition)

B1 B2 B3

A

A ∩B1

A ∩B2

A ∩B3

Recall:

P(A ∩Bj) = P(A|Bj) P(Bj)

P(A) = P(A|B1) P(B1) + P(A|B2) P(B2) + P(A|B3) P(B3)

P(Bj |A) =
P(A ∩Bj)

P(A)

P(Bj |A) =
P(A|Bj) P(Bj)

P(A|B1) P(B1) + P(A|B2) P(B2) + P(A|B3) P(B3)
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Conditional probability and independence Case distinct formula and Bayes’ Theorem

Bayes’ Theorem (Thomas Bayes, 1701–1761)
A family of mutual disjoint events B1, B2, . . . Bn is called a partition of the set Ω, if

Ω =

n⋃
i=1

Bi.

Theorem – case distinct formula (Law of total probability)

Let B1, B2, . . . , Bn be a partition of Ω such that ∀ i : P(Bi) > 0.
Then for each event A it holds that

P(A) =
n∑

i=1

P(A|Bi) P(Bi).

Theorem – Bayes’ Theorem

Let B1, B2, . . . , Bn be a partition of Ω such that ∀ i : P(Bi) > 0 and let A be an event
with P(A) > 0. Then it holds that

P(Bj |A) =
P(A|Bj) P(Bj)∑n
i=1 P(A|Bi) P(Bi)

.
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Conditional probability and independence Case distinct formula and Bayes’ Theorem

Bayes’ Theorem – example
Example – spam filter

From the analysis of our email account we find out that:

• 30% of all delivered messages is spam;

• in 70% of spam messages there is the word “copy”;

• only in 10% of non-spam messages there is the word “copy”.

Calculate the probability that a message containing the word “copy” is a spam,

S: set of spam messages,
Sc = Ω \ S: set of non-spam messages,
C : set of messages containing word “copy”,
Cc: set of messages not containing the word “copy”.

P(S) = 0.3, P(Sc) = 0.7, P(C|S) = 0.7, P(C|Sc) = 0.1

P(S|C) =
P(C|S) P(S)

P(C|S) P(S) + P(C|Sc) P(Sc)
=

0.7 · 0.3
0.7 · 0.3 + 0.1 · 0.7 =

21

28
= 0.75.
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Conditional probability and independence Probability trees

Probability trees

First let us recall a useful relation:
From the definition of conditional probability it follows that:

P(A ∩B) = P(A|B) P(B).

For 3 events it similarly holds that:

P(A ∩B ∩ C) = P(A) P(B|A) P(C|A ∩B),

which can be proven by using the definition of conditional probability on the right hand side:

P(A) P(B|A) P(C|A ∩B) = P(A)
P(B ∩A)

P(A)

P(C ∩ (A ∩B))

P(A ∩B)

= P(A ∩B ∩ C).
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Conditional probability and independence Probability trees

Probability trees

Lemma – Multiplicative law

Let for events A1, . . . , An hold that P(A1 ∩ · · · ∩An) > 0. Then it holds that

P(A1 ∩ · · · ∩An) = P(A1) P(A2|A1) P(A3|A1 ∩A2) . . .P(An|A1 ∩ · · · ∩An−1).

Proof

We apply successively the relation P(A ∩B) = P(A) P(B|A) following from the definition of conditional
probability:

P(A1 ∩ · · · ∩An) = P(A1 ∩ · · · ∩An−1) P(An|A1 ∩ · · · ∩An−1)

= P(A1 ∩ · · · ∩An−2) P(An−1|A1 ∩ · · · ∩An−2) P(An|A1 ∩ · · · ∩An−1)

= . . . .
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Conditional probability and independence Probability trees

Example – spam filter

Ω

Sc

Sc ∩ Cc P(Sc ∩ Cc) = 0.7 · 0.9 = 0.63

Without copy (C c
)

P(C c|S c
) = 0.9

Sc ∩ C P(Sc ∩ C) = 0.7 · 0.1 = 0.07

Copy (C)

P(C|S
c ) = 0.1

Non-spam
(S c

)

P(S c
) =

0.7

S

S ∩ Cc P(S ∩ Cc) = 0.3 · 0.3 = 0.09

Without copy (C c
)P(C c|S) = 0.3

S ∩ C P(S ∩ C) = 0.3 · 0.7 = 0.21

Copy (C)

P(C|S) = 0.7

Spam
(S

)

P(S
) =

0.3

P(S|C) =
P(S ∩ C)

P(C)

=
0.21

0.21 + 0.07
= 0.75
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Conditional probability and independence Probability trees

Example – multiplicative law

Suppose we draw cards without replacement from a 52 cards deck. What is the probability
that in a sequence of 3 cards drawn one after another there are no hearts?

Ai = {i-th card is not hearts}, i = 1, 2, 3.

P(A1 ∩A2 ∩A3) = P(A1) P(A2|A1) P(A3|A1 ∩A2) =
39

52
· 38

51
· 37

50

.
= 41.4%.

•

P (A1)
A1

P (Ac
1)

•

•

P (A2|A1)
A2

P (Ac
2|A1)

•

•

P (A3|A1 ∩A2)

A3

P (Ac
3|A1 ∩A2)

•

• P (A1 ∩A2 ∩A3)

P (A1 ∩A2 ∩Ac
3)

1

•

39/52

13/52

•

•

38/51

13/51

•

•

37/50

13/50

•

• 39
52 · 38

51 · 37
50

39
52 · 38

51 · 13
50

1

The probability of a given vertex of the tree is the product of the corresponding values on
the path stemming from the root.
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Conditional probability and independence Probability trees

Misinterpretations of conditional probability

Many data misinterpretations and fallacies are based on incorrect understanding of
conditional probabilities:

Example – driving under influence

• It was observed that approximatively 10% of fatal car accidents are caused by drunk
drivers (46 out of 454 road fatalities in 2022 in the Czech Republic according to the
yearly police report).

• This means that 90% of fatal accidents are caused by sober drivers!

• Does this mean that we should should beware of the sober drivers?

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 2 19 / 28
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Conditional probability and independence Probability trees

Misinterpretations of conditional probability
Example – driving under influence continued

Does this mean that we should should beware of the sober drivers?
Of course not. We have to carefully read the probabilities.

The figure tells us that among all accidents, the percentage caused by drunk drivers is
10%. Thus

P(drunk|accident) = 0.1.

What we are trying to find out is the reverse conditional probability P(accident|drunk).
From a different study, we have found out that less than 1% of drivers are driving under
influence. The overall chance of accident is difficult to determine, so we will compute just
how more likely it is to cause an accident for drunk drivers:

P(accident|drunk)

P(accident|sober)
=

P(accident ∩ drunk)/P(drunk)

P(accident ∩ sober)/P(sober)

=
P(drunk|accident) · P(accident)/P(drunk)

P(sober|accident) · P(accident)/P(sober)
=

0.1/0.01

0.9/0.99
= 11.

Drunk drivers have at least 11 times higher probability of causing a fatal accident.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 2 20 / 28
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Conditional probability and independence Independence of events

Independence of events

Intuitively: A and B are independent if the probability of the event A is not influenced by
the knowledge about occurrence of the event B, i.e., P(A|B) = P(A), and (vice versa)
P(B|A) = P(B).

Definition

Events A and B are called independent, if

P(A ∩B) = P(A) P(B).

Generally, a family of events {Ai | i ∈ I} is called independent if

P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai)

for all finite non-empty subsets J of I .
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Conditional probability and independence Independence of events

Independence of events

Example – rolling a die

Consider the events
A: ”an even number is rolled” and B: ”a number less than 3 is rolled”.
Are the events A and B independent?

A = {2, 4, 6}, B = {1, 2}, A ∩B = {2}.

P(A ∩B) =
1

6
and P(A) P(B) =

3

6
· 2

6
=

1

6
.

Then the events A and B are independent.
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Conditional probability and independence Independence of events

Independence of events

Example – rolling a die

Consider the events
A: ”an even number is rolled” and B: ”number 4 is rolled”.
Are the events A and B independent?

A = {2, 4, 6}, B = {4}, A ∩B = {4}.

P(A ∩B) =
1

6
and P(A) P(B) =

3

6
· 1

6
=

1

12
.

Then events A and B are not independent.
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Conditional probability and independence Independence of events

Relation between independence and conditional probability
Let A and B be independent events and P(B) > 0. Then clearly

P(A|B) =
P(A ∩B)

P(B)
=

P(A) P(B)

P(B)
= P(A).

For A and B independent the knowledge of B does not bring us any information
about A.

Theorem

If the events A and B are independent then A and Bc (resp., Ac and B; Ac and Bc) are
independent, too.

Theorem

If (Ai)i∈I is a family of independent events, then for any arbitrary non-empty finite subset
∅ 6= J ⊂ I it holds that

P

⋂
i∈J

Ai |
⋂

i∈I\J

Ai

 = P

(⋂
i∈J

Ai

)
.
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Conditional probability and independence Independence of events

Independent vs disjoint events

A common error is to make the fallacious statement that A and B are independent if
A ∩B = ∅.

In fact, disjoint events A and B are independent only if P(A) = 0 or P(B) = 0.

If A and B are disjoint with non-zero probabilities, then the knowledge that B occurred tells
us that A cannot occur.

The events being disjoint is a matter of sets, independence is a matter of probabilities.
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Conditional probability and independence Independence of events

Conditional independence

Definition

Let (Ω,F ,P) be a probability space and C an event with P(C) > 0. Events A and B are
called conditionally independent with respect to C , if

P(A ∩B|C) = P(A|C) P(B|C).

Recall:

• Q(A) = P(A|C) is a probability measure;

• the conditional independence is thus the independence with respect to probability Q.
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Conditional probability and independence Independence of events

Conditional independence
Example – rolling a seven-sided die

Suppose we roll a seven-sided die with all sides equally likely. Consider the events:
A: ”an even number is rolled”, B: ”a number less than 3 is rolled”.
Are the events A and B independent?

A = {2, 4, 6}, B = {1, 2}, A ∩B = {2}.
P(A ∩B) =

1

7
and P(A) · P(B) =

3

7
· 2

7
=

6

49
.

Events A and B are not independent.

Example – rolling a seven-sided die + condition

Consider further event C : ”we rolled at most 6” C = {1, 2, 3, 4, 5, 6}.
Are events A and B conditionally independent with respect to C?

P(A ∩B|C) =
P(A ∩B ∩ C)

P(C)
=

P({2})
P({1, . . . , 6}) =

1/7

6/7
=

1

6
,

P(A|C) · P(B|C) =
3/7

6/7
· 2/7

6/7
=

1

6
.

Events A and B are conditionally independent with respect to C .
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Conditional probability and independence Independence of events

Recap
• The conditional probability that an event A occurs if we know that an event B with

P(B) > 0 occured, is defined as P(A|B) =
P(A ∩B)

P(B)
.

• Law of total probability: For A and B with P(B) > 0 we have

P(A) = P(A|B) P(B) + P(A|Bc) P(Bc).

• Bayes’ Theorem: For A and B with P(A) > 0 and P(B) > 0 we have

P(B|A) =
P(A|B) P(B)

P(A|B) P(B) + P(A|Bc) P(Bc)
.

• Events A and B are called independent if

P(A ∩B) = P(A) · P(B).

• For independent events A and B the knowledge that one of them occurred or not
does not change the probability of the other one happening:

P(A|B) = P(A) and P(B|A) = P(B).
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