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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, covariance and correlation, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, conditional expected value,
covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap

A random experiment is represented using a probability space (Ω,F ,P):

• Ω is the set of possible outcomes ω.

• F is a system of subsets of Ω with desirable properties.

• Elements A ∈ F are called random events.

• Probability measure P is a function, which assigns real values from 0 to 1 to the
random events. It represents the ideal proportion of cases, in which the events occur.
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Random variables Definition of a random variable, distribution function

Random variable
For a mathematical processing of a random experiment it is often useful to assign a number
to each outcome ω. By this assignment we choose the part of information which is
interesting from our point of view.

Such assignment can be established in many ways and will be called a random variable.

Sample space
Ω R

X

Examples

• Number of Heads while tossing a coin: X(Heads) = 1, X(Tails) = 0.

• Number of winnings in the game with: X(Heads) = 1, X(Tails) = −1.

• How much a player won in a given game at a poker tournament.

• The highest rolled value or n rolls of a die.

• The height of a randomly chosen person.
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Random variables Definition of a random variable, distribution function

Example – minimum of two rolls of a 4-sided die

Two rolls of a 4-sided die. Ω = {1, 2, 3, 4}2.

Consider a random variable X(ω) = min{ω(1), ω(2)}:

R
•
1

•
2

•
3

•
4

• • • •

• • • •

• • • •

• • • •

1 2 3 4

1

2

3

4

X

P(X = 1) = P({ω|X(ω) = 1})

= P({(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1)}) =
7

16
.

Similarly,

P(X = 2) = P({(2, 2), (2, 3), (2, 4), (3, 2), (4, 2)}) =
5

16
,

P(X = 3) = P({(3, 3), (3, 4), (4, 3)}) =
3

16
,

P(X = 4) = P({(4, 4)}) =
1

16
.
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Random variables Definition of a random variable, distribution function

Random variable and its distribution function
Definition

A random variable X on a probability space (Ω,F ,P) is a function X : Ω→ R,
assigning to each outcome ω ∈ Ω a number X(ω), with the property that:

{X ≤ x} ∈ F , ∀x ∈ R.

Such a function is said to be F -measurable.

• By the notation {X ≤ x} we mean the set {ω ∈ Ω : X(ω) ≤ x}.
• The measurability property in fact tells us that {X ≤ x} is an event and allows us to

compute P(X ≤ x), P(X = x), P(X ∈ (a, b)), etc.

• This condition must be met, but in practice we never verify it.

The probability distribution of a random variable is given by its distribution function:

Definition

The distribution function of a random variable X is a function F : R→ [0, 1] defined as

F (x) = P(X ≤ x).
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Random variables Definition of a random variable, distribution function

Random variable and its distribution function

There are various types of random variables.

• Some can take only isolated values (e.g., 0 or 1 for Heads and Tails of a coin toss,
1, . . . , 6 for a die roll).

• Some can take values from a continuous interval (e.g., weight of a newborn, time
spent waiting for a bus, . . . ).

This divides the variables into discrete and continuous.

For discrete random variables, we will be interested in probabilities of the singular values,
whereas for continuous we will work with probabilities of intervals.

Regardless of the type, the distribution function gives us a full description of the random
variable.

For any real number x, we can answer the question: ”what is the probability that the random
variable will be less than or equal to x”?

This allows us to answer questions about any equalities and inequalities.
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Random variables Definition of a random variable, distribution function

Properties of the distribution function
Theorem

The distribution function F of a random variable X has following properties:

i) F is non-decreasing: if x < y, then F (x) ≤ F (y)

ii) F “starts at 0 and ends at 1”: lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1

iii) F is right continuous: lim
y→x+

F (y) = F (x)

Proof

i) Recall the notation {X ≤ x} = {ω ∈ Ω: X(ω) ≤ x}. Consider the disjoint partition

{X ≤ y} = {X ≤ x} ∪ {x < X ≤ y},

therefore F (y) = P(X ≤ y) = P(X ≤ x) + P(x < X ≤ y) ≥ P(X ≤ x) = F (x).

ii) For simplicity we only sketch the proof by means of a sequence of events Bn = {X ≤ −n}. For
n→∞ it is decreasing in the sense of inclusion with the intersection equal to ∅, i.e., Bn ↘ ∅. From the
continuity of probability theorem we have P(Bn)→ P(∅) = 0. For the proof of the second statement it is
enough to consider a sequence An = {X ≤ n} ↗ Ω and from the same theorem we have
P(An)→ P(Ω) = 1.

iii) Similarly as ii) (see bibliography).
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Random variables Definition of a random variable, distribution function

Properties of the distribution function
By means of the distribution function it is possible to express some important properties.

Lemma

Let F be a distribution function of a random variable X , then it holds that:

i) P(X > x) = 1− F (x),

ii) P(X ∈ (x, y]) = P(x < X ≤ y) = F (y)− F (x),

iii) P(X < x) = lim
y→x−

F (y),

iv) P(X = x) = F (x)− lim
y→x−

F (y).

Proof

i) Ω = {X > x} ∪ {X ≤ x} is a disjoint partition. Therefore P({X > x}) = P({X ≤ x}c).

ii) See proof of i) of the previous theorem.

iii) See bibliography. Idea of the proof using a non-decreasing sequence and continuity of probability:

{X ≤ x− 1/n} ↗ {X < x} ⇒ F (x− 1/n) = P(X ≤ x− 1/n)→ P(X < x).

iv) {X ≤ x} = {X < x} ∪ {X = x} is a disjoint partition. Therefore
P(X = x) = P(X ≤ x)− P(X < x).
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Random variables Definition of a random variable, distribution function

Types of random variables and their distribution functions

0 1 2 3
0

1
Discrete random variable

-4 0 4
0

1
Continuousrandom variable

-4 0 1 4
0

1
Mixed random variable
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Random variables Discrete random variables

Discrete random variables

Definition

A random variable X is called discrete if it takes only values from some countable set
{x1, x2, . . . }.

Probabilities of the values of a discrete random variable X are given by

P(X = xk), k = 1, 2, . . .

The probabilities P(X = xk) can be viewed as a function of x and are sometimes called
a probability function, or a probability mass function or a discrete density of the
variable X .

The distribution function of a discrete random variable has the form

FX(x) = P(X ≤ x) =
∑

all xk≤x

P(X = xk).

From this it follows that FX(x) has jumps at points xk and it is constant elsewhere. The
size of the jump at point xk is equal to P(X = xk).
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Random variables Discrete random variables

Example of a discrete random variable
Example – toss with two coins

The sample space is Ω = {(H,H), (H,T), (T,H), (T,T)}. Let the random variable X
give the number of Heads. The distribution function is FX(x) = P(X ≤ x):

•T
T

•H

•
H

•

0 1 2 x

1

4

3

4

1

FX

•

•
•

The distribution function FX = P(X ≤ x) is given by

FX(x) =


0 for x < 0 P(∅)
1/4 for 0 ≤ x < 1 P({(T,T)})
3/4 for 1 ≤ x < 2 P({(T,T), (H,T), (T,H)})
1 for 2 ≤ x P(Ω).
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Random variables Discrete random variables

Example of a discrete random variable

Example – toss with two coins

The sample space is Ω = {(H,H), (H,T), (T,H), (T,T)}. Let the random variable X
give the number of Heads.
Draw the probabilities of the values and the distribution function.
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Random variables Discrete random variables

Relation between probabilities and distribution functions
When assigning probabilities to the values xk, the normalization condition must hold:∑

all xk

P(X = xk) = 1.

Generally, for computing P(X ∈ B), with B ⊂ R, it is enough to know the probabilities of

the possible values X : P({X ∈ B}) =
∑
xk∈B

P(X = xk).

The distribution of X can be equivalently given by FX or by the probabilities. Considering
that P(X = xk) = FX(xk)− FX(xk−1) (we are considering an increasing ordering
x1 < x2 < x3 < . . . ), the knowledge of the distribution function is equivalent to the
knowledge of the probabilities P(X = xk).

Computation of the probabilities P(X = xk):
Collect all ω for which X(ω) = x and sum their probabilities.

Computation of the distribution function FX(x) = P(X ≤ xk):
Collect all ω for which X(ω) ≤ x and sum their probabilities.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 3 14 / 32



Random variables Discrete random variables

Relation between probabilities and distribution functions
When assigning probabilities to the values xk, the normalization condition must hold:∑

all xk

P(X = xk) = 1.

Generally, for computing P(X ∈ B), with B ⊂ R, it is enough to know the probabilities of

the possible values X : P({X ∈ B}) =
∑
xk∈B

P(X = xk).

The distribution of X can be equivalently given by FX or by the probabilities. Considering
that P(X = xk) = FX(xk)− FX(xk−1) (we are considering an increasing ordering
x1 < x2 < x3 < . . . ), the knowledge of the distribution function is equivalent to the
knowledge of the probabilities P(X = xk).

Computation of the probabilities P(X = xk):
Collect all ω for which X(ω) = x and sum their probabilities.

Computation of the distribution function FX(x) = P(X ≤ xk):
Collect all ω for which X(ω) ≤ x and sum their probabilities.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 3 14 / 32



Random variables Discrete random variables

Relation between probabilities and distribution functions
When assigning probabilities to the values xk, the normalization condition must hold:∑

all xk

P(X = xk) = 1.

Generally, for computing P(X ∈ B), with B ⊂ R, it is enough to know the probabilities of

the possible values X : P({X ∈ B}) =
∑
xk∈B

P(X = xk).

The distribution of X can be equivalently given by FX or by the probabilities. Considering
that P(X = xk) = FX(xk)− FX(xk−1) (we are considering an increasing ordering
x1 < x2 < x3 < . . . ), the knowledge of the distribution function is equivalent to the
knowledge of the probabilities P(X = xk).

Computation of the probabilities P(X = xk):
Collect all ω for which X(ω) = x and sum their probabilities.

Computation of the distribution function FX(x) = P(X ≤ xk):
Collect all ω for which X(ω) ≤ x and sum their probabilities.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 3 14 / 32



Random variables Discrete random variables

Relation between probabilities and distribution functions
When assigning probabilities to the values xk, the normalization condition must hold:∑

all xk

P(X = xk) = 1.

Generally, for computing P(X ∈ B), with B ⊂ R, it is enough to know the probabilities of

the possible values X : P({X ∈ B}) =
∑
xk∈B

P(X = xk).

The distribution of X can be equivalently given by FX or by the probabilities. Considering
that P(X = xk) = FX(xk)− FX(xk−1) (we are considering an increasing ordering
x1 < x2 < x3 < . . . ), the knowledge of the distribution function is equivalent to the
knowledge of the probabilities P(X = xk).

Computation of the probabilities P(X = xk):
Collect all ω for which X(ω) = x and sum their probabilities.

Computation of the distribution function FX(x) = P(X ≤ xk):
Collect all ω for which X(ω) ≤ x and sum their probabilities.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 3 14 / 32



Random variables Discrete random variables

Relation between probabilities and distribution functions
When assigning probabilities to the values xk, the normalization condition must hold:∑

all xk

P(X = xk) = 1.

Generally, for computing P(X ∈ B), with B ⊂ R, it is enough to know the probabilities of

the possible values X : P({X ∈ B}) =
∑
xk∈B

P(X = xk).

The distribution of X can be equivalently given by FX or by the probabilities. Considering
that P(X = xk) = FX(xk)− FX(xk−1) (we are considering an increasing ordering
x1 < x2 < x3 < . . . ), the knowledge of the distribution function is equivalent to the
knowledge of the probabilities P(X = xk).

Computation of the probabilities P(X = xk):
Collect all ω for which X(ω) = x and sum their probabilities.

Computation of the distribution function FX(x) = P(X ≤ xk):
Collect all ω for which X(ω) ≤ x and sum their probabilities.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 3 14 / 32



Random variables Discrete random variables

Examples of discrete random variables

Remark

A random variable X can be discrete even if the sample space itself is not discrete.

Example

Let us throw darts at a target T ⊂ R2.
The target can be divided into parts (often concentric annulus), denoted as
T1, T2, T3, T4, T5.
We can consider a discrete random variable X denoting the points obtained from one
throw, for example

X(ω) =


10 for ω ∈ T5
5 for ω ∈ T4
i for ω ∈ Ti, i = 1, 2, 3
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Random variables Discrete random variables

Example – minimum of two rolls of a 4-sided die (continuation)

X = min{1st roll, 2nd roll}:
R
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Random variables Discrete random variables

Important discrete probability distributions
Example

(Will be studied later)

• Bernoulli (Alternating) distribution with a parameter p ∈ [0, 1], X ∼ Be(p):
(One toss of an unbalanced coin.)

P(X = 1) = p, P(X = 0) = 1− p.

• Binomial distribution with parameter p ∈ [0, 1], X ∼ Binom(n, p):
(Number of Heads in n tosses of an unbalanced coin.)

P(X = k) =
(n
k

)
pk(1− p)n−k

• Geometric distribution with a parameter p ∈ (0, 1), X ∼ Geom(p):
(Number of tosses of an unbalanced coin until the first Heads appear.)

P(X = k) = (1− p)k−1p

• Poisson distribution with a parameter λ > 0, X ∼ Poisson(λ):
(Limit of the Binomial distribution for n→∞.)

P(X = k) =
λk

k!
e−λ
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Random variables Continuous random variables

Continuous random variables – motivation

In some situations, a random variable can take uncountably many possible values.

This arises when dealing with continuous models – measuring time, height, coordinates,
etc.

We cannot assign a positive probability P(X = x) to each value, because then the
probabilities of the uncountable many values would sum up to infinity.

Therefore we regard each singular value as having zero probability (intuitively, it is, e.g.,
infinitely improbable having to wait for the bus for exactly 3 : 00 : 00... minutes).

Instead, we need a way to measure the probability of intervals.

Recall the Romeo and Juliet problem, where each of them arrives at a random time point in
an one-hour window, evenly chosen.

Often we need to introduce an uneven distribution of values.
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Random variables Continuous random variables

Continuous random variables

Definition

A random variable X is called (absolutely) continuous, if there exists a non-negative
function fX : R→ [0,+∞) such that for all x ∈ R the distribution function FX can be
expressed as

FX(x) =

∫ x

−∞
fX(t) dt.

The function fX is called the probability density of the random variable X .

fX

FX(x) = P(X ≤ x)

x

The distribution function of a continuous random variable is continuous.
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Random variables Continuous random variables

Properties of continuous random variables

Theorem

Let fX be a density of a continuous random variable X . Then it holds that

i)

∫ +∞

−∞
fX(t)dt = 1 (normalization condition),

ii) P(X = x) = 0 for all x ∈ R,

iii) fX(t) =
dFX

dt
(t) at points where the derivative exists,

iv) P(a < X ≤ b) =

∫ b

a

fX(t) dt = FX(b)− FX(a),

v) P(X ∈ B) =

∫
B

fX(t)dt for all B in the Borel σ-algebra on R, i.e., for all

“common” sets.

Consequences:

• P(X ≤ x) = P(X < x) – from ii)

• fX(t)dt ≈ P(t < X < t+ dt) for dt << 1 – from iv)

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 3 20 / 32



Random variables Continuous random variables

Properties of continuous random variables

Theorem

Let fX be a density of a continuous random variable X . Then it holds that

i)

∫ +∞

−∞
fX(t)dt = 1 (normalization condition),

ii) P(X = x) = 0 for all x ∈ R,

iii) fX(t) =
dFX

dt
(t) at points where the derivative exists,

iv) P(a < X ≤ b) =

∫ b

a

fX(t) dt = FX(b)− FX(a),

v) P(X ∈ B) =

∫
B

fX(t)dt for all B in the Borel σ-algebra on R, i.e., for all

“common” sets.

Consequences:

• P(X ≤ x) = P(X < x) – from ii)

• fX(t)dt ≈ P(t < X < t+ dt) for dt << 1 – from iv)

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 3 20 / 32



Random variables Continuous random variables

Properties of continuous random variables

Proof

i)

∫ +∞

−∞
fX(x)dx = lim

x→+∞
FX(x) = 1.

ii) Using the continuity of the distribution function and the previous theorem:
P(X = x) = F (x)− lim

y→x−
F (y) = 0.

iii) It follows from the properties of derivatives and integrals (first fundamental Theorem of calculus).

iv) P(a < X ≤ b) = F (b)− F (a) =

∫ b

−∞
fX(t)dt−

∫ a

−∞
fX(t)dt =

∫ b

a
fX(t)dt.

(second fundamental Theorem of calculus – Newton’s formula)

v) From the properties of the Lebesgue integral – advanced, see bibliography.
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Random variables Continuous random variables

Relation between density and probability

Now we recall and illustrate the important property of the probability density:

P(a < X ≤ b) =

∫ b

a

fX(x) dx =
[
F (x)

]b
a

= F (b)− F (a).

fX

P(a < X ≤ b)

ba

Note that when dealing with continuous random variables, it does not matter whether the
inequalities are strict or non-strict.

P(a < X ≤ b) = P(a ≤ X ≤ b) = P(a ≤ X < b) = P(a < X < b).
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Random variables Continuous random variables

Romeo, Juliet and the uniform distribution

Example – uniform distribution of Romeo’s arrival

Denote the time when Romeo arrives at the meeting point as a random variable X .
Suppose that X has the uniform distribution on the interval [0, 1], meaning that its
density is constant on this interval and zero elsewhere.

fX(x) =

{
c for x ∈ [0, 1]

0 otherwise.

Determine the value of c, so that f truly forms a density of a random variable.

From the normalization condition we know that the area under the graph of the density
needs to be equal to one. Therefore the density needs to integrate to one:∫ ∞

−∞
fX(x)dx =

∫ 1

0

c · dx = [c · x]
1
0 = c · 1− c · 0 = c = 1.

The constant c has to be equal to one.
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Random variables Continuous random variables

Romeo, Juliet and the uniform distribution

Example – uniform distribution of Romeo’s arrival (continued)

Density of the continuous uniform distribution on the interval [0, 1]:

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2
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Random variables Continuous random variables

Romeo, Juliet and the uniform distribution
Example – uniform distribution of Romeo’s arrival (continued)

What is the probability that Romeo arrives between 12:15 and 12:45?

Probabilities concerning intervals are obtained as the corresponding area under the density:∫ 3/4

1/4

1dx = [x]
3/4
1/4 =

3

4
− 1

4
=

1

2
.
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Random variables Continuous random variables

Romeo, Juliet and the uniform distribution
Example – uniform distribution of Romeo’s arrival (continued)
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Random variables Continuous random variables

Romeo, Juliet and a non-uniform distribution
Example – non-uniform distribution of Juliet’s arrival

Suppose that Juliet arrives at the meeting point according to a non-uniform distribution with
density:

fX(x) =


4x for x ∈ [0, 1/2]

4− 4x for x ∈ [1/2, 1]

0 otherwise.
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What is the probability that Juliet arrives between 12:15 and 12:45?
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Random variables Continuous random variables

Romeo, Juliet a non-uniform distribution
Example – non-uniform distribution of Juliet’s arrival (continued)

What is the probability that Juliet arrives between 12:15 and 12:45?
Probabilities concerning intervals are obtained as the corresponding area under the density:∫ 3/4

1/4

f(x)dx = · · · = 3

4
.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Note that when the distribution of the arrivals is not uniform, the probability that they will
meet cannot be obtained using the geometric approach as before.
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Random variables Functions of random variables

Functions of random variables

For a random variable X with a known distribution, we are often interested in the
distribution of values somehow calculated from the values of X , say Y = g(X).

Example – linear transformation

Let X be a random temperature in degrees Celsius.
Then Y = 1.8X + 32 corresponds to the temperature in degrees Fahrenheit.

In the case of a discrete random variables the situation is relatively easy.

• g(X) is always a random variable.

• The distribution of the random variable g(X) is always discrete.

If X is a continuous random variable, the following complications arise:

• It can happen that g(X) is not a random variable.
(Therefore the assumption of measurability of g is needed.)

• The distribution of a random variable g(X) can be discrete, continuous or mixed.
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Random variables Functions of random variables

Function of a discrete random variable

Lemma – function of discrete random variable

Consider a function g : R→ R and a discrete random variable X , and define the function
of the random variable g(X) by g(X)(ω) = g(X(ω)) for all ω ∈ Ω.

Then g(X) is a discrete random variable with probabilities of the values

P(g(X) = y) =
∑

xk:g(xk)=y

P(X = xk).

Proof

The probabilities of the values of g(X) can be obtained from the (countable) disjoint partition

{g(X) = y} =
⋃

xk:g(xk)=y

{X = xk}.
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Random variables Functions of random variables

Functions of random variables

Lemma – function of a general random variable

Consider a measurable function g : R→ R and an arbitrary random variable X and
define the function of random the variable g(X) as g(X)(ω) = g(X(ω)) for all ω ∈ Ω.

Then the function g(X) of the random variable X is a random variable.

Note: g is measurable if the set {x ∈ R : g(x) ≤ y} belongs to the Borel σ-algebra B on
R for all y ∈ R.

Proof

The proof that g(X) is a random variable consists in verifying the measurability of Y = g(X), i.e., that
{Y ≤ y} is an event for all y:

{g(X) ≤ y} = {ω ∈ Ω: g(X(ω)) ≤ y} ∈ F , ∀y ∈ R.

A detailed proof can be found in the bibliography.
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Random variables Functions of random variables

Functions of random variables

Remark

Generally for a distribution function FY (y) of a random variable Y = g(X) it holds that

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P
(
{ω ∈ Ω: g(X(ω)) ≤ y}

)
.

If Y is continuous we obtain fY as the derivative of FY (y) with respect to y.

Possible simplification:

• If the inverse g−1 of g exists and is increasing, then it holds that

FY (y) = P(g(X) ≤ y) = P
(
X ≤ g−1(y)

)
= FX

(
g−1(y)

)
.

• If g is strictly monotone, then g−1 is differentiable and Y = g(X) is continuous with

fY (y) = fX
(
g−1(y)

) dg−1(y)

dy
.

X Proofs and more information can be found in bibliography.
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Random variables Functions of random variables

Recap

• A random variable X is a measurable function, which assigns real values to the
outcomes of a random experiment.

• The distribution of X gives the information of the probabilities of its values and is
uniquely given by the distribution function:

FX(x) = P(X ≤ x).

• There are two major types of random variables:
I discrete, taking only countably many possible values;
I continuous, taking values from an interval.

• The distribution can be given by:
I for discrete distributions by the probabilities of possible values P(X = xk).
I for continuous distributions by the density fX for which

FX(x) =

∫ x

−∞
f(t)dt.

• The generalized inverse of the distribution function is called the quantile function and
can be used for simulations.
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