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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, conditional expected value,
covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap

• A random variable X is a measurable function, which assigns real values to the
outcomes of a random experiment.

• The distribution of X gives the information of the probabilities of its values and is
uniquely given by the distribution function:

FX(x) = P(X ≤ x).

• There are two major types of random variables:
I discrete, taking only countably many possible values;
I continuous, taking values from an interval.

• The distribution can be given by:
I for discrete distributions by the probabilities of possible values P(X = xk).
I for continuous distributions by the density fX for which

FX(x) =

∫ x

−∞
f(t)dt.
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Characteristics of random variables Expected value

Expected value

One of the important characteristics of a random variable is its expected value.

Definition

The expected value (or expectation or mean value) of a discrete random variable X with
values x1, x2, ..., resp., of a continuous random variable X with density fX , is given as

EX =
∑
k

xk P(X = xk) (discrete)

resp., as

EX =

∫ ∞
−∞

xfX(x)dx, (continuous)

if the sum or the integral converges absolutely.

From the definition it follows that EX can be interpreted as the x coordinate of the center
of the mass of the probability.
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Characteristics of random variables Expected value

Visualization of the expectation
EX is taken as the expected value of the next experiment or as the weighted average
(mean) or the center of mass of all possible values.

fX

EX x

EX x0

fX
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Characteristics of random variables Expected value

Example of the computation of the expectation
Example – tossing two coins

Suppose we throw two balanced coins. Let X denote the number of Heads appearing.
Find the expectation of X .

There are four possible results, which are equally likely: Ω = {TT, HT, TH, HH}. Therefore
we can obtain 0, 1 or 2 Heads, with probabilities of 1/4, 1/2 and 1/4, respectively.

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
2

0.
4

0.
6

P(X=0)=1/4

P(X=1)=1/2

P(X=2)=1/4

The expectation is then computed as the probability-weighted average of the possible
values:

EX =
∑
k

xk P(X = xk) = 0 · 1

4
+ 1 · 1

2
+ 2 · 1

4
=

1

2
+

2

4
= 1.
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Characteristics of random variables Expected value

Example – discrete uniform disribution
Example – rolling a six-sided die

Suppose we roll a balanced six-sided die one time. Let X denote the number of points
rolled. What is the expectation of X?

k 1 2 3 4 5 6

P(X = k) 1/6 1/6 1/6 1/6 1/6 1/6

The expectation is computed as the weighted average of possible results:

EX =

6∑
k=1

k ·P(X = k) = 1 · 1

6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
=

21

6
= 3.5.
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Characteristics of random variables Expected value

Example – discrete non-uniform disribution
Example – rolling two six-sided dice

Suppose we roll two balanced six-sided dice and keep the larger result of the two. Let X
denote the number of points rolled, meaning X = max(roll 1, roll 2). What is the
expectation of X?

k 1 2 3 4 5 6

P(X = k) 1/36 3/36 5/36 7/36 9/36 11/36

The expectation is computed as the weighted average of possible results:

EX =

6∑
k=1

k · P(X = k) =
1 · 1 + 2 · 3 + 3 · 5 + 4 · 7 + 5 · 9 + 6 · 11

36
=

161

36

.
= 4.47.
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0.
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4
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Characteristics of random variables Expected value

Expected value of a function of a random variable
The expected value E(g(X)) of a function of a random variable can be computed without
determining the distribution of the random variable Y = g(X).

Theorem

Let X and Y = g(X) for a given function g be random variables.

i) If X has a discrete distribution, then

EY = E g(X) =
∑
all xk

g(xk) P(X = xk),

under the assumption that the sum converges absolutely.

ii) If X has a continuous distribution, then

EY = E g(X) =

∫ ∞
−∞

g(x)fX(x)dx,

if the integral converges absolutely.
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Characteristics of random variables Expected value

Expected value of the function of a random variable
Proof

Suppose first that X is a discrete random variable. Denote the variable Y = g(X) and its values y1, y2, . . ..
Then

E(g(X)) = EY =
∑
all yj

yj P(Y = yj) =
∑
all yj

yj P(g(X) = yj)

=
∑
all yj

yj
∑

xk:g(xk)=yj

P(X = xk)

 =
∑
all yj

∑
xk:g(xk)=yj

yj P(X = xk)

=
∑
all yj

∑
xk:g(xk)=yj

g(xk) P(X = xk) =
∑
all xk

g(xk) P(X = xk).

The proof for continuous random variables is more difficult, we achieve it with the help of the following lemma only
for function g taking non-negative values.

Lemma

If X is a non-negative random variable with the distribution function F , then

EX =

∫ ∞
0

[1− F (x)] dx =

∫ ∞
0

P(X > x) dx.
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Characteristics of random variables Expected value

Expected value of the function of a random variable

Proof

Suppose that X is a continuous random variable and the function g takes only non-negative values. Then

E(g(X)) = EY =

∫ ∞
0

P(Y > y) dy

=

∫ ∞
0

P(g(X) > y) dy

see (∗)

=

∫ ∞
0

(∫
{x: g(x)>y}

fX(x) dx

)
dy =

∫∫
{(x,y): 0<y<g(x)}

fX(x) d(x, y)

=

∫
{x: 0<g(x)}

(∫ g(x)

0
fX(x) dy

)
dx (g(x) is non-negative)

=

∫ ∞
−∞

fX(x)

(∫ g(x)

0
dy

)
dx =

∫ ∞
−∞

g(x)fX(x) dx.

(∗) We used P(X ∈ A) =

∫
A
fX(x) dx for A = {x : g(x) > y}.

If g is a general function we decompose it to its positive and negative parts which are both non-negative functions.
Then we write E g(X) = EY = EY + − EY − = E g+(X)− E g−(X) and use the above mentioned
proof.
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Characteristics of random variables Expected value

Properties of the expected value
For computation, the following properties of the expected value are important. Notice that
these properties hold for the expectation of both discrete and continuous random variables.

Theorem

The expected value of a random variable X has the following properties:

i) If X ≥ 0, then E(X) ≥ 0.

ii) If a, b ∈ R, then E(aX + b) = a E(X) + b (if EX is finite).

iii) A constant random variable X = c has expectation equal to the constant E(X) = c.

Notes:
• These properties of expectation do not depend on the type of random variable –

discrete, continuous or mixed.

• For discrete, continuous or mixed random variables X and Y with finite expectations it
holds that (we will prove it later)

E(aX + bY ) = a EX + b EY, ∀ a, b ∈ R.

These formulas can be used to simplify practical computing.
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iii) A constant random variable X = c has expectation equal to the constant E(X) = c.

Notes:
• These properties of expectation do not depend on the type of random variable –

discrete, continuous or mixed.

• For discrete, continuous or mixed random variables X and Y with finite expectations it
holds that (we will prove it later)

E(aX + bY ) = a EX + b EY, ∀ a, b ∈ R.

These formulas can be used to simplify practical computing.
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Characteristics of random variables Expected value

Properties of the expected value
Proof

i) For a discrete non-negative random variable X it holds that xk P(X = xk) ≥ 0,∀ k.

Therefore E(X) =
∑
all xk

xk P(X = xk) ≥ 0.

For a continuous non-negative random variable X it holds that fX(x) = 0 for x < 0.

Therefore E(X) =

∫ ∞
0

xfX(x) dx ≥ 0.

ii) For a discrete random variable X it holds that

E(aX + b) =
∑
all xk

(axk + b) P(X = xk)

= a
∑
all xk

xk P(X = xk) + b
∑
all xk

P(X = xk)

= a E(X) + b.

For a continuous random variable X the proof is similar.

iii) Consider a = 0 in ii).
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Characteristics of random variables Variance

Variance

Definition

The variance σ2 ≡ varX of a random variable X is defined as

varX = E(X − EX)2.

The standard deviation of a random variable X is defined as

s.d. X =
√

varX.

The following properties of the variance are useful for practical computations:

Theorem

For the variance it holds that:

i) For all a, b ∈ R and a random variable X it holds that

var(aX + b) = a2 varX.

ii) A constant random variable X = c ∈ R has zero variance (var c = 0).
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Characteristics of random variables Variance

Variance

While computing the variance it is often tedious to calculate the sum of values
(xi − EX)2 P(X = xi) or the integral of (x− EX)2 fX(x) .
We can use properties of the expectation to get a more useful formula:

var(X) = E((X − EX)2) = E
(
X2 − 2X(EX) + (EX)2

)
= E(X2)− E(2X(EX)) + E((EX)2)

= E(X2)− 2(EX)(EX) + (EX)2

= E(X2)− (EX)2.

We get the formula: var(X) = E((X − EX)2) = E(X2)− (EX)2

or simply: varX = E(X − EX)2 = EX2 − (EX)2.
Notice that var(X) is always non-negative (it is the expectation of a non-negative variable
(X − EX)2). Therefore: (EX)2 ≤ E(X2).
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Characteristics of random variables Variance

Romeo, Juliet and the expectation and variance

Example – expectation and variance of the uniform distribution

Suppose that Romeo arrives at the meeting point according to the uniform distribution with
the density:

fX(x) =

{
1 for x ∈ [0, 1]

0 otherwise.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

What are the expectation and the variance of Romeo’s arrival?
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Characteristics of random variables Variance

Romeo, Juliet and the expectation and variance

Example – expectation and variance of the uniform distribution

What are the expectation and the variance of Romeo’s arrival?

The expectation can be computed from the definition:

EX =

∫ ∞
−∞

xfX(x)dx =

∫ 1

0

x1dx =

[
1

2
x2
]1
0

=
12

2
− 02

2
=

1

2
.

The expectation of the square is computed similarly:

EX2 =

∫ ∞
−∞

x2fX(x)dx =

∫ 1

0

x21dx =

[
1

3
x3
]1
0

=
13

3
− 03

3
=

1

3
.

The variance is obtained using the computational formula:

varX = EX2 − (EX)2 = 1/3− (1/2)2 = 4/12− 3/12 = 1/12.
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Characteristics of random variables Variance

Romeo, Juliet and the expectation and variance
Example – expectation and variance of a non-uniform distribution

Suppose that Juliet arrives at the meeting point according to a non-uniform distribution with
the density:

fY (y) =


4y for y ∈ [0, 1/2]

4− 4y for y ∈ [1/2, 1]

0 otherwise.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

What are the expectation and the variance of Juliet’s arrival?
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Characteristics of random variables Variance

Romeo, Juliet and the expectation and variance

Example – expectation and variance of a non-uniform distribution

What is the expectation and variance of Juliet’s arrival?

The expectation can be computed from the definition:

EY =

∫ ∞
−∞

yfY (y)dy =

∫ 1/2

0

y(4y)dy +

∫ 1

1/2

y(4− 4y)dy = · · · = 1

2
.

The expectation of the square is computed similarly:

EY 2 =

∫ ∞
−∞

y2fY (y)dy =

∫ 1/2

0

y2(4y)dy +

∫ 1

1/2

y2(4− 4y)dx = · · · = 7

24
.

The variance is obtained using the computational formula:

varY = EY 2 − (EY )2 = 7/24− (1/2)2 = 7/24− 6/24 = 1/24.

The expectation is the same in both cases, but Romeo’s arrivals have a twice larger
variance than Juliet’s.
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Characteristics of random variables Variance

Moments of random variables

Definition

For k ∈ N we define the k-th moment µk of a random variable X as

µk = E(Xk) =


∑
all xi

xki P(X = xi) discrete

∫ ∞
−∞

xk fX(x) dx continuous.

Similarly, the k-th central moment σk is defined as

σk = E((X − µ1)k) =


∑
all xi

(xi − µ1)k P(X = xi) discrete∫ ∞
−∞

(x− µ1)k fX(x) dx continuous.

Notation: usually we write EXk instead of E(Xk) and E(X − µ1)k instead of
E((X − µ1)k).
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Characteristics of random variables Variance

Moments, expectation, variance, standard deviation

• Moments of a given random variable X do not always exist (if the corresponding sum
or integral does not converge).

• µ1 = EX is the expected value of the variable X (often denoted as µ or µX ).

• σ2 = E(X − EX)2 is the variance of the variable X denoted by var(X), varX ,
σ2 or σ2

X .

• σ =
√

var(X) is the standard deviation of the variable X (possible notation σX ).

Remark

Note that the variance is quadratic and therefore is measured in the units of X squared.
The standard deviation is the square root of the variance and is therefore measured in the
same units as X . This will be useful later.
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Characteristics of random variables Skewness and Kurtosis

Skewness

The measure of asymmetry around the mean is called skewness:

γ1 =
σ3
σ3

=
E((X − E(X))3)

(E(X2)− (EX)2)3/2
.

Measure of asymmetry: for a unimodal density the coefficient γ1 is negative if the left tail is
longer and positive if the right tail is longer. It tells us to which side from the expected value
is the bulk skewed:

γ1 = −1.14 γ1 = 1.26
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Characteristics of random variables Skewness and Kurtosis

Kurtosis
The measure of “peakedness” is called (excess) kurtosis:

γ2 =
σ4
σ4
− 3 =

E((X − E(X))4)

(E(X2)− (EX)2)2
− 3.

This characteristics compares the shape (“peakedness”) of the density with the normal
distribution:

γ2 = 0.5

γ2 = 0

γ2 = −0.85
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Characteristics of random variables Moment generating function

Moment generating function
Definition

The moment generating function of a random variable X is a function M(s) = MX(s)

defined as
M(s) = E(esX).

i.e., for a discrete or a continuous random variable X we have

M(s) =
∑
k

esk P(X = k), M(s) =

∫ ∞
−∞

esxfX(x)dx.

The generating function unambiguously determines the density fX of the variable X (or
the probabilities of its values). In fact the generating function is the Laplace transformation
of the density. In particular, it allows us to easily compute the moments of the variable X .

Theorem

For a random variable X with a generating function M(s) it holds that:

E(Xn) =
dn

dsn
M(s)

∣∣
s=0

.
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E(Xn) =
dn

dsn
M(s)

∣∣
s=0

.
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Characteristics of random variables Moment generating function

Examples of generating functions

Example – Poisson random variable

P(X = k) =
λke−λ

k!
, k = 0, 1, . . .

M(s) =
∞∑
k=0

esk
λke−λ

k!
= eλ(e

s−1).

We have:
d

ds
eλ(e

s−1) = λeseλ(e
s−1) =⇒ E(X) = λ,

d2

ds2
eλ(e

s−1) =
(
(λes)2 + λes

)
eλ(e

s−1) =⇒ E(X2) = λ+ λ2.

Thus var(X) = (λ)2 − (λ+ λ2) = λ.
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Characteristics of random variables Moment generating function

Examples of generating functions

Example – Exponential random variable

fX(x) = λe−λx, x ≥ 0.

M(s) = λ

∫ ∞
0

esxe−λxdx =

[
λ
e(s−λ)x

s− λ

]∞
0

=
λ

λ− s
.

Notice that M(s) is well defined only for s ∈ [0, λ). For s ≥ λ the integral diverges. Hence

d

ds

λ

λ− s
=

λ

(λ− s)2
=⇒ E(X) =

1

λ
,

d2

ds2
λ

λ− s
=

2λ

(λ− s)3
=⇒ E(X2) =

2

λ2
and var(X) =

1

λ2
.
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Characteristics of random variables Quantiles

Quantile function
The distribution function gives us the probability that the random variable in question will be
less than or equal to x. Sometimes we are interested in a reverse approach – for a given
probability α, find such x, so that P(X ≤ x) = α.

Definition

Let X be a random variable with distribution function FX and let α ∈ (0, 1). The point qα
is called the α-quantile of the variable X if

qα = inf{x|FX(x) ≥ α}.

Quantiles treated as a function of α are called the quantile function and are denoted as
F−1X (α).

The (1− α)-quantile is called the α-critical value of the variable X : cα = q1−α.

For FX strictly increasing and continuous, qα is the point for which it holds that

FX(qα) = P(X ≤ qα) = α,

thus the notation F−1X denotes the actual inverse of FX .
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Characteristics of random variables Quantiles

Quantiles of the standard normal distribution
For some particular distributions, special notation is used, e.g., the quantiles of the
Gaussian distribution (see later) are denoted as uα and the critical values as zα.

fX

P(X ≤ q0.5) = 0.5

xq0.5

fX

P(X ≤ q0.75) = 0.75 P(X ≥ z0.25) = 0.25

xq0.75 = z0.25

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 4 28 / 38



Characteristics of random variables Quantiles

Romeo, Juliet and quantiles

Example – quantiles of the uniform distribution

Suppose that Romeo arrives at the meeting point according to the uniform distribution on
the interval [0, 1]. Find the 5% and 95% quantiles of his arrival.

The distribution function is found by integrating the density. We are interested in the region,
where the density is positive – the interval [0, 1]:

FX(x) =

∫ x

−∞
fX(t)dt =

∫ x

0

1dt = [t]
x
0 = x.

The distribution function is monotone, thus we can easily find the quantile function as its
inverse:

FX(qα) = α ⇒ qα = α ⇒ F−1X (α) = α.

Therefore the quantiles are:

q0.05 = 0.05 = 3 min. and q0.95 = 0.95 = 57 min.
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Characteristics of random variables Quantiles

Romeo, Juliet and quantiles

Example – quantiles of the uniform distribution

With a 90% probability, Romeo arrives between the 3rd minute and the 57th minute.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2
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Characteristics of random variables Quantiles

Romeo, Juliet and quantiles
Example – quantiles of a non-uniform distribution

Suppose that Juliet arrives at the meeting point according to the non-uniform distribution
with the triangular density from above. Find the 5% and 95% quantiles of her arrival.

The distribution function is found by integrating the density. The observed interval has to be
separated into two parts, because the function term is different.
For y ∈ [0, 1/2]:

FY (y) =

∫ y

−∞
fY (t)dt =

∫ y

0
4tdt =

[
2t2
]y
0
= 2y2.

For y ∈ [1/2, 1]:

FY (y) =

∫ 1/2

0
4tdt+

∫ y

1/2
(4− 4t)dt = 1/2 +

[
4t− 2t2

]y
1/2

= 4y − 2y2 − 1 = 1− 2(y − 1)2.

The quantile function is found as the inverse of the distribution function:

FY (q0.05) = 0.05⇔ 2q20.05 = 0.05⇔ q0.05 =
√

0.05/2
.
= 0.16 = 9.5 min.

Similarly:

FY (q0.95) = 0.95⇔ 1− 2(q0.95 − 1)2 = 0.95⇔ q0.95 = 1−
√

0.05/2
.
= 0.84 = 50.5 min.
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Characteristics of random variables Quantiles

Romeo, Juliet and quantiles

Example – quantiles of a non-uniform distribution

With a 90% probability, Juliet arrives between the 9.5th minute and the 50.5th minute.
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The central interval denoting the time, between which the person arrives with a 90%
probability, is considerably shorter for Juliet than for Romeo. This is in accordance with
Juliet’s arrival having a smaller variance.
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Characteristics of random variables Quantiles

Important quantiles

Quantiles divide the population into groups according to probabilities. The important
dividing points are called:

• q0.5 – median,

• q0.25 – lower quartile,

• q0.75 – upper quartile.

This quantiles can give us an overview of the variable in question:

• The median provides a measure of location as an alternative to the expectation.

• The interquartile range q0.75 − q0.25 provides a measure of dispersion as an
alternative to the variance.

The expectation can sometimes differ from the median significantly. Especially for one-sided
heavy-tailed distributions.
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Characteristics of random variables Quantiles

Expectation vs. median

Example – U.S. household incomes

According to the U.S Census Bureau, the mean yearly household income in 2014 was
$75, 000. But 63.2% of population had lower incomes. The median income was $56, 000.
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mean household income: 75,000$

63.2% of population 36.8% of population
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Characteristics of random variables Quantiles

Quantile function – random number generation
Theorem

Suppose that X has a distribution with a distribution function FX . Suppose that U has
a uniform distribution on the interval [0, 1], meaning that

fU (u) =

{
1 for u ∈ (0, 1)

0 elsewhere.

Then the random variable F−1X (U) has the same distribution as X .

Proof

For a continuous FX :

P(F−1
X (U) ≤ x) = P(U ≤ FX(x)) =

∫ FX (x)

0
1 · du = FX(x).

This way, we can generate values from any distribution by generating values from the
uniform distribution U(0, 1) and finding the corresponding quantiles.
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Characteristics of random variables Quantiles

Generating uniform random numbers

Truly random numbers can be generated by measuring physical phenomena, such as using
oscillators or thermal devices.

Computer algorithms can only produce pseudo-random numbers, which try to appear as
truly random. There are many ways to generate pseudo-random numbers.

Congruent generators (fast and easy to implement):

• select large integers a, b and m;

• choose a starting value X0;

• generate a sequence Xn+1 = (aXn + b) mod m;

• divide all results by m.

More sophisticated generators (used in R, Matlab, etc):

• Mersenne Twister

• Wichmann-Hill

• many others (see literature).

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 4 36 / 38



Characteristics of random variables Quantiles

Generating uniform random numbers

Truly random numbers can be generated by measuring physical phenomena, such as using
oscillators or thermal devices.

Computer algorithms can only produce pseudo-random numbers, which try to appear as
truly random. There are many ways to generate pseudo-random numbers.

Congruent generators (fast and easy to implement):

• select large integers a, b and m;

• choose a starting value X0;

• generate a sequence Xn+1 = (aXn + b) mod m;

• divide all results by m.

More sophisticated generators (used in R, Matlab, etc):

• Mersenne Twister

• Wichmann-Hill

• many others (see literature).

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 4 36 / 38



Characteristics of random variables Quantiles

Generating uniform random numbers

Truly random numbers can be generated by measuring physical phenomena, such as using
oscillators or thermal devices.

Computer algorithms can only produce pseudo-random numbers, which try to appear as
truly random. There are many ways to generate pseudo-random numbers.

Congruent generators (fast and easy to implement):

• select large integers a, b and m;

• choose a starting value X0;

• generate a sequence Xn+1 = (aXn + b) mod m;

• divide all results by m.

More sophisticated generators (used in R, Matlab, etc):

• Mersenne Twister

• Wichmann-Hill

• many others (see literature).

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 4 36 / 38



Characteristics of random variables Quantiles

Generating dice rolls
When rolling a six-sided dice, we easily find out that F−1X (U) = d6 · Ue. We generated
100 random dice rolls and counted the percentage of each outcome:

Frequencies of 100 generated dice rolls

value

pr
op

or
tio

n

1 2 3 4 5 6

0.
00

0.
05

0.
10

0.
15

0.
20
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Characteristics of random variables Quantiles

Recap
The expectation of a random variable X gives us its center of mass or the expected
average outcome.

• For discrete random variables it is the average of its possible values weighted by their
probabilities:

EX =
∑
k

xk P(X = xk).

• For continuous random variables it is the integral average of its possible values
weighted by the density:

EX =

∫ ∞
−∞

xfX(x)dx.

The variance of a random variable X gives us the expected quadratic distance of the
random variable from its expectation. It is defined as

varX = E(X − EX)2

and can be computed as:
varX = EX2 − (EX)2.
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