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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, conditional expected value,
covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap

• A random variable X is a measurable function which assigns real values to the
outcomes of a random experiment.

• The distribution of X gives the information of the probabilities of its values and is
uniquely given by the distribution function:

FX(x) = P(X ≤ x).

• There are two major types of random variables:
I Discrete, taking only countably many possible values.
I Continuous, taking values from an interval.

• The distribution can be given by:
I for discrete distributions by the probabilities of possible values P(X = xk).
I for continuous distributions by the density fX for which

FX(x) =

∫ x

−∞
f(t)dt.
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Important discrete distributions Constant random variable

Constant random variable
A constant random variable describes a non-random situation when we have only one
possible result occurring with probability of 1.

Definition

A random variable X is called constant, if for some c ∈ R it holds that:

X(ω) = c for all ω ∈ Ω.

In other words it holds that:

P(X = c) = 1, P(X = x) = 0 ∀x 6= c.

We say that a constant random variable has a deterministic or degenerate distribution.

The distribution function of a constant random variable is

FX(x) =

{
0 for x < c

1 for x ≥ c.
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Important discrete distributions Constant random variable

Constant random variable – expectation, variance

P(X = c) = 1, P(X = x) = 0 ∀x 6= c

Expectation and variance:

E(X) =
∑
xk

xk · P(X = xk) = c · P(x = c) = c

var(X) = E(X − E(X))2 = E(X2)− (E(X))2 = c2 − (c)2 = 0.

In calculations we use:

E(c) = c – the center of mass of a constant c is c itself;

var(c) = 0 – the width of the graph with only one number c is 0.
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Important discrete distributions Bernoulli distribution

Bernoulli (Alternative) distribution
Suppose we perform a random experiment with two possible outcomes (alternatives). We
assign values 0 (failure) and 1 (success) to these outcomes. We can use for example one
toss with an unbalanced coin.

Suppose that a success occurs with the probability p.

Definition

A random variable X has the Bernoulli (alternative) distribution with parameter
p ∈ [0, 1], if it holds that:

P(X = 1) = p, P(X = 0) = 1− p.

Notation: X ∼ Be(p) or X ∼ Bernoulli(p) or X ∼ Alt(p).

Example – toss with a coin

• Let us choose X(Heads) = 1 and X(Tails) = 0.

• We denote the occurrence of Heads as a success: p = P(Heads).
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Important discrete distributions Bernoulli distribution

Bernoulli distribution – graph of probabilities
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Probabilities of values of the Bernoulli distribution with p = 0.3:
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Important discrete distributions Bernoulli distribution

Bernoulli distribution – expectation, variance

Bernoulli random variable:

P(X = 1) = p ∈ [0, 1] (Heads, success)

P(X = 0) = 1− p (Tails, failure).

Expectation and variance:

E(X) =
∑
xk

xk P(X = xk) = 1 · p+ 0 · (1− p) = p

E(X2) =
∑
xk

x2k P(X = xk) = 12 · p+ 02 · (1− p) = p

var(X) = E(X2)− E(X)2 = p− p2 = p(1− p).
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Important discrete distributions Binomial distribution

Binomial distribution
If we repeat the coin tossing we can be interested in how many times from n tosses we
have obtained Heads:

• Consider n independent experiments with two possible outcomes.

• Again suppose that we succeed in each experiment with probability p.

• The probability that exactly k out of n attempts ended with a success is(
n

k

)
pk(1− p)n−k.

Definition

A random variable X has the binomial distribution with parameters n ∈ N and
p ∈ [0, 1], if

P(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

Notation: X ∼ Bin(n, p), X ∼ Binom(n, p).
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Important discrete distributions Binomial distribution

Binomial distribution – normalization

To prove that the binomial distribution is correctly defined, we verify the normalization
condition, i.e., that the sum of all probabilities is equal to 1:

n∑
k=0

P(X = k) = 1.

According to the binomial theorem it holds that

n∑
k=0

P(X = k) =

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1n = 1.
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Important discrete distributions Binomial distribution

Binomial distribution – graph of probabilities
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Binomial distribution with parameters n = 10 and p = 0.3:
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Important discrete distributions Binomial distribution

Binomial distribution – expectation

Binomial random variable X ∼ Binom(n, p):

P(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

E(X) =

n∑
k=0

k P(X = k) =

n∑
k=0

(
n

k

)
k pk(1− p)n−k.

The sum on the right hand side looks, except for a term k pk, like

n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1n = 1.

Notice that (pk)′ = k pk−1 and thus p (pk)′ = k pk.

After differentiating both sides with respect to p and multiplying by p we obtain the needed
expression.
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Important discrete distributions Binomial distribution

Binomial distribution – expectation

or

E(X) =

n∑
k=0

k ·
(
n

k

)
pk(1− p)n−k

=

n∑
k=1

k ·
(
n

k

)
pk(1− p)n−k

/
k

(
n

k

)
= n

(
n− 1

k − 1

)

=

n∑
k=1

n

(
n− 1

k − 1

)
pk−1(1− p)n−1−k+1

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)(n−1)−(k−1)

/
n− 1 = m, k − 1 = h

= np

m∑
h=0

(
m

h

)
ph(1− p)m−h

= np · (p+ (1− p))m = np
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Important discrete distributions Binomial distribution

Binomial distribution – variance

Similarly we have:

E(X2) =

n∑
k=0

k2 ·
(
n

k

)
pk(1− p)n−k =

n∑
k=1

k2 ·
(
n

k

)
pk(1− p)n−k

=

n∑
k=1

k · n
(
n− 1

k − 1

)
pk(1− p)n−k = np

n∑
k=1

k

(
n− 1

k − 1

)
pk−1(1− p)n−k

= np

(
n∑
k=1

(k − 1)

(
n− 1

k − 1

)
pk−1(1− p)n−k +

n∑
k=1

(
n− 1

k − 1

)
pk−1(1− p)n−k

)
= np ((n− 1)p+ 1)

Therefore

var(X) = E(X2)− (E(X))2 = np+ n(n− 1)p2 − n2p2 = np(1− p)
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Important discrete distributions Binomial distribution

Binomial distribution – variance
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Important discrete distributions Binomial distribution

Indicator of an event

A special and important example of a Bernoulli random variable is the indicator of an
event.

Definition

Let A ∈ F be an event. The random variable 1A : Ω→ {0, 1} defined as

1A =

{
1 if A occurs
0 if A does not occur

is called the indicator (or characteristic function) of the event A.

For the indicator of an event A it holds that:

p = P(1A = 1) = P(A),

1− p = P(1A = 0) = P(Ac) = 1− P(A).
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Important discrete distributions Binomial distribution

Indicator of event – examples

Examples – tossing a coin

• The Bernoulli random variable X from the previous example (tossing a coin) is nothing
but an indicator of the event {H}. Thus X = 1{H} = 1H.

• The Binomial random variable X corresponding to number of Heads in n tosses can
be expressed as the sum

X =

n∑
i=1

1Hi ,

where 1Hi is the indicator of the event Hi = “Heads appears in the ith toss”.

Remark:
Expressing a binomial variable as a sum of (Bernoulli) indicators often leads to a significant
simplification of calculations.
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Important discrete distributions Geometric distribution

Geometric distribution
Another important event is the first occurrence of Heads in a sequence of coin tosses:
• Consider a sequence of independent experiments with two possible outcomes.
• Suppose that each experiment ends with a success with probability p.
• Probability that the first successful attempt the is kth in the sequence is

(1− p)k−1p.

Definition

A random variable X has the geometric distribution with parameter p ∈ (0, 1), if

P(X = k) = (1− p)k−1p, k = 1, 2, . . . .

Notation: X ∼ Geom(p).

Again we verify the normalization condition:
∞∑
k=1

P(X = k) =

∞∑
k=1

(1− p)k−1p = p

∞∑
k=0

(1− p)k =
p

1− (1− p) = 1.
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Important discrete distributions Geometric distribution

Geometric distribution – distribution function

The distribution function of the geometric distribution can be expressed as

FX(k) = P(X ≤ k) =

k∑
i=1

p(1− p)i−1 = p

k−1∑
j=0

(1− p)j

= p
1− (1− p)k
1− (1− p) = 1− (1− p)k.

For non-integer points x > 0 the value of distribution function is equal to value at point bxc
(the lower integer part of x):

FX(x) = FX(bxc) = 1− (1− p)bxc.

The probability that the success does not occur after k attempts can be computed as

P(X > k) = (1− p)k and thus FX(k) = 1− P(X > k) = 1− (1− p)k.
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Important discrete distributions Geometric distribution

Geometric distribution – graph of probabilities
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Geometric distribution with parameter p = 0.3:
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Important discrete distributions Geometric distribution

Geometric distribution – expectation

P(X = k) = (1− p)k−1p k = 1, 2, . . .

E(X) =
∑
all xk

xk P(X = xk) =

∞∑
k=1

k (1− p)k−1p = p

∞∑
k=1

k (1− p)k−1.

The sum on the right-hand side looks as the derivative of −
∞∑
k=0

(1− p)k:

EX =

∞∑
k=1

k(1− p)k−1p = −p
( ∞∑
k=1

(1− p)k
)′

= −p
(

1

1− (1− p)

)′
= −p

(−1

p2

)
=

1

p
.
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Important discrete distributions Geometric distribution

Geometric distribution – variance

We can compute E(X2) using the same procedure. From the above we know that

E(X2) =

∞∑
k=1

k2(1− p)k−1p = p

∞∑
k=1

k2(1− p)k−1

= p

( ∞∑
k=1

−k(1− p)k
)′

= p

(
(1− p)

∞∑
k=1

−k(1− p)k−1
)′

= p

(
(1− p)

( ∞∑
k=1

(1− p)k
)′)′

= p

(
(1− p)

(
1

p

)′)′

= p

(
p− 1

p2

)′
= p

p2 − (p− 1)2p

p4
=

2− p
p2

.

Thus

var(X) = E(X2)− (E(X)2) =
2− p
p2
−
(

1

p

)2

=
1− p
p2

.
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Important discrete distributions Poisson distribution

Poisson distribution – motivation
The number of random occurrences during a given time is often modeled by the Poisson
distribution:
• For example X = “number of server requests in 15 seconds”.
• Or X = “number of customers in a shop during lunch time”.

• Finite population: n individuals independently decide whether to go to a shop or not.
I Then X is a binomial random variable: X ∼ Binom(n, p).

• Infinite population: we are interested in X ∼ Binom(n, p) for n→∞.
I Useful approximation for great populations (molecules of gas, internet users, etc.).

Example – number of customers in a shop during lunch time

• number of inhabitants in a city: n;

• number of shops proportional to the number of inhabitants: nshops = ρn, where ρ is
the density of shops (number of shops per one inhabitant);

• probability that an inhabitant decides to go shopping: z;

• probability that an inhabitant goes to a particular shop: p = z/nshops = z/(ρn);

• number of inhabitants going to the particular shop: X ∼ Binom(n, p);

• expected value: EX = np = nz/(ρn) = z/ρ . . . constant.
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Important discrete distributions Poisson distribution

Poisson distribution – motivation

Binomial distribution with n→∞, p→ 0 and np = λ is

P(X = k) =
n!

k!(n− k)!

λk

nk

(
1− λ

n

)n−k
.

We rearrange the product

and take a limit n→∞

P(X = k) =
n

n

(n− 1)

n
· · · (n− k + 1)

n

λk

k!

(
1− λ

n

)n (
1− λ

n

)−k

↓ ↓ ↓ ↓ ↓ ↓
1 1 · · · 1

λk

k!
e−λ 1

Finally we have

lim
n→∞

P(X = k) =
λk

k!
e−λ.
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Important discrete distributions Poisson distribution

Poisson distribution

Definition

A random variable X has the Poisson distribution with parameter λ > 0 if

P(X = k) =
λk

k!
e−λ, k = 0, 1, . . . .

Notation: X ∼ Poisson(λ)

Recalling the important formula:

ex =

∞∑
k=0

xk

k!

we can check that he normalization condition holds:

∞∑
k=0

P(X = k) =

∞∑
k=0

λk

k!
e−λ = e−λ

∞∑
k=0

λk

k!
= e−λeλ = 1.
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Important discrete distributions Poisson distribution

Poisson distribution – graph of probabilities

0 1 2 3 4 5 6 7 8 9 10
0

0.1
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x

P(X = x)

Poisson distribution with parameter λ = 1.8:

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 5 25 / 45



Important discrete distributions Poisson distribution

Poisson distribution – expectation

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . .

The expectation is

E(X) =

∞∑
k=0

k P(X = k) =

∞∑
k=0

k
λk

k!
e−λ

= λ e−λ
∞∑
k=1

λk−1

(k − 1)!

= λ e−λ
∞∑
k=0

λk

k!

= λ e−λeλ = λ.
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Important discrete distributions Poisson distribution

Poisson distribution – variance

E(X2) is computed similarly:

E(X2) =

∞∑
k=0

k2
λk

k!
e−λ = λe−λ

∞∑
k=1

k2
λk−1

k(k − 1)!

= λe−λ
( ∞∑
k=1

(k − 1)
λk−1

(k − 1)!
+

∞∑
k=1

λk−1

(k − 1)!

)

= λe−λ
( ∞∑
k=0

k
λk

k!
+

∞∑
k=0

λk

k!

)
= λe−λ

(
λeλ + eλ

)
= λ2 + λ.

Thus
var(X) = E(X2)− (EX)2 = λ2 + λ− (λ)2 = λ.
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Important discrete distributions Poisson distribution

Poisson distribution – variance
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Important discrete distributions Recap

Recapitulation
• Bernoulli (Alternative) distribution with parameter p, 0 ≤ p ≤ 1, X ∼ Be(p):

(other notations: X ∼ Bernoulli(p), X ∼ Alt(p))
(One toss with an unbalanced coin.)

P(1) = p, P(0) = 1− p EX = p, varX = p(1− p).
• Binomial distribution with parameters n and p, 0 ≤ p ≤ 1, X ∼ Binom(n, p):

(Number of Heads in n tosses with an unbalanced coin.)

P(X = k) =

(
n

k

)
pk(1− p)n−k EX = np, varX = np(1− p).

• Geometric distribution with parameter p, 0 < p < 1, X ∼ Geom(p):
(Number of tosses with an unbalanced coin until first Heads appears.)

P(X = k) = (1− p)k−1p, k = 1, 2, . . . EX =
1

p
, varX =

1− p
p2

.

• Poisson distribution with parameter λ > 0, X ∼ Poisson(λ):
(Limit of the binomial distribution for n→∞.)

P(X = k) =
λk

k!
e−λ, k = 0, 1, 2, . . . EX = varX = λ.
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Important continuous distributions Uniform distribution

Uniform distribution
All values in some interval (a, b) can occur with “equal” probability.

Definition

A continuous random variable X has the uniform distribution with parameters a < b,
a, b ∈ R, if its density has the form:

fX(x) =


1

b− a for x ∈ (a, b),

0 elsewhere.

Notation: X ∼ Unif(a, b), X ∼ U(a, b).

Normalization condition:∫ +∞

−∞
fX(x)dx =

∫ b

a

1

b− adx =
b− a
b− a = 1.

Distribution function:

FX(x) =

∫ x

a

1

b− adt =

[
t

b− a

]x
a

=
x− a
b− a for x ∈ [a, b].
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Important continuous distributions Uniform distribution

Uniform distribution – graph of density

x
ba

1
b−a

fX
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Important continuous distributions Uniform distribution

Uniform distribution – expectation, variance

fX(x) =


1

b− a for x ∈ (a, b),

0 elsewhere.

E(X) =

∫ b

a

x fX(x) dx =

∫ b

a

x

b− a dx =
1

b− a

[
x2

2

]b
a

=
a+ b

2
,

E(X2) =

∫ b

a

x2fX(x) dx =

∫ b

a

x2

b− a dx =
1

b− a

[
x3

3

]b
a

=
a2 + ab+ b2

3
,

var(X) = E(X2)− (EX)2 =
a2 + ab+ b2

3
− (a+ b)2

4
=

(b− a)2

12
.
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Important continuous distributions Exponential distribution

Exponential distribution
Very often used in queuing theory and theory of random processes.

Definition

A random variable X has the exponential distribution with parameter λ > 0, if its density
has the form:

fX(x) =

{
λe−λx for x ∈ [0,+∞),

0 elsewhere.

Notation: X ∼ Exp(λ).

Normalization:∫ ∞
−∞

fX(x)dx =

∫ ∞
0

λe−λxdx =
[
−e−λx

]+∞
0

= 0− (−1) = 1.

Distribution function:

FX(x) =

∫ x

0

λe−λtdt =
[
−e−λt

]x
0

= 1− e−λx.
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Important continuous distributions Exponential distribution
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Important continuous distributions Exponential distribution

Exponential distribution – graph of density

0
x

1

2

1
2

fX fX = λe−λx

λ = 1

λ = 2

λ = 1
2
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Important continuous distributions Exponential distribution

Exponential distribution – expectation, variance

fX(x) =

{
λe−λx for x ≥ 0,

0 elsewhere.

E(X) =

∫ ∞
0

x fX(x) dx =

∫ ∞
0

xλe−λxdx
by parts

=
1

λ

E(X2) =

∫ ∞
0

x2 fX(x) dx =

∫ ∞
0

x2λe−λxdx
2x by parts

=
2

λ2

var(X) = E(X2)− (EX)2 =
2

λ2
− 1

λ2
=

1

λ2
.

X Details during tutorials.
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Important continuous distributions Normal distribution

Normal distribution
The normal distribution occurs in nature (population lengths, weights, etc.) and is used as
an approximation for sums and means of random variables.

Definition

A random variable X has the normal (Gaussian) distribution with parameters µ and
σ2 > 0, if the density has the form:

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 for x ∈ (−∞,+∞).

Notation: X ∼ N(µ, σ2).

• Attention: Some literature and software uses X ∼ N(µ, σ).

• We will further use the symbol σ for
√
σ2.

• N(0, 1) is called the standard normal distribution.

Distribution function: cannot be given explicitly, only numerically. The standard normal
distribution function is tabulated and denoted as Φ.

Φ(x) =

∫ x

−∞

1√
2π
e−

t2

2 dt.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 5 35 / 45



Important continuous distributions Normal distribution

Normal distribution
The normal distribution occurs in nature (population lengths, weights, etc.) and is used as
an approximation for sums and means of random variables.

Definition

A random variable X has the normal (Gaussian) distribution with parameters µ and
σ2 > 0, if the density has the form:

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 for x ∈ (−∞,+∞).

Notation: X ∼ N(µ, σ2).

• Attention: Some literature and software uses X ∼ N(µ, σ).

• We will further use the symbol σ for
√
σ2.

• N(0, 1) is called the standard normal distribution.

Distribution function: cannot be given explicitly, only numerically. The standard normal
distribution function is tabulated and denoted as Φ.

Φ(x) =

∫ x

−∞

1√
2π
e−

t2

2 dt.

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 5 35 / 45



Important continuous distributions Normal distribution

Standard normal distribution N(0, 1)

−4 −3 −2 −1 0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

x

fX(x)

1√
2π

e−
x2

2

Φ(−x) = 1− Φ(x)
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Important continuous distributions Normal distribution

Density of the normal distribution: X ∼ N(µ, σ2)

Μ�3Σ Μ�2Σ Μ�Σ Μ Μ�Σ Μ�2Σ Μ�3Σ

P(µ− σ ≤ X ≤ µ+ σ) ≈ 0.68

P(µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 0.95

P(µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 0.997
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Important continuous distributions Normal distribution

Density of the normal distribution: Z ∼ N(0, 1)

�3 �2 �1 0 1 2 3

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 5 38 / 45



Important continuous distributions Normal distribution

Density of the normal distribution

N(5,1/4)

N(-1,4)

N(0,1)

�6 �4 �2 2 4 6

0.8
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Important continuous distributions Normal distribution

Normal distribution – expectation, variance

Normal random variable X ∼ N(µ, σ2):

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 for x ∈ (−∞,+∞).

E(X) =

∫ +∞

−∞
x

1√
2πσ2

e−
(x−µ)2

2σ2 dx
substitution

= µ.

var(X) = σ2.
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Important continuous distributions Normal distribution

Normal distribution – expectation, variance
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Important continuous distributions Normal distribution

Standardization of random variable

Consider a random variable X with expected value EX = µ and variance varX = σ2.

In the easiest possible way, try to convert the variable X to the variable Z with parameters
EZ = 0 and varZ = 1 (standardization):

• We subtract the expectation µ:

E(X − µ) = EX − µ = 0 and var(X − µ) = varX = σ2.

• We rescale with the value σ =
√

varX :

E

(
X − µ
σ

)
=

E(X − µ)

σ
= 0 and var

(
X − µ
σ

)
=

var(X − µ)

σ2
=
σ2

σ2
= 1.

The required transformation is thus linear and the random variable

Z =
X − µ
σ

indeed has a zero mean and a variance of 1.
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Important continuous distributions Normal distribution

Standardization of a normal random variable
For practical uses we are interested in the standardization of the normal random variable.

Theorem

Let a random variable X have the normal distribution X ∼ N(µ, σ2). Then the random
variable

Z =
X − µ
σ

has the standard normal distribution, Z ∼ N(0, 1).

Proof

FZ(z) = P(Z ≤ z) = P

(
X − µ
σ

≤ z
)

= P(X ≤ σz + µ) = FX(σz + µ)

fZ(z) =
∂FZ

∂z
(z) =

∂FX

∂z
(σz + µ) = σ fX(σz + µ)

= σ
1

√
2πσ2

e
− (σz+µ−µ)2

2σ2 =
1
√
2π
e−

z2

2 .
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Important continuous distributions Normal distribution
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Important continuous distributions Normal distribution
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Important continuous distributions Normal distribution

Standardization of a normal random variable

Remark

From the previous theorem it follows that:

If X ∼ N(µ, σ2), then Z =
X − µ
σ

∼ N(0, 1).

This is used for obtaining the values of the distribution function of the variable X from the
tables of the standard normal distribution Z :

FX(x) = P(X ≤ x) = P

(
X − µ
σ

≤ x− µ
σ

)
= P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
.
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Important continuous distributions Normal distribution

Standardization of a normal random variable

X~N(3,4)X-3~N(0,4)

(X-3)/2 ~ N(0,1)

�6 �4 �2 2 4 6 8
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Important continuous distributions Normal distribution

Recapitulation

• Uniform distribution on the interval [a, b], X ∼ Unif(a, b) or X ∼ U(a, b):

fX(x) =
1

b− a, x ∈ [a, b] EX =
a+ b

2
, varX =

(b− a)2

12
.

• Exponential distribution with parameter λ > 0, X ∼ Exp(λ):

fX(x) = λe−λx, x ∈ [0,+∞) EX =
1

λ
, varX =

1

λ2
.

• Normal (Gaussian) distribution with parameters µ ∈ R and σ2 > 0, X ∼ N(µ, σ2):

fX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 , x ∈ (−∞,+∞) EX = µ, varX = σ2.
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