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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, functions of random vectors,
covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap

• A random variable X is a measurable function, which assigns real values to the
outcomes of a random experiment.

• The distribution of X gives the information of the probabilities of its values and is
uniquely given by the distribution function:

FX(x) = P(X ≤ x).

• There are two major types of random variables:
I Discrete, taking only countably many possible values.
I Continuous, taking uncountably many values from an interval.

• The distribution can be given by:
I for discrete distributions by the probabilities of possible values P(X = xk).
I for continuous distributions by the density fX for which

FX(x) =

∫ x

−∞
fX(t) dt.
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Random vectors

Random vectors
Sometimes we can measure several random variables at once from one result of an
experiment.

The individual variables can have different distributions and the values of the variables can
be strongly mutually interconnected. It is appropriate to describe their distribution together
as the so called joint distribution.

Definition

Consider two random variables X and Y defined on the same probability space (Ω,F ,P).
We define their joint distribution function FX,Y (x, y) as

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

For n random variables X1, X2, . . . , Xn
denote
= X we define the joint distribution function

as
FX(x) = P(X1 ≤ x1 ∩ . . . ∩Xn ≤ xn).

The couple (X,Y ) or, n-tuple (X1, . . . , Xn), is called a random vector.
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Random vectors

Example – joint distribution

Example

Let X and Y be random variables with a joint discrete distribution given by the following
probabilities:

x

P(X = x ∩ Y = y) 0.5 1 2

y
2 0.3 0.06 0.04

1 0.4 0.15 0.05

Compute the joint distribution function FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y):

y

x0 0.5 1 2

1

2

0 0 0 0

0

0

0.4 0.55 0.6

0.7 0.91 1
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Random vectors

Properties of the joint distribution function

The joint distribution function has analogous properties as the distribution function of one
variable.

Theorem

The joint distribution function FX,Y of random variablesX and Y has following properties:

i) if x1 < x2 and y1 < y2 then FX,Y (x1, y1) ≤ FX,Y (x2, y2).

ii) ∀ y ∈ R, lim
x→−∞

FX,Y (x, y) = 0 and

∀x ∈ R, lim
y→−∞

FX,Y (x, y) = 0.

iii) ∀ y ∈ R, lim
x→+∞

FX,Y (x, y) = FY (y) and

∀x ∈ R, lim
y→+∞

FX,Y (x, y) = FX(x).

Proof

Analogously as for the distribution function of one random variable.
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Random vectors Vectors of discrete random variables

Vectors of discrete random variables

A distribution of random variables X and Y on the same probability space is described by
the joint distribution function

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

If the variables X and Y are discrete, it is often useful to describe the distribution by the

joint probabilities of their values.

Definition

The joint probabilities of values of two discrete random variables X and Y is

P(X = x ∩ Y = y) = P({X = x} ∩ {Y = y}).

Taken as a function of x and y, the probabilities are called the joint probability mass
function.
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Random vectors Vectors of discrete random variables

Joint probabilities and the joint distribution function

The joint distribution function of two discrete random variables X and Y is

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y) =
∑

{i: xi≤x}

∑
{j: yj≤y}

P(X = xi ∩ Y = yj)

From this it follows that FX,Y (x, y) has a stepwise structure.

The normalization condition follows from the properties of the joint distribution function:∑
i

∑
j

P(X = xi ∩ Y = yj) =
∑
i

P
(
{X = xi} ∩

⋃
j{Y = yj}

)
=
∑
i

P ({X = xi} ∩ {Y ∈ R}) =
∑
i

P (X = xi)

= P
(⋃

j{X = xi}
)

= P ({X ∈ R}) = P(Ω) = 1.
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Random vectors Vectors of discrete random variables

Joint distribution – visualization
Example
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Random vectors Vectors of discrete random variables

Marginal distribution
Sometimes we have the joint distribution of variables X and Y , but we are not interested in
the values of Y .

From the joint distribution function FX,Y we would then want to obtain only
the distribution function FX of the variable X .
The distribution obtained this way is called the marginal distribution of random variable X .

Theorem

Let P(X = x ∩ Y = y) be the joint probabilities of values of two discrete variables X and
Y . The marginal distribution (or marginal probabilities) of a X is given by

P(X = x) =
∑
j

P(X = x ∩ Y = yj).

Proof

The events {Y = yj} for j = 1, 2, . . . create a countable partition of Ω. From this follows:

P(X = x) = P({X = x} ∩ {Y ∈ R}) = P({X = x} ∩ (
⋃

j{Y = yj})) =

= P
(⋃

j

({X = x} ∩ {Y = yj})
)

=
∑
j

P({X = x} ∩ {Y = yj}).
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Random vectors Vectors of discrete random variables

Example – marginal distribution

Example

Let X and Y be two random variables with the following joint distribution:

x

P(X = x ∩ Y = y) 0.5 1 2

P(Y = y)

y
2 0.3 0.06 0.04

0.4

1 0.4 0.15 0.05

0.6

P(X = x) 0.7 0.21 0.09

Find the marginal distribution of X and Y separately (find the marginal probabilities
P(X = x) and P(Y = y).)

P(Y = y) =


0.6 for y = 1

0.4 for y = 2

0 elsewhere
P(X = x) =


0.7 for x = 0.5

0.21 for x = 1

0.09 for x = 2

0 elsewhere
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P(X = x ∩ Y = y) 0.5 1 2 P(Y = y)

y
2 0.3 0.06 0.04 0.4

1 0.4 0.15 0.05 0.6

P(X = x) 0.7 0.21 0.09

Find the marginal distribution of X and Y separately (find the marginal probabilities
P(X = x) and P(Y = y).)

P(Y = y) =


0.6 for y = 1

0.4 for y = 2

0 elsewhere
P(X = x) =


0.7 for x = 0.5

0.21 for x = 1

0.09 for x = 2

0 elsewhere
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Independence of random variables

Similarly as with random events, we want to be able to determine, whether the knowledge of
one variable changes in some way the distribution of an other one.

Definition

Random variables X and Y are called independent if for all x, y ∈ R the events
{X ≤ x} and {Y ≤ y} are independent. Equivalently, if it holds that for all x, y ∈ R

P(X ≤ x ∩ Y ≤ y) = P(X ≤ x) · P(Y ≤ y).

Random variables X1, . . . , Xn are called independent if for all x ∈ Rn it holds that

P(X ≤ x) =

n∏
i=1

P(Xi ≤ xi).

Random variables forming a countable collection X1, X2, . . . are called independent if all
finite n-tuples Xi1 , . . . , Xin are independent.
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Random vectors Independence of discrete random variables

Independence of discrete random variables
For discrete random variables we can verify the independence by means of the probabilities
of values:

Theorem

Discrete random variables X and Y are independent if for all x, y ∈ R the events
{X = x} and {Y = y} are independent. Equivalently, if it holds that for all x, y ∈ R

P(X = x ∩ Y = y) = P(X = x) · P(Y = y).

Random variables X1, . . . , Xn are independent if for all x ∈ Rn it holds that

P(X = x) =

n∏
i=1

P(Xi = xi).

Proof

If the condition regarding equalities holds, it must hold also for all inequalities, because they can be rewritten as
sums of probabilities of disjoint events.
If the condition regarding inequalities hold, it must hold also for all equalities, because the difference of probabilities
of inequalities yields probabilities of equalities.
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Random vectors Independence of discrete random variables

Example – checking independence of random variables

Example – continuation

Random variables X and Y have the following joint and marginal distributions:

x

P(X = x ∩ Y = y) 0.5 1 2 P(Y = y)

y
2 0.3 0.06 0.04 0.4

1 0.4 0.15 0.05 0.6

P(X = x) 0.7 0.21 0.09

Are X and Y independent?

No, they are not independent because, e.g., for x = 0.5 and y = 2 it holds that

0.3 = P(X = 0.5 ∩ Y = 2) 6= P(X = 0.5) · P(Y = 2) = 0.7 · 0.4 = 0.28.
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Random vectors Vectors of continuous random variables

Vectors of continuous random variables
The distribution of random variables X and Y on the same probability space is described
by the joint distribution function

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

If the variables X and Y are continuous, it is often useful to describe the distribution by the

joint probability density.

Definition

Two random variables X and Y have a joint (absolutely) continuous distribution if there
exists a non-negative function fX,Y : R2 → [0,+∞) such that for all x, y ∈ R it holds

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v) dudv.

The function fX,Y is called the joint probability density of the random variables X,Y or
of the random vector (X,Y ).
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Random vectors Vectors of continuous random variables

Properties of continuous random variables
Similarly as in the one-dimensional case it holds that:
• Where the derivative exists:

fX,Y (x, y) =
∂2FX,Y

∂x∂y
(x, y).

• The joint distribution function is continuous.

• Normalization condition:

∫ +∞

−∞

∫ +∞

−∞
fX,Y (x, y) dx dy = 1

• For all x, y ∈ R and all Borel sets A,B on R

P(X = x ∩ Y ∈ B) = P(X ∈ A ∩ Y = y) = P(X = x ∩ Y = y) = 0.

• P({a < X ≤ b} ∩ {c < Y ≤ d}) =

∫ d

c

∫ b

a

fX,Y (x, y) dx dy.

• For all B Borel subset of R2 (meaning that {X ∈ B} is an event)

P
(
(X,Y ) ∈ B

)
=

∫∫
B

fX,Y (x, y) dx dy.
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Joint distribution – visualization

Example

−2
0 2

−2

0

2
0

0.2

x
y

fX,Y

Joint density

fX,Y (x, y) =
1

π
e−

x2

2 −2y2

−2
0 2

−2

0

2
0

0.5

1

x
y

FX,Y

Joint distribution function

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞

1

π
e−

u2

2 −2v2

dudv
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Marginal distribution
For computing the marginal distribution of two variables X and Y from the joint density we
can use a formula analogous to the discrete case:

Theorem

Let X and Y be two random variables having a joint continuous distribution with joint
density fX,Y . Then X and Y are both continuous too, and the marginal densities fX , fY
are given by

fX(x) =

∫ +∞

−∞
fX,Y (x, y) dy, fY (y) =

∫ +∞

−∞
fX,Y (x, y) dx.

Proof

We know that:

FX(x) = P(X ≤ x) = P(X ≤ x ∩ Y ∈ R) =

∫ x

−∞

(∫ +∞

−∞
fX,Y (u, v) dv

)
du .

The statement of the theorem is obtained by differentiating with respect to x, or by comparing this formula to the
definition of the distribution function of a continuous random variable. The second part is analogous.
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Random vectors Independence of continuous random variables

Independence of continuous random variables
The independence of continuous random variables can be determined by means of
densities.

Theorem

Two continuous random variables X and Y are called independent if and only if for all
x, y ∈ R the following equality holds

fX,Y (x, y) = fX(x) · fY (y).

Random variables X1, . . . , Xn are called independent if for all x ∈ Rn

fX(x) =

n∏
i=1

fXi
(xi).

Proof

Two random variables X and Y are independent if

FX,Y (x, y) = FX(x) · FY (y).

Taking the derivatives of both sides with respect to both x and y yields one implication. Integrating both sides of
the equality for densities yields the other direction.
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Independence of continuous random variables

Remark

While verifying the independence of X and Y we can use the following.

Consequence: If it is possible to decompose fX,Y to

fX,Y (x, y) = g(x) · h(y), ∀x, y ∈ R,

where g(x) and h(y) are non-negative functions, then the variables X and Y are
independent.

X Do the proof yourself by inserting into the formula for marginal densities.

X Beware, the functions g(x) and h(y) may not necessarily be the marginal densities
fX(x) and fY (y); they may differ by a multiplicative constant.

The statement of the consequence can be formulated for independence of a general
random vector X1, . . . , Xn too.
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Random vectors Independence of continuous random variables

Example – marginal distribution and independence
Example

Let X and Y random variables having the joint probability density

fX,Y (x, y) = ye−2x for x ∈ [0,+∞) and y ∈ [0, 2].

Are the variables X and Y independent?

Marginal densities:

fX(x) =

∫ 2

0

ye−2x dy = e−2x

∫ 2

0

y dy = e−2x

[
y2

2

]2

0

= e−2x

(
4

2
− 0

)
= 2e−2x.

fY (y) =

∫ +∞

0

ye−2x dx = y

∫ +∞

0

e−2x dx = y

[
e−2x

−2

]+∞

0

= y

(
0− 1

−2

)
=
y

2
.

Independence:

ye−2x = fX,Y (x, y) = fX(x) · fY (y) = 2e−2x · y
2

= ye−2x.

Yes, they are independent!
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Random vectors Conditional distribution

Discrete conditional distribution

Now we will study the distribution of a random variable X under the assumption that we
know the value of the variable Y = y.

Suppose that we have a partial information about the result of an experiment and we are
interested in the change in our prediction.

It is reasonable to introduce the conditional distribution by means of the conditional
probability under the condition of the event {Y = y}.

Definition

Let P(Y = y) > 0. Then, the conditional distribution function FX|Y (·|y) of the
variable X given Y = y is defined as

FX|Y (x|y) = P(X ≤ x|Y = y).

The conditional probabilities of values of X given (under the condition of) Y = y are
given, analogously, by

P(X = x|Y = y).
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Illustration of conditional probabilities P(X = x|Y = y)

P(X=x|Y=3)

P(X=x|Y=2)

P(X=x|Y=1)

P(X=x∩Y=y)

y

y = 3

y = 2

y = 1

x

x = 1

x = 2

x = 3
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Random vectors Conditional distribution

Conditional expectation of a discrete random variable

From the definition it follows that:

P(X = x|Y = y) =
P(X = x ∩ Y = y)

P(Y = y)
.

Definition

Let P(Y = y) > 0. The expectation of the variable X with conditional probabilities
P(X = x|Y = y) is called the conditional expectation of X given Y = y and is
denoted as E(X|Y = y).

Thus it holds that:

E(X|Y = y) =
∑
i

xi P(X = xi|Y = y) =
∑
i

xi
P(X = xi ∩ Y = y)

P(Y = y)
.
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Random vectors Conditional distribution

Continuous conditional distribution
When observing two continuous random variables X and Y , it is not possible to use an
event {Y = y} as a condition, because P(Y = y) = 0.

The conditional distribution can be obtained using a limit approach:
Let fX,Y be joint density of X,Y and it holds fY (y) > 0. Then for ∆y << 1

P(X ≤ x | y ≤ Y ≤ y + ∆y) =
P(X ≤ x ∩ y ≤ Y ≤ y + ∆y)

P(y ≤ Y ≤ y + ∆y)

=

=

∫ x

−∞
∫ y+∆y

y
fX,Y (u, v) dv du∫ y+∆y

y
fY (v) dv

≈
∫ x

−∞ fX,Y (u, y)∆y du

fY (y)∆y
=

=

∫ x

−∞

fX,Y (u, y)

fY (y)
du.

After taking a limit ∆y → 0 we intuitively obtain the result as

P(X ≤ x|Y = y) =

∫ x

−∞

fX,Y (u, y)

fY (y)
du.
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Continuous conditional distribution
the previous inference lead us to the following formal definition:

Definition

The conditional distribution function of a variable X given (under the condition of)
Y = y is defined as

FX|Y (x|y) =

∫ x

−∞

fX,Y (u, y)

fY (y)
du,

for all y such that fY (y) > 0. We use the notation P(X ≤ x|Y = y) = FX|Y (x|y), too.

The conditional density is defined accordingly:

Definition

The conditional probability density of X given (under the condition of) Y = y is given as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,

for all y such that fY (y) > 0.
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Random vectors Conditional distribution

Conditional expectation of a continuous random variable

Analogously as in the discrete case we define the conditional expectation for continuous
random variables:

Definition

Let fY (y) > 0. The expectation of variable X with density fX|Y (x|y) is called the
conditional expectation of X given Y = y and is denoted as E(X|Y = y).

We compute the conditional expectation for a given value y as follows:

E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y) dx =

∫ ∞
−∞

x
fX,Y (x, y)

fY (y)
dx = g(y),

where g is a function which arises from the integration.
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Random vectors Bayes’ Theorem

Bayes’ Theorem

Theorem

let Y be continuous random variable.

If X is continuous random variable too then it holds:

fX|Y (x|y) =
fX(x) fY |X(y|x)∫ ∞

−∞
fX(t) fY |X(y|t) dt

.

If X is discrete random variable than we have:

P(X = n|Y = y) =
P(X = x) fY |X(y|x)∑

k

P(X = k) fY |X(y, k)
.
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Random vectors Bayes’ Theorem

Recap
Joint distribution function of a random vector (X,Y ):

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

Discrete random variables X and Y Continuous random variables X and Y
Joint probabilities of values: Joint density:

P(X = x ∩ Y = y) fX,Y (x, y)
Marginal distribution:

P(X = x) =
∑
all y

P(X = x ∩ Y = y) fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

P(Y = y) =
∑
all x

P(X = x ∩ Y = y) fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

Independence of X and Y :
P(X = x ∩ Y = y) = P(X = x) P(Y = y) fX,Y (x, y) = fX(x) fY (y)

Conditional probabilities / density of X given Y = y:

P(X = x|Y = y) =
P(X = x ∩ Y = y)

P(Y = y)
fX|Y (x|y) =

fX,Y (x, y)

fY (y)

Conditional expectation of X given Y = y:

E(X|Y = y) =
∑
x

xP(X = x|Y = y) E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y) dx
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