
Random vectors II.
(Covariance and correlation, convolution)

Lecturer:
Francesco Dolce

Department of Applied Mathematics
Faculty of Information Technology

Czech Technical University in Prague
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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, conditional expected value,
covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap
Joint distribution function of a random vector (X,Y ):

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

Discrete random variables X and Y Continuous random variables X and Y
Joint probabilities of values: Joint density:
P(X = x ∩ Y = y) fX,Y (x, y)

Marginal distributions:

P(X = x) =
∑
all y

P(X = x ∩ Y = y) fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

P(Y = y) =
∑
all x

P(X = x ∩ Y = y) fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

Independence of X and Y :
P(X = x ∩ Y = y) = P(X = x) P(Y = y) fX,Y (x, y) = fX(x) fY (y)

Conditional probabilities / density of X given Y = y:

P(X = x|Y = y) =
P(X = x ∩ Y = y)

P(Y = y)
fX|Y (x|y) =

fX,Y (x, y)

fY (y)

Conditional expectation of X given Y = y:

E(X|Y = y) =
∑
x

xP(X = x|Y = y) E(X|Y = y) =

∫ ∞
−∞

xfX|Y (x|y) dx
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Random vectors Functions of random vectors

Functions of random vectors of variables
Similar formulas as for a function of one random variable also hold for the functions of
random vectors. Let

Z = h(X1, . . . , Xn) = h(X).

• When variables X1, . . . , Xn have a joint discrete distribution with probabilities
P(X = x), the following relation holds for the distribution function of Z :

FZ(z) = P(Z ≤ z) =
∑

{x∈Rn:h(x)≤z}

P(X = x).

• When variables X1, . . . , Xn have a joint continuous distribution with density fX(x),
the distribution function of Z is then

FZ(z) = P(Z ≤ z) =
∫
· · ·
∫

{x∈Rn:h(x)≤z}

fX(x) dx1 . . . dxn.
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Random vectors Functions of random vectors

Expected value of the function of a random vector

The expected value Eh(X,Y ) of a real function h of random variables X and Y can be
computed without determining the distribution of the variable h(X,Y ).

• For X and Y discrete random variables it holds that

Eh(X,Y ) =
∑
i,j

h(xi, yj) P(X = xi ∩ Y = yj),

if the sum converges absolutely.

• For X and Y continuous random variables it holds that

Eh(X,Y ) =

∫ +∞

−∞

∫ +∞

−∞
h(x, y)fX,Y (x, y) dx dy,

if the integral converges absolutely.
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Random vectors Functions of random vectors

Properties of the expected value

Now we can prove the linearity of the expectation.

Theorem – linearity of expectation

For all a, b ∈ R and all random variables X and Y it holds that

E(aX + bY ) = aEX + bEY.

Consequence:

• E(aX + b) = aEX + b. This statement was proven before separately.
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Random vectors Functions of random vectors

Properties of the expected value
Proof

From the theory concerning the marginal distributions of discrete random variables X and Y we have:

E(aX + bY ) =
∑
i,j

(axi + byj) P(X = xi ∩ Y = yj)

=
∑
i,j

axi P(X = xi ∩ Y = yj) +
∑
i,j

byj P(X = xi ∩ Y = yj)

= a
∑
i

xi

∑
j

P(X = xi ∩ Y = yj) + b
∑
j

yj
∑
i

P(X = xi ∩ Y = yj)

= a
∑
i

xi P(X = xi) + b
∑
j

yj P(Y = yj) = aEX + bEY.

For continuous X and Y the proof is analogous:

E(aX + bY ) =

∫ ∞
−∞

∫ ∞
−∞

(ax+ by)fX,Y (x, y) dx dy = · · · =

= a

∫ ∞
−∞

xfX(x) dx+ b

∫ ∞
−∞

yfY (y) dy = aEX + bEY.
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Random vectors Covariance and correlation

Covariance and correlation coefficient
Mutual linear dependence of two random variables X and Y can be described in the
following way:

Definition

Let X and Y be random variables with finite second moments. Then we define the
covariance of the random variables X and Y as

cov(X,Y ) = E[(X − EX)(Y − EY )].

If X and Y have positive variances then we define the correlation coefficient (or
coefficient of correlation) as

ρ(X,Y ) =
cov(X,Y )√
varX

√
varY

.

Definition

Two random variables X and Y are called non-correlated if cov(X,Y ) = 0.
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Random vectors Covariance and correlation

Covariance and the correlation coefficient – properties
Theorem

For the covariance and the correlation coefficient the following properties hold:

i) cov(X,Y ) = EXY − EX EY ,

ii) X and Y are non-correlated if and only if EXY = EX EY ,

iii) ρ(X,Y ) ∈ [−1, 1],
iv) ρ(aX + b, cY + d) = ρ(X,Y ) for all a, c > 0 and b, d ∈ R,

v) ρ(X,Y ) = ±1, if a, b ∈ R, a > 0 such that Y = ±aX + b.

Proof

i) cov(X,Y ) = E ((X − EX)(Y − EY )) = E (XY −X EY − Y EX + EX EY )

= EXY − E(X EY )− E(Y EX) + E(EX EY )

= EXY − EX EY − EY EX + EX EY = EXY − EX EY

ii) Obvious from above.

iii) From the Schwarz inequality (see bibliography).

iv) Follows straightforwardly by inserting into the definition.

v) Follows from the proof of the Schwarz inequality (see bibliography).
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Random vectors Covariance and correlation

Non-correlated random variables
Let us study the expectation of the product XY of two random variables X and Y .

Definition

Alternative definition: Two random variables X and Y are called non-correlated if

EXY = EX EY.

Lemma

If X and Y are independent then they are non-correlated.

Proof

Let X,Y be continuous variables. Independence means that fX,Y (x, y) = fX(x)fY (y). Thus we have

EXY =

∫ +∞

−∞

∫ +∞

−∞
xyfX,Y (x, y) dxdy =

∫ +∞

−∞

∫ +∞

−∞
xyfX(x)fY (y) dx dy

=

(∫ +∞

−∞
xfX(x) dx

)(∫ +∞

−∞
yfY (y) dy

)
= EX EY.
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Random vectors Covariance and correlation

Properties of the variance

It is now possible to obtain the following properties of the variance of sums of two random
variables.

Theorem

i) For X and Y with finite second moments:

var(X ± Y ) = varX + varY ± 2 cov(X,Y ).

ii) For non-correlated (independent) random variables it holds that

var(X ± Y ) = varX + varY.
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Random vectors Covariance and correlation

Properties of variance

Proof

i) Given two random variables X and Y we have:

var(X ± Y ) = E(X ± Y )2 − (E(X ± Y ))2 = E(X2 ± 2XY + Y 2)− (EX ± EY )2

= EX2 ± 2EXY + EY 2 − (EX)2 ∓ 2EX EY − (EY )2

= varX + varY ± (2EXY − 2EX EY ) = varX + varY ± 2 cov(X,Y ).

ii) For non-correlated (independent) random variables the covariance is zero.
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Random vectors Covariance and correlation

Correlation – sample of 1000 values

−4 −3 −2 −1 1 2 3 4

−10

−5

5

10

X

Y ρ = 0
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Correlation – sample of 1000 values
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Random vectors Sums of random variables – convolution

Sums of random variables

An important case of a function of multiple random variables is their sum

Z = h(X) = h(X1, . . . , Xn) = X1 + · · ·+Xn.

Consider for simplicity a sum of two random variables:

• If X and Y are discrete and independent, then for Z = X + Y it holds that

P(Z = z) =
∑
x

P(X = x) · P(Y = z − x) (discrete convolution).

• If X and Y are continuous and independent, then for Z = X + Y it holds that

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x) dx (convolution of fX and fY ).
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Random vectors Sums of random variables – convolution

Sums of random variables – convolution (discrete case)

The expression for the sum of discrete independent X and Y is obtained easily:

P(Z = z) = P(X + Y = z)

=
∑

{(xk,yj): xk+yj=z}

P(X = xk ∩ Y = yj)

=
∑
all xk

P(X = xk) P(Y = z − xk).
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Random vectors Sums of random variables – convolution

Sums of random variables - convolution (continuous case)
For continuous independent X and Y we have:

FZ(z) = P(X + Y ≤ z) =

∫∫
{(x,y): x+y≤z}

fX,Y (x, y) d(x, y)

=

∫ ∞
−∞

(∫ z−x

−∞
fX,Y (x, y) dy

)
dx

y=u−x
=

∫ ∞
−∞

(∫ z

−∞
fX,Y (x, u− x) du

)
dx

=

∫ z

−∞

(∫ ∞
−∞

fX,Y (x, u− x) dx
)
du

=

∫ z

−∞

(∫ ∞
−∞

fX(x)fY (u− x) dx
)
du.

The density fZ is any non-negative function, for which FZ(z) =
∫ z
−∞ fZ(u) du.

The expression under the first integral fZ(z) =
∫∞
−∞ fX(x)fY (z − x) dx is thus the

density of Z .
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Random vectors Sums of random variables – convolution

Sum of random variables – Normal distribution

Example – sum of two normal distributions

Suppose that X and Y are independent, both having the normal distribution N(µ, 1). We
want to obtain the distribution of Z = X + Y .

The densities of X and Y correspond to the normal distribution with variance σ2 = 1:

fX(x) =
1√
2π · 1

e−
(x−µ)2

2·1 , fY (y) =
1√
2π · 1

e−
(y−µ)2

2·1 x, y ∈ R.

The density of the sum is obtained using convolution:

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x) dx =

∫ ∞
−∞

1√
2π
e−

(x−µ)2
2

1√
2π
e−

(z−x−µ)2
2 dx

=

∫ ∞
−∞

1

2π
e−

1
2 ((x−µ)

2+(z−x−µ)2) dx.
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Random vectors Sums of random variables – convolution

Sum of random variables – Normal distribution
Example – sum of two normal distributions, continuation

The expressions in the exponent can be rewritten as:

(x− µ)2 + (z − x− µ)2 = x2 − 2µx+ µ2 + z2 + x2 + µ2 − 2zx− 2µz + 2µx

= 2
(
x− z

2

)2
+

1

2
(z − 2µ)2 .

The expression under the integral can then be split into two multiplicative parts, with one of
them not depending on x and the other one having an integral of 1:

fZ(z) =

∫ ∞
−∞

1

2π
e−

2(x−z/2)2
2 e−

(z−2µ)2

2·2 dx

=
1√
2π2

e−
(z−2µ)2

2·2

∫ ∞
−∞

1√
2π(1/2)

e
− (x−z/2)2

2·(1/2) dx

=
1√
2π2

e−
(z−2µ)2

2·2 .

The sum Z = X + Y has therefore the normal distribution N(2µ, 2). In general, it can be
proven that the sum of n independent normals N(µ, σ2) has the distribution N(nµ, nσ2).
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Random vectors Sums of random variables – convolution

Sum of random variables – Poisson distribution
Example

Consider two independent random variables X and Y with the Poisson distribution with
parameters λ1 and λ2, respectively. Find the distribution of the variable Z = X + Y .

P(X = j) =
λj1
j
e−λ1 P(Y = `) =

λ`2
`
e−λ2 , j, ` = 0, 1, . . .

From what we have seen before we know that for k = 0, 1, . . . :

P(Z = k) =
∑

{(j,`)∈N2
0: j+`=k}

P(X = j) P(Y = `) =

k∑
i=0

P(X = j) P(Y = k − j)

=

k∑
j=0

λj1
j!
e−λ1

λk−j2

(k − j)!e
−λ2 = e−(λ1+λ2)

1

k!

k∑
j=0

k!

j!(k − j)!λ
j
1λ
k−j
2

=
(λ1 + λ2)

k

k!
e−(λ1+λ2). ∼ Poisson(λ1 + λ2).

X An easier way is to use the moment generating function.
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Random vectors Sums of random variables – convolution

Sums of random variables – moment generating function
The moment generating function can be used to compute moments of random variables.
Taking a sum of independent random variables corresponds to taking a product of their
generating functions:

For Z = X + Y we have

MZ(s) = E(esZ) = E(es(X+Y )) = E(esXesY )

= E(esX) E(esY ) =MX(s)MY (s).

Generally for a vector of independent random variables X1, . . . , Xn it holds that:

Z = X1 + · · ·+Xn =⇒ MZ(s) =MX1(s) · · ·MXn(s).

Example

Let X1, . . . , Xn be independent Bernoulli random variables with parameter p.
Then MXi(s) = (1− p)e0s + pe1s = 1− p+ pes, i = 1, . . . , n.

The random variable Z = X1 + · · ·+Xn is binomial with parameters n and p.
Its generating function is MZ(s) =

(
1− p+ pes

)n
.
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Sum of random variables – moment generating function

Example

Let X and Y be independent Poisson random variables with parameters λ1 and λ2
respectively. Let Z = X + Y .

Then
MZ(s) =MX(s)MY (s) = eλ1(e

s−1)eλ2(e
s−1) = e(λ1+λ2)(e

s−1).

Z is again a Poisson random variable, this time with the parameter λ1 + λ2:

P(Z = k) =
(λ1 + λ2)

k

k!
e−(λ1+λ2).

Compare with the difficulty of a direct computation of the convolution.
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Random vectors Sums of random variables – convolution

Summary
Joint distribution function of a random vector (X,Y ):

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

Discrete random variables X and Y Continuous random variables X and Y

Joint probabilities of values / density:
P(X = x ∩ Y = y) fX,Y (x, y)

Marginal probabilities / density of X :

P(X = x) =
∑
y

P(X = x ∩ Y = y) fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy

P(Y = y) =
∑
x

P(X = x ∩ Y = y) fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx

Independence of X and Y :
P(X = x ∩ Y = y) = P(X = x) P(Y = y) fX,Y (x, y) = fX(x)fY (y)

Covariance of X and Y :
cov(X,Y ) = E[(X − EX)(Y − EY )] = E[XY ]− EX EY

X and Y are called non-correlated whenever cov(X,Y ) = 0.
If X and Y are independent, then they are also non-correlated.
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