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Course organization Evaluation

Requirements for passing the course

• Tutorials:
I there will be 6 small tests, each for 6 points, the 5 best results will count – 30p
I homework assignment – 10p
I needed at least 20p from 40p possible.

• Exam:
I compulsory written exam max 60p – at least 30p needed
I points from exam and tutorials will be added
I optional theoretical exam – max 5p
I taking the theoretical exam is possible only after successfully passing the written exam.
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Course organization Bibliography

Bibliography

English books:

• D. P. Bertsekas & J. N. Tsitsiklis: Introduction to Probability, Athena Scientific MIT
(2008)

• G. R. Grimmett & D. R. Stirzaker: Probability and Random Processes, Oxford
University Press (2001)

• Ch. M. Grinstead & J. L. Snell: Introduction to Probability, AMS (1997) – (online)
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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, functions of random vectors,
independence of random variables, conditional distribution, conditional expected value,
covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Basic notions of probability Motivation

Probability and statistics

Goal: Achieve better understanding of the world in situations where randomness
is involved.

What do we understand as random? In real life we often encounter processes
(experiments, tests, natural phenomena, . . . ), for which we are not sure, how they
will end and which result will occur.

Exact prediction may not be possible because they are either too complex or we
do not have all necessary information available.

Usually we say that the result is unpredictable or random and is given by chance.
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Basic notions of probability Motivation

Probability theory vs mathematical statistics

Probability theory quantifies the unpredictability from a mathematical point of view.

• Outcomes of an experiment are assigned probability, giving the ideal proportion
of cases when the outcome will occur.

• Starting from simple models, complex problems may be solved.

• E.g., if we know that a coin is balanced, we can compute what is the probability of
getting 100× Heads out of 1000 tosses.

Mathematical statistics estimates the unpredictability using experimental data.

• Outcomes of a repeated experiment are used for estimation.

• Probabilistic models are suggested and verified.

• E.g., if we get only 100× Heads out of 1000 tosses, is it enough evidence to say
that a coin is not balanced?
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Basic notions of probability Motivation

Classical definition of probability

Classical definition of probability (Pierre-Simon Laplace 1749-1827)
• Finite number n of mutually different results (outcomes) of some experiment.

• We suppose that each outcome has the same probability of occurring.

• If exactly m of the outcomes satisfy realization of the event A (e.g., 6 rolled two times
in 4 rolls) then we define the probability of the event A as

P(A) =
m

n
=

number of favorable outcomes

number of all outcomes
.

Imperfection of the definition:

• What to do if the die is unbalanced?

• What to do if there are infinitely many possible results?
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Basic notions of probability Motivation

Classical definition of probability

Example – Toss with two coins

What is the probability that at least one head appears?
There are three outcomes with at least one heads. In total there are 4 possibilities. Thus:

P(at least one heads) =
3

4
.

Example – Rolling a six-sided dice

What is the probability of rolling an even number?
There are three even numbers (2,4,6). Totally there are six possibilities. Thus:

P(even) =
3

6
=

1

2
.

X Recall yourself the basic combinatorics!

BIE-PST, WS 2024/25 (FIT CTU) Probability and Statistics Lecture 1 8 / 32



Basic notions of probability Motivation

Recap of Combinatorics

Consider a set of n elements, where n ∈ N.

• The number of ways to order these elements (permutations) is n!

• The number of ways to select k elements without repetitions when the order is

important (variations) is
n!

(n− k)!
.

• The number of ways to select k elements with repetitions when the order is

important (variations with repetition) is nk.

• The number of ways to select k elements without repetitions when the order is not

important (combinations) is

(
n

k

)
.

• The number of ways to select k elements with repetitions when the order is not

important (combinantions with repetition) is

(
n+ k − 1

k

)
.
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Basic notions of probability Motivation

Geometric definition of probability

Geometric definition of probability
• The outcomes appear in some geometric object of a finite size (length, area, capacity)
S.

• Each outcome (point) has equal probability of occurring.

• If SB stands for the size of the set of outcomes satisfying the realization of event B,
then we define probability of the event B as

P(B) =
SB

S
=

size of the favorable outcomes set

size of the all outcomes set
.

Imperfection of the definition:

• How to introduce unequal distribution of probability?

• What to do with objects of infinite size?
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Basic notions of probability Motivation

Geometric definition of probability
Example – Romeo and Juliet

Romeo and Juliet have to meet at a secret place between midday and 1 p.m. Each of them
arrives at a random moment between midday and 1 p.m., but will wait for only 15 minutes. If
the partner does not arrive, the waiting person will leave.
What is the probability that the two people will actually meet?

0 1/4 Juliet 1

1

1/4

R
om

eo
B

The total area is 1. The coloured area corresponds to the successful meeting.

P(B) =
1− (3/4) · (3/4)

1
=

7

16
.
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Axiomatic definition of probability Sample space

Sample space

The two above definitions can solve many basic situations. However, we want to establish
a general theoretical background which can be easily extended.

For a proper and general definition of probability we need to correctly define events – sets
to which we will assign a probability.

Definition

The set of all possible outcomes of an experiment is called the sample space and is
denoted by Ω.

An arbitrary possible result ω ∈ Ω is called an outcome (elementary event).

The outcomes in Ω should always be mutually exclusive and exhaustive.
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Axiomatic definition of probability Sample space

Sample space

The first step always consists of:
a decision which possibilities we can observe and distinguish. This determines Ω.

Outcomes in Ω should always be
mutually exclusive and exhaustive.

Mutually exclusive: consider, e.g., outcomes: on a die we rolled 1 or 2, 1 or 3,. . . ? If 1 is
rolled, it is not clear which outcome it should be!

Exhaustive: each result of the experiment should be interpretable as an outcome.

For tossing a coin we actually might have Ω = {H,T,E}, where E denotes the result
when the coin stops at the edge.

The Sample space should be detailed enough to distinguish between different results but it
should ignore unimportant details.
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Axiomatic definition of probability Sample space

Possible sample spaces

Examples – sample spaces

• Toss with a coin: Ω = {H,T}
• Rolling a die: Ω = {1, 2, 3, 4, 5, 6}
• Toss with two coins: Ω = {H,T} × {H,T} ≡ {(H,H), (H,T), (T,H), (T,T)}
• Height of the missile above the earth surface: Ω = [0,+∞)

• Random text in email in UTF-32 encoding (constant length) of maximal length 1MB.
The maximal number of characters in the message is

1 MB

32 bits
=

220 bytes

4 bytes
= 218 = 262144.

Thus: Ω = {(x1, x2, . . . , x218) |xi ∈ N, 0 ≤ xi < 232, for all i}
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Axiomatic definition of probability Sample space

Possible sample spaces

Examples – sample spaces

• Series of n rolls with a die: Ω = {1, 2, 3, 4, 5, 6}n

• Series of n rolls with a die, where we are interested only in numbers of appearance of
each side:

Ω =

{
(k1, k2, k3, k4, k5, k6) ∈ Z6

+ :

6∑
l=1

kl = n

}
.

• Throwing darts into T ⊂ R2: Ω = T ∪ {∗}, where{∗} is a one point set
representing the outcome “the dart does not reach the target”.
If the target is divided into, say, 5 strips and we are interested only in which strip was
reached: Ω = {1, 2, 3, 4, 5, ∗}.

• Tossing a coin until first Tails appears: countable space Ω = {ω1, ω2, ω3, . . . },
where ωi means that the first i− 1 tosses are Heads and the i-th toss is Tail.

• Tossing a coin infinitely many times: countable space Ω = {H,T}N.
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Axiomatic definition of probability Sample space

Visualization of an outcome of a series of experiments

Two rolls of a die:
A coordinate description or a sketch in the form of a tree where each sequence of results
of particular rolls corresponds to a single leaf that is uniquely determined by the path from
the root to the leaf (in the illustration, only 3 leaves corresponding to 3 outcomes are
explicitly marked).
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Axiomatic definition of probability Random events

Events

An event A is some collection of outcomes – i.e., a subset A ⊂ Ω.

Example – Toss with two coins

Express the event “at least one Head appears” as a set.
The sample space is Ω = {(H,H), (H,T), (T,H), (T,T)}.
The event A denoting “at least one Head appears” is:

A = {(H,H), (H,T), (T,H)} ⊂ Ω.

Example – Rolling a die (6-sided)

Express the event “an even number appears” as a set.
Even numbers are 2,4, and 6. The event A denoting that “an even number appears” is

A = {2, 4, 6} ⊂ Ω.
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Axiomatic definition of probability Random events

Operations with events

It is possible to apply all classical set operations on events (events are sets).
In probability theory, a specific terminology is used for this operations:

• Ac complement of A – no outcome in A occurs

• A ∩B intersection of A and B – both A and B occur

• A ∪B union A and B – either A or B or both

• A \B difference A and B – A but not B

• A ⊂ B subset – if A then B

• ∅ empty set – impossible event

• Ω collection of objects – whole sample space

• ω member of Ω – outcome, elementary event
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Axiomatic definition of probability Random events

Structure of events

It is superfluous and sometimes impossible to demand all subsets of Ω to be events.

We want all above mentioned set operations to be meaningful even for countable repetitions
of any set of events. It can be shown that it is enough to take the events as elements of
some σ-algebra F :

Definition

A system F containing subsets of Ω is called a σ-algebra if the following conditions hold:

i) ∅ ∈ F – contains the impossible event

ii) if A1, A2, . . . ∈ F , then
⋃
i

Ai ∈ F – contains any countable union of events

iii) if A ∈ F , then Ac ∈ F – contains any complementary event

Clearly: Ω ∈ F – contains the sample space itself.
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Axiomatic definition of probability Random events

Structure of events

When specifying a probability model we always consider a couple (Ω,F), called the
measurable (observatory) space.

The choice of F informs us which events can be “observed” and have their probability
measured. The subsets of Ω which are not contained in F are not events and we cannot
measure their probability.

Examples – possible σ-algebras

• F = {∅,Ω} is a σ-algebra.

• For an arbitrary A ⊂ Ω, F = {∅, A,Ac,Ω} is a σ-algebra.

• F = 2Ω – all subsets create a σ-algebra;

• Borel σ-algebra on R – smallest σ algebra containing all open intervals.
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Axiomatic definition of probability Probability measure

Probability measure

Definition

A probability measure P on (Ω,F) is a function P : F → R satisfying:

i) non-negativity: for all A ∈ F it holds that P(A) ≥ 0

ii) normalization: P(Ω) = 1,

iii) σ−additivity: if A1, A2, . . . ∈ F is a collection of disjoint events (i.e., if
Ai ∩Aj = ∅ for ∀ i, j with i 6= j), then

P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P(Ai).

The triplet (Ω,F ,P) is called a probability space.

The probability can also be given as a percentage between 0% and 100%.

The choice of P determines what we understand as “random”. Vague assignment can
lead to “paradoxes”.
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Axiomatic definition of probability Probability measure

Bertrand paradox

Example – Bertrand paradox (Joseph Bertrand, 1889)

What is the probability that a randomly placed chord χ on the unit
circle will be longer than an the side ` of an equilateral triangle in the
unit circle? I.e., what is P(A), where A = {|χ| > `}.

It depends on what we understand as “random”:

Option 1: We choose randomly uniformly the centre of χ:

Ω1 = {x ∈ R2 : |x| < 1}, A1 = {x ∈ Ω1 : |x| < 1/2}, P1(A1) =
π(1/2)2

π12
=

1

4
.

Option 2: We choose randomly uniformly the angle and the direction (irrelevant thanks to
the rotation symmetry) of chord χ observed from the circle centre:

Ω2 = (0, π], A2 = (2π/3, π], P2(A2) =
π/3

π
=

1

3
.

Option 3: We choose randomly uniformly the distance of the chord χ from the circle
centre and (again irrelevant) the direction:

Ω3 = [0, 1), A3 = [0, 1/2), P3(A3) =
1

2
.
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Axiomatic definition of probability Probability measure

Intermezzo

How to establish F?
• Finite or countable Ω:

I We can take F as all subsets of Ω. (F = 2Ω, i.e., power set of Ω)
I Events are arbitrary subsets of Ω.

• For an uncountable Ω:
I It is not possible to assign a positive probability to each A ⊂ Ω, because then we would

have P(Ω) =∞.
I If Ω ⊂ Rd is some subinterval of Rd (e.g., [0,+∞)) we can take F as the Borel
σ-algebra on Ω.

I Except for an at most a countable subset, each singular point must have a zero probability.
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Axiomatic definition of probability Probability measure

Definition of probability for “classical” settings

Definition of probability for uniform distribution of finite number of outcomes:

If Ω is finite with equally likely realizations:

P(A) =
#A

#Ω
=

number of favorable outcomes

number of all outcomes
.

Geometric definition of probability:

Let Ω be any arbitrary space with a measure µ, i.e., we can measure size (area, capacity,
etc.), and 0 < µ(Ω) < +∞. For any event A ⊂ Ω we define:

P(A) =
µ(A)

µ(Ω)
=

size of A

size of Ω
.

It can be easily verified that both approaches satisfy the formal definition of probability as
stated above.
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Axiomatic definition of probability Properties of probability

Properties of probability

Theorem

Let A and B be events on a probability space with measure P. Then it holds that:

i) P(∅) = 0

ii) If A and B are disjoint, then P(A ∪B) = P(A) + P(B)

iii) P(Ac) = 1− P(A)

iv) P(A ∪B) = P(A) + P(B)− P(A ∩B)

v) if A ⊂ B, then P(A) ≤ P(B) – monotonicity

Consequences:

• 0 ≤ P(A) ≤ 1 – from v)

• P(A ∪B) ≤ P(A) + P(B) – from iv)
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Axiomatic definition of probability Properties of probability

Properties of probability

Proof

i) We create a sequence of disjoint events: Ai = ∅ for all i ∈ N. From property iii) of probability measure
we have

P(∅) = P

(
+∞⋃
i=1

∅
)

=

+∞∑
i=1

P(∅) ,

it can be fulfilled only for P(∅) = 0.

ii) We create sequence of disjoint events: A1 = A, A2 = B and Ai = ∅ for i > 2. From properties i)
and iii) of probability measure we have

P(A ∪B) = P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P(Ai) = P(A) + P(B).

iii) 1 = P(Ω) = P(A ∪Ac) = P(A) + P(Ac). Thus P(Ac) = 1− P(A).
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Axiomatic definition of probability Properties of probability

Properties of probability

Proof

iv) The set A ∪B can be written as the disjoint union A ∪ (B \A).
From ii) it follows that P(A ∪B) = P(A) + P(B \A).
Since P(B) = P(B \A) + P(A ∩B),

we finally have:
P(A ∪B) = P(A) + P(B)− P(A ∩B).

A
B

v) If A ⊂ B, then A ∩B = A.

P(B) = P(B \A) + P(A ∩B) = P(B \A) + P(A) ≥ P(A)

B
A
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Axiomatic definition of probability Properties of probability

Properties of probability

Theorem

Let A1, A2, . . . be events on a probability space with measure P. Then it holds that:

i) σ−sub additivity:

P

(
+∞⋃
i=1

Ai

)
≤

+∞∑
i=1

P(Ai).

ii) Inclusion – exclusion principle:

P

(
n⋃

i=1

Ai

)
=

∑
J⊂{1,2,...,n}

J 6=∅

(−1)|J|−1 P

(⋂
i∈J

Ai

)
.

For 3 events:
P(A∪B∪C) = P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)
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Axiomatic definition of probability Properties of probability

Properties of probability
Proof

i) The set
+∞⋃
i=1

Ai can be written as a disjoint union
+∞⋃
i=1

(
Ai \

i−1⋃
k=1

Ak

)
. From property iii) of probability

measure we have

P

(
+∞⋃
i=1

Ai

)
= P

(
+∞⋃
i=1

(
Ai \

i−1⋃
k=1

Ak

))
=

+∞∑
i=1

P

(
Ai \

i−1⋃
k=1

Ak

)
≤

+∞∑
i=1

P(Ai).

ii) We prove the statement for 3 events A, B, C.

The set A ∪B ∪ C can be written as a disjoint union A ∪ ((B ∪ C) \A).
From point ii) of the previous theorem it follows that

P(A ∪B ∪ C) = P(A) + P((B ∩ C) \A).

Since P(B ∪ C) = P((B ∪ C) \A) + P(A ∩ (B ∪ C)), we have:

P(A ∪B ∪ C) = P(A) + P(B ∪ C)− P((A ∩B) ∪ (A ∩ C)).

and again, applying point ii) of the previous theorem to P(B ∪ C) and to P((A ∩B) ∪ (A ∩ C))

A
B

C

finally we have:
P(A∪B∪C) = P(A) + P(B) + P(C)−P(A∩B)−P(A∩C)−P(B∩C) + P(A∩B∩C).
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Axiomatic definition of probability Continuity of probability

Continuity of probability

Theorem

Let A1, A2, . . . be a sequence of events increasing in the sense of inclusion, i.e., such
that A1 ⊂ A2 ⊂ A3 ⊂ . . .. If we denote

A =

+∞⋃
i=1

Ai,

then P(A) = lim
n→+∞

P(An).

Similarly, let B1, B2, . . . be a sequence of events decreasing in the sense of inclusion,
i.e., such that B1 ⊃ B2 ⊃ B3 ⊃ · · · . If we denote

B =

+∞⋂
i=1

Bi,

then P(B) = lim
n→+∞

P(Bn).
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Axiomatic definition of probability Continuity of probability

Continuity of probability
Proof

We prove the first part of the statement:

The set A can be written as the disjoint union A =

+∞⋃
i=1

(Ai \Ai−1)
Then it holds:

P(A) = P

(
+∞⋃
i=1

(Ai \Ai−1)

)
=

+∞∑
i=1

P(Ai \Ai−1) = lim
n→∞

n∑
i=1

P(Ai \Ai−1)

= lim
n→∞

P(An)

We prove the second part of the statement by means of the De Morgan rules and the proof of the first part:

P(B) = P

(
+∞⋂
i=1

Bi

)
= P

((
+∞⋃
i=1

Bc
i

)c)
= 1− P

(
+∞⋃
i=1

Bc
i

)

The sets BC
i satisfy the assumptions of the first part of the Theorem and thus:

P(B) = 1− lim
n→∞

P(Bc
n) = lim

n→∞
(1− P(Bc

n)) = lim
n→∞

P(Bn).
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Recap

Recap

A random experiment is represented using a probability space (Ω,F ,P), where

• Ω is the set of possible results;

• F is a system of subsets of Ω;

• elements A ∈ F are called random events;

• the probability measure P is a function which assigns to the random events a real
value from 0 to 1, representing the ideal proportion of cases in which the events occur.

If there is only a finite number of possible results with equal probabilities, then

P(A) =
|A|
|Ω|

.
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