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4.1 Introduction

4.1.1 Sets

In this introduction we recall the basic notions like set definitions, operations etc. We assume that all
sets are subsets of one common universe (mostly denoted by U).

Definition 4.1. Let A,B be two subsets of a universe U ; let the empty set be denoted by ∅ or by {}.
Then the property ”x is an element of A” is denoted by x ∈ A, and the property ”x is not an element
of A” is denoted either by x /∈ A or ¬(x ∈ A).

• Set inclusion (subset, ⊆): (A ⊆ B) ⇔ (∀x ∈ U : x ∈ A⇒ x ∈ B).

• Strict set inclusion (proper subset, ⊂, or $): (A $ B) ⇔ (A ⊆ B ∧A 6= B).

• Set equality: (A = B) ⇔ (A ⊆ B ∧B ⊆ A) ⇔ (∀x ∈ U : x ∈ A⇔x ∈ B).
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Figure 4.1: Set inclusion in the universe U .

• Intersection of sets A and B: A ∩B = {x ∈ U : x ∈ A ∧ x ∈ B}.

• Union of sets A and B: A ∪B = {x ∈ U : x ∈ A ∨ x ∈ B}.

• Difference of sets A and B: A \B = {x ∈ U : x ∈ A ∧ ¬(x ∈ B)}.

• Complement of a set A (in universe U): A = U \A = {x ∈ U : ¬(x ∈ A)}.
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Figure 4.2: Venn diagrams for basic set operations in the universe U .

• Cartesian product of sets A and B (is a subset of the universe U × U , but not of U):
A×B = {(a, b) ∈ U × U : a ∈ A ∧ b ∈ B}.

• Power set P(A): the set containing all subsets of A, including the empty set ∅ and A itself, i.e.,
P(A) = {X ⊆ U : X ⊆ A}.
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Remark 4.2. Recall that the operations of intersection, union and Cartesian product can be extended
to more than two sets. If A1, A2, A3, . . . are subsets of the same universe then

n⋂
i=1

Ai = A1 ∩ · · · ∩An = {x ∈ U : ∀ i ∈ {1, 2, . . . , n}, x ∈ Ai}

and similarly for
∞⋂

i=1
Ai,

n⋃
i=1

Ai,
∞⋃

i=1
Ai.

Furthermore, the Cartesian product of one set is denoted as An =
n-times︷ ︸︸ ︷

A× · · · ×A.

Remark 4.3. Note that the Cartesian product involving the empty set is always the empty
set which can be seen from the definition:

X × ∅ = {(u, v) ∈ U × U : u ∈ X ∧ v ∈ ∅} = ∅ .

Remark 4.4. A common mistake is a random swapping of symbols ”is an element of” ∈ with ”is a
subset of” ⊆, especially when power sets are concerned. The two statements below are equivalent:

Y ⊆ X ⇔ Y ∈ P(X) ,

but after swapping ∈ with ⊆ we obtain an incorrect notation! Furthermore if we assumed that
X,Y ⊆ U then the statements do not make sense at all (Y ∈ X?? Y ⊆ P (X)??).

We will not discuss here all the properties of the above mentioned operations (see lectures). We
will focus on verification of set inclusion and set equality. We can either use known set identities or
apply one of the following two methods:

1. Universal – using logical formulas: To prove, e.g,. that A ⊆ B, we have to prove that every
x in the universe U satisfies

x ∈ A⇒ x ∈ B.

Similarly, we can prove equalities of sets; only here we have equivalences instead of implications.
If A or B are composed from other sets, then we systematically (from outer operations to inner
ones) replace the respective set operations by relevant logical connectives. To keep correctness,
we strongly recommend not to use the short version ”A” of the formula ”x ∈ A”.
For instance, let us prove that A ∪B = A ∩B:

∀x ∈ U : x ∈ A ∪B ��¬(x ∈ A ∪B)
��¬(x ∈ A ∨ x ∈ B)
��¬(x ∈ A) ∧ ¬(x ∈ B)
��x ∈ A ∧ x ∈ B
��x ∈ (A ∩B).

Using the logical formulas, tautology > or contradiction ⊥ can appear, whose set equivalents
are

x ∈ U ��> and x ∈ ∅��⊥ .

2. Not universal – Venn diagrams: Another option is to draw Venn diagrams. Every set (let say
A) divides the universe into two parts – A and A – with the property A ∪ A = U . Extending
this to more sets we obtain a divisions of the universe into disjoint areas characterized by ”all
the elements from this part belong to the first set, but do not belong to the second set, etc.”. To
verify inclusion and equality we simply shade the corresponding parts and compare.
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For two sets A,B the universe U can be split into four disjoint areas: (A ∩ B), (A ∩ B), (A ∩
B), (A ∩ B). They are denoted as 1, 2, 3, 4 in the left part of Figure 4.3. Similarly we can
construct the diagram for three sets. For more sets n (n ≥ 5), the picture is less illustrative
due to the big amount of areas, since there are 2n disjoint areas in a diagram! (see the Venn
diagram for n = 4 on the right of Figure 4.3). Moreover, we cannot use Venn diagrams to verify
identities in universes like, e.g., U ×U . We can only use the projection of Venn diagram into the
segment (as we will do, e.g., in Exercise 4.1).
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Figure 4.3: Venn diagrams for two, three and four sets in the universe U .

4.1.2 Mappings

We will start this section by recalling some selected definitions related to mappings. In a later chapter
we will introduce (and practice sufficiently) binary relations. It is not so hard to see that mappings
are a special case of binary relations that satisfy an extra condition.

Definition 4.5. Let A and B be two arbitrary sets. A mapping f from A to B is a subset f ⊆ A×B
such that for every a ∈ A there is at most one b ∈ B with (a, b) ∈ f . We write f : A → B and,
instead of (a, b) ∈ f , we write f(a) = b.

• If f(a) = b for some a ∈ A, b ∈ B, then a is a preimage of b and b is an image of a in the
mapping f . Every element of A has at most one image (one or none), but every element of B
can have any number of preimages in f .

• The domain of a mapping f is the set

D(f) = {a ∈ A : ∃ b ∈ B, f(a) = b} ⊆ A.

• The image (or range) of a mapping f is the set

Im(f) = {b ∈ B : ∃ a ∈ A, f(a) = b} ⊆ B.

The set B is also called the codomain of the function f .

• If not mentioned otherwise, all the mappings in this section will be total, i.e., satisfying D(f) = A.
This means that every element of set A has exactly one image.

• A mapping f : A→ B is injective if ∀x, y ∈ A : (x 6= y ⇒ f(x) 6= f(y)).

• A mapping f : A→ B is surjective if ∀ b ∈ B ∃ a ∈ A : f(a) = b, i.e., if Im(f) = B.

• A mapping f : A→ B is bijective if it is both surjective and injective.
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• Consider two mappings f : B → C and g : A→ B. Then the composite mapping f◦g : A→ C
is defined as (f ◦ g)(a) = f(g(a)) for every a ∈ A.

• We denote by idM the identity mapping on the set M (i.e., the map such that ∀x ∈
M, idM (x) = x). Let f : B → A. Then a mapping g : A → B is an inverse mapping to
f , if f ◦ g = idA and g ◦ f = idB.

Remark 4.6. In some books, composition of mappings is defined as (f ◦ g)(x) = g(f(x)). Don’t be
confused, just read the definition of the mapping first. The properties presented here can be applied
also to this other notation, only the respective sets must be switched carefully.

Finding the domain and the image of a mapping is usually quite simple. Before we present
the exercises for this section we will focus a bit on methods of verifying surjectivity, injectivity and
bijectivity.

1. Injectivity: By definition, a mapping f : A→ B is injective if

∀x, y ∈ A : x 6= y ⇒ f(x) 6= f(y).

However, it is much more convenient to work with the equivalent formula

∀x, y ∈ A : f(x) = f(y)⇒ x = y

(recall the logical equivalence (A⇒ B)��(¬B ⇒ ¬A) of propositional logic).
Let us verify, for example, that the mapping f : Z → Z defined as f(n) = n3 + n is injective.
(This statement is really necessary to verify, the answer ”n3 is injective, n is injective, thus
their sum is also injective” is not sufficient. You can see it on the example of the mapping
g(n) = n3 − n which is not injective!)
Consider arbitrary m,n ∈ Z and the implication (f(m) = f(n) ⇒ m = n). In the next steps
we use equivalence (although we need implications only for injectivity), because we will use
equivalent steps only:

∀m,n ∈ Z : f(m) = f(n)��m3 +m = n3 + n

��m3 − n3 +m− n = 0
(1)
��(m− n)(m2 +mn+ n2) +m− n = 0
��(m− n)(m2 +mn+ n2 + 1) = 0
��(m− n = 0) ∨ (m2 +mn+ n2 + 1 = 0)

(2)
��m = n ,

where we used the formula for division of the sum/difference of third powers on line (1), and the
fact that equation m2 + mn + n2 + 1 = 0 has no real solution on line (2). This equation can
be solved as a quadratic equation with variable m (and free variable n), whose discriminant is
n2 − 4(n2 + 1) < 0.

As always, if we want to contradict some statement, it is sufficient to find a counterexample.
Therefore, if we find example of an element/some elements which does/do not satisfy the con-
sidered property, the proof is done.
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If we are not sure if injectivity holds or not, a good method is to try to prove it (rather than dis-
prove it). From this process we can usually obtain some ideas about a possible counterexample.
Let us illustrate it on the mapping f : Z→ Z defined as f(n) = n2 + n. Let m,n ∈ Z, then:

f(m) = f(n)��m2 +m = n2 + n

��m2 − n2 +m− n = 0
��(m− n)(m+ n) + (m− n) = 0
��(m− n)(m+ n+ 1) = 0
��(m = n) ∨ (m = −n− 1)
6 ��m = n ,

as we can see, f is not injective because f(m) = f(n) is true not only for m = n, but also for
any pair of m,n satisfying m = −n − 1. Therefore we have not only one, but countably many
counterexamples for every n ∈ Z: f(n) = f(−n − 1) and as we can see, n 6= −n − 1 (because
−1

2 /∈ Z).
It is also sufficient to present one counterexample, such as

f(2) = (22 + 2) = 6 = ((−3)2 − 3) = f(−3).

2. Surjectivity: A mapping f : A→ B is surjective if every element in B has at least one preimage
in f . Our goal is to verify this. More formally:

∀ b ∈ B ∃ a ∈ A : f(a) = b.

To do so we have to present an explicit formula for a preimage of any element from B.
To disprove surjectivity, again, we have to present some counterexample, i.e., an element in B
which has no preimage. If we cannot see one then we may try to prove surjectivity and obtain
some candidates for a counterexample in the process. Let us present the idea on an example
using the mapping f : R2 → R2 defined as f(m,n) = (m,m+ 2n). We want to verify that

∀ (x, y) ∈ R2 ∃ (m,n) ∈ R2 : f(m,n) = (x, y) .

Consider an arbitrary pair (x, y) in B. We want to find a pair which maps to (x, y) in f , denote
it, e.g., (m,n). So we will plug m,n, x, y into the definition of f :

f(m,n) = (x, y)��(x, y) = (m,m+ 2n)
��x = m ∧ y = m+ 2n
��m = x ∧ 2n = y −m
��m = x ∧ 2n = y − x

��m = x ∧ n = y − x
2

��(m,n) = (x, y−x
2 ) ∈ R2 ,

i.e., the mapping f is surjective, because for every (x, y) ∈ R2 we have

(x, y) = f(x, y−x
2︸ ︷︷ ︸

∈R2

) .

Consider now a mappingg : Z2 → Z2 defined as g(m,n) = (m,m + 2n) (defined similarly to f
but on different sets). The verification of surjectivity can follow the steps of f . However, the
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interpretation of the result is different, because the preimage of (m,n) ∈ Z2, the pair (m, n−m
2 ),

does not always lie in Z2 (if n − m is an odd number). Therefore we can describe all the
counterexamples in this way: ”No pair (m,n) ∈ Z2 for which n−m is odd has a preimage in g”.
Therefore, g is not surjective.

Remark 4.7. Students are often confused by the names (injective and surjective). Some help could
be that both names come from French/Latin. While injective means something in the way ”inserting
inside”, which in a certain sense describes an injective mapping (every element of A is mapped to
some of B and no two are mapped to the same one), the prefix ”sur-” in the word surjective means
”on” in French (images of elements from A are mapped onto the whole set B; that’s why we also call
it ”onto”).

4.1.3 Cardinality of sets

The cardinality of a set A, denoted by |A|, is defined as

• the number of elements of A, if A is finite;

• infinite, if A is infinite (there are differnt ”kind of infinites”).

When considering two sets A,B we can compare their cardinality as follows:

• |A| = |B| if there exists a bijection between A and B;

• |A| ≤ |B| if there exists an injection from A to B;

• |A| < |B| if |A| ≤ |B and |A| 6= |B|.

In particular, when we have an infinite set A, we say that A is countable if |A| = |N|, and
uncountable if it is not countable.

Theorem 4.8. Let A,B,C be three (finite or infinite) sets. Then

1) |A| = |A| and |A| ≤ |A|;

2) if A ⊆ B, then |A| ≤ |B|;

3) if |A| ≤ |B| and |B| ≤ |C|, then |A| ≤ |C|;

4) if |A| = |B| and |B| = |C|, then |A| = |C|;

5) if |A| ≤ |B| and |B| ≤ |A|, then |A| = |B|.

When dealing with finite sets we can be even more precise.

Theorem 4.9. Every subset B of a finite set A is finite too.
Moreover, in this case we have |B| ≤ |A|, with strict inequality |B| < |A| when B $ A.

Given two finite sets A,B, we have that A ∪B and A×B are finite as well.
Moreover, in this case we have |A ∪ B| ≤ |A| + |B|, with equality |A ∪ B| = |A| + |B| when the two
sets are disjoint, and |A×B| = |A| · |B|.

References:

1. BI-ZDM at FIT:
https://edux.fit.cvut.cz/courses/BI-ZDM/

2. Selftests and Exercises in Marast at FIT:
https://marast.fit.cvut.cz/
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4.2 Exercises

4.2.1 Sets

Exercise 4.1. Consider the sets X,Y, Z, subsets of the universe U , and their Cartesian products,
subsets of U × U . Decide whether the following statements are true or not. Prove it, or find a
counterexample.

a) X ∩ (Y \ Z) = (X ∩ Y ) \ (X ∩ Z),

b) X \ (Y ∪ Z) = (X \ Y ) ∪ Z,

c) X \ Y = Y \X,

d) X ∩ Y ⊆ X,

e) (X ∩ Y ) ∪ (Y \X) = X,

f) (X \ Y ) ∩ (Y \X) = ∅,

g) X × (Y ∪ Z) = (X × Y ) ∪ (X × Z),

h) X × (Y \ Z) = (X × Y ) \ (X × Z),

i) (X × Y ) = X × Y ,

j) X \ (Y × Z) = (X \ Y )× (X \ Z),

k) X ∩ (Y × Z) = (X ∩ Y )× (X ∩ Z),

l) X × ∅ = ∅.

Exercise 4.2. Let A,B,C be some sets in universe U . Decide if the statements below are true or
false. Prove or find a counterexample.

a) A \B ⊆ A

b) A \B = A ∩B

c) A ∩ (B \A) = ∅

d) (A \B) ∩ (B \ C) = ∅

e) (A \B) \ C ⊆ A \ C

f) A ∪ (B \A) = A ∪B

g) (A ∪B) \ C = (A \ C) ∪ (B \ C)

h) A \ (B ∪ C) = (A \B) ∩ (A \ C)

i) A \ (B ∩ C) = (A \B) ∪ (A \ C)

j) A ∩ (B \ C) = (A ∩B) \ (A ∩ C)

k) A ⊆ B if and only if B ⊆ A

l) A ⊆ B if and only if A ∩B = A

m) A ⊆ B if and only if A ∪B = B

4.2.2 Mappings

Exercise 4.3. Find the domain D(f) and the image Im(f) of the following mappings.
a) The mapping f which to every non-negative integer assigns the last digit of its decimal notation.

b) The mapping f which assigns the successor to every non-negative integer.

c) The mapping f which to every binary string assigns its length.

d) The mapping f which to every binary string assigns the number of factors ’01’ included in the
string.

e) The mapping f which to every binary string assigns the number of occurrences of 1 minus the
number of occurrences of 0 within the string.

f) The mapping f which to every integer k assigns the least square greater than or equal to k.

g) The mapping f which to every pair of real numbers assigns the bigger one of the two.

Exercise 4.4. Decide whether the following mappings are surjective and/or injective. Prove your
answer.
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a) f(n) = n+ 1, f : Z→ Z.

b) f(n) = n+ 1, f : N0 → N0.

c) f(n) = 13n, f : Z→ Z.

d) f(n) = n3, f : Z→ Z.

e) f(x) = x3, f : R→ R.

f) f(n) = n2 + 1, f : Z→ Z.

g) f(n) = (−1)n · n, f : N0 → Z.

h) f(n) = (n+ 1, 2n), f : N0 → N2
0.

i) f(m,n) = m− n, f : N0 × N→ Z.

Exercise 4.5. Prove or disprove the statements below.

a) If f ◦ g is surjective, then f must be surjective. Must g be surjective as well?

b) If f ◦ g is injective, then g must be injective. Must f be injective as well?

4.2.3 Cardinality of sets

Exercise 4.6. Let us consider the three sets

A = {1, 2, 3}, B = {3, 4, 5, 6} and C = {2, 4, 6}.

Compute the following cardinalities: |A|, |B|, |C|, |A∩B|, |A∩C|, |B ∩C|, |A∪B|, |A∪C|,
|B ∪ C|, |A ∩B ∩ C|, |A ∪B ∪ C|, |A×B|, |A× C|, |B × C|, |A×B × C|, P(A).

Exercise 4.7. Let A,B,C be three sets with cardinality respectively |A| = 3, |B| = 4, |C| = 5.
Suppose that |A∩B| = 1, |B ∩C| = 2 and |A∩C| = 3 and that only one element belongs to all three
sets at the same time. What is the cardinality of the set A ∪B ∪ C?

Exercise 4.8. Let A,B,C be three finite sets such that

|B| = 4, |C| = 5, |A ∩B| = 3, |A ∩ C| = 2, |B ∩ C| = 2, |A ∩B ∩ C| = 2 and |A ∪B ∪ C| = 9.

What is the cardinality of A?
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4.3 More exercises

Exercise 4.9. Consider the following sets of non-negative integers defined for every index i ∈ N as
follows:

Mi = {1, 2, . . . , i}, Ni = {i, i+ 1, i+ 2, . . . } .

Determine what the following sets look like:

a)
n⋃

i=1
Mi,

∞⋃
i=1

Mi,

b)
n⋂

i=1
Mi,

∞⋂
i=1

Mi,

c)
n⋃

i=1
Ni,

∞⋃
i=1

Ni,

d)
n⋂

i=1
Ni,

∞⋂
i=1

Ni.

Compute the cardinality of all sets above.

Exercise 4.10. Decide whether the following mappings are surjective and/or injective. Prove or
provide a counterexample.

a) f(m,n) = (m,m · n), f : Z2 → Z2;

b) f(x, y) = (x+ y, x− y), f : R2 → R2;

c) f(x, y) = (x, x · y), f : R2 → R2;

d) f(x, y) = (x3, y3), f : R2 → R2;

e) f(x, y) = (x
y ,

y
x), f : (R+)2 → (R+)2;

f) f(m,n) = (m
n ,

n
m), f : N2 → R2;

g) f(m,n) = (m+ 2n, n− 2m), f : Z2 → Z2;

h) f(m,n) = (m− n, n2,m+ n2), f : Z2 → Z3;

i) f(m,n) = (m− n,m2,m2 +m), f : Z2 → Z3;

j) f(m,n) = (m− n,m+ n,m · n), f : Z2 → Z3;

k) f(x, y, z) = (2x− z, y2, x+ z), f : R3 → R3;

l) f(x, y, z) = (2x− z, y3, x+ z), f : R3 → R3;

m) f(m,n, p) = (m+ n, n+ p,m+ p), f : Z3 → Z3;

n) f(m,n, p) = (m− n, n− p,m− p), f : Z3 → Z3;

o) f(m,n, p) = (m+ 2n, n− p, n+ p), f : Z3 → Z3;

p) f(x, y, z) = (√x · y,
√
x · z,√y · z), f : (R+)3 → (R+)3;
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q) f(x, y, z) = (x+ y + z, x+ z), f : R3 → R2.

Exercise 4.11 (*). Denote by A∗ the set of all finite words over alphabet A (including empty word
ε). Furthermore denote by An the set of all words whose length is exactly n (n ≥ 0). Decide whether
the following mappings are surjective and/or injective. Prove or provide a counterexample.

Note that we strictly distinguish multiplication (a · b, always with a dot) from string concatenation
(ab, always without a dot).

a) f(a1a2 · · · am) = m f : {0,1}∗ → N0.

b) f(a1a2 · · · am) = amam−1 · · · a1, f : {0,1}∗ → {0,1}∗.

c) f(a1a2 · · · am) = (1− a1)(1− a2) · · · (1− am), f : {0,1}∗ → {0,1}∗.

d) f(a1a2 · · · an) = a1 + a2 + · · ·+ an, f : {0,1}n → N0, n ≥ 1.

e) f(a1a2 · · · an) = a1 + 2 · a2 + 22 · a3 + · · ·+ 2n−1 · an, f : {0,1}n → N0, n ≥ 1.

f) f(a1a2 · · · an) = a1 + 2 · a2 + 22 · a3 + · · ·+ 2n−1 · an, f : {0,1}∗ → N0.

g) f(a1a2 · · · an) = a1 + 2 · a2 + 22 · a3 + · · ·+ 2n−1 · an, f : {0,1,2}n → N0, n ≥ 1.

h) f(a1a2 · · · am) = a1 + 2 · a2 + 22 · a3 + · · ·+ 2m−1 · am, f : {0,1,2}∗ → N0.

i) f(a1a2 · · · am) = a2a3 · · · ama1, f : {0,1}∗ → {0,1}∗.

j) f(a1a2 · · · am) = a2a3 · · · am0, f : {0,1}∗ → {0,1}∗.

k) f(a1a2 · · · am) = a1(a1 · a2)(a2 · a3) · · · (am−1 · am), f : {0,1}∗ → {0,1}∗.

Exercise 4.12. Prove points 1) to 4) of Theorem 4.8

Exercise 4.13. Let 2Z be the set of even numbers. Prove that Z and 2Z have the same cardinality.
What is the cardinality of Z× 2Z? And the cardinality of {π} × 2Z?
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