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A Swiss mathematician and seven Prussian bridges
In 1736 the mayor of the Prussian city of Königsberg asked the mathematician
Leonard Euler whether it was possible to take a walk around the city crossing
each of the seven bridges exactly once.

Euler’s intuition was to describe the problem by means of a diagram con-
sisting of a set of points and lines instead of regions and bridges.

(a) Königsberg in Euler’s time.
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(b) Diagram of Königsberg.
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History passed on Königsberg, now known as Kaliningrad (or Královec), and
some of the bridges fell down.

(a) Kaliningrad nowadays.
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(b) Diagram of Kaliningrad.

Was the walk possible before? Is it now?

1 Basic definitions
Let V be a set and r ∈ N0. By

(
V
r

)
we denote the set of all r-element subsets

of V . Note that #
(
V
r

)
=
(
#V
r

)
, where #A is the cardinality of A.

Example 1 If V = {a, b, c}, then(
V

0

)
= {∅},

(
V

1

)
= {{a}, {b}, {c}},

(
V

2

)
= {{a, b}, {a, c}, {b, c}},

(
V

3

)
= {V }

A graph is a pair G = (V,E), where V is a set of vertices and E is a multiset
of edges of the form e = {u, v}, with u, v ∈ V . The numbers #V and #E are
respectively the order and the size of G. A graph G is finite if both #V and
#E are finite.

The usual way to illustrate a graph is to draw a dot for each v ∈ V (or a
circle with the label v), and to join u, v ∈ V by a line if e = {u, v} ∈ E.

Example 2 The order of the graph G = ({a, b, c}, {{a, b}, {b, c}}) is 3, while
its size is 2 (see left of Figure 3).

The order of the graph G′ = ({u, v, w, x, y}, {{u, w}, {v, x}, {v, x}, {y, y}}) is
5, while its size is 4 (see right of Figure 3).
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Figure 3: Two graphs.

Graphs can be represented graphically, but there is not a unique way to do
so: relative position of points, shape/length of lines, etc. We are only interested
in the incidence relation between vertices and edges.

Two vertices connected by an edge are said to be adjacent. They are both
incident with the edge. Two distinct adjacent vertices are neighbours. Given a
vertex v ∈ V we define its neighbourhood in G

NG (v) = {u | u neighbour of v} = {u | {u, v} ∈ E}

An edge of the form {u, u} is called a loop. Two edges connecting the same
vertices are called multiedges (or parallel edges) A graph G = (V,E) is simple
if it does not contain any loop or multiedge, i.e., if E ⊆

(
V
2

)
.

The graph (∅, ∅) is called the null graph.
We will mostly consider finite non-empty simple graphs.

Example 3 How many simple graphs are there on n vertices? 2(n
2).

• The only graph of 0 vertices is the null graph: 2(0
2) = 20 = 1.

• If V = {a}, there is only one possible graph: 2(1
2) = 20 = 1

a

• If V = {a, b}, there are two possible graphs: 2(2
2) = 21 = 2

a b , a b

• If V = {a, b, c}, there are eight possible graphs: 2(3
2) = 23 = 8
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2 Some important graphs
Any graph of the form ({v}, ∅), i.e., with only one edge and no edges, is called
a trivial graph. Every other graph is called non-trivial.

A simple graph of the form Kn =
(
V,E =

(
V
2

))
, with #V = n, is called a

complete graph (see Figure 4).

a , a b ,
a b

c
,

a b

cd
, a

b
c

d e

Figure 4: Complete graphs K1,K2,K3,K4 and K5.

A graph G = (V,E) is bipartite if the set of vertices is a disjoint union
V = X t Y and every edge e ∈ E is of the form e = {x, y} with x ∈ X and
y ∈ Y . When , #X = m and #Y = n, and we are connecting every edge of
X with every edge of Y , we call such a graph complete bipartite and denote it
Kn,m (see Figure 5). A graph of the form K1,k is called k-star.

x1

x2

y1

y2

y3
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Figure 5: Three bipartite graphs.

3 Graph operations
If we have two graphs G = (V,E) and H = (U,F ) we can combine them in
several ways to obtain new graphs.

Their union is defined as G ∪H = (V ∪ U,E ∪ F ). Note thati f V ∩ U = ∅
we just obtain a "juxtaposition" of the two graphs.

Their intersection is defined as G ∩H = (V ∩ U,E ∩ F ).

Example 4 Let us consider G = ({a, b, c, d}, {{a, b}, {a, d}, {b, c}, {c, d}}) and
H = ({a, b, c, e}, {{a, b}, {a, c}, {b, e}, {c, e}}) (see Figure 6). Then

G ∪H = ({a, b, c, d, e}, {{a, b}, {a, c}, {a, d}, {b, c}, {b, e}, {c, d}, {c, e}})

and
G ∩H = ({a, b, c}, {{a, b}}) .
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Figure 6: Union and intersection of two graphs.

The cartesian product G �H of the two graphs is defined as the graph having
set of vertices V × U and edges defined by

{(a, u), (b, v)} edge of G �H ⇔ (({a, b} ∈ E ∧ u = v) ∨ (a = b ∧ {u, v} ∈ F )) .

Example 5 LetG = ({a, b, c}, {{a, b}, {a, c}, {b, c}}) andH = ({1, 2}, {{1, 2}}).
The cartesian product G �H is represented in Figure 7.

G

a b

c

H

1 2
G �H

a,1 b,1

c,1

a,2 b,2

c,2

Figure 7: Cartesian product of two graphs.

If two graphs G = (V,E1) and H = (V,E2) are defined over the same set of
vertices, we can define their symmetric difference G 4H as

G 4H = (V,E1 4E2), where E1 4E2 = (E1 \ E2) ∪ (E2 \ E1) .

Example 6 Let G = (V,E1) and H = (V,E2) ,where V = {a, b, c, d}, E1 =
{{a, b}, {a, d}, {b, c}, {c, d}}, and E2 = {{a, b}, {b, d}, {c, d}}. Then G 4H =
(V, {{a, d}, {b, d}, {b, c}}) (see Figure 8).

G

a b

cd

H
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G 4H
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cd

Figure 8: Symmetric difference of two graphs.
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4 Degree of vertices
Let G = (V,E) be a simple graph. The degree of a vertex v ∈ V in G is

dG(v) = #NG (v) = # {u ∈ V | {v, u} ∈ E} ,

i.e., the number of edges in G incident with v. When G is clear from the context,
we just write d(v). The minimum degree of G is δ(G) = min {dG(v) | v ∈ V }.
The maximum degree of G is ∆(G) = max {dG(v) | v ∈ V }. The average degree

of G is d(G) =
1

#V

∑
v∈V

dG(v). If dG(v) = 0, we say that v is an isolated vertex

in G.

Example 7 Let G be the graph in Figure 9. We have

δ(G) = d(f) = 0, d(a) = d(b) = d(c) = d(d) = 1, ∆(G) = d(e) = 4,

d(G) =
1 + 1 + 1 + 1 + 4 + 0

6
=

4

3
.

a

d

c

e

b

f

Figure 9: A graph with minimal degree 0 and maximal degree 4.

The definition can be extended to non simple graphs by counting parallel
edges separately. In this case each loop counts twice.

Lemma 1 (Handshaking Lemma) Let G = (V,E) be a graph. Then,∑
v∈V

dG(v) = 2#E.

Proof. We sum up all vertices multiplied by their degree. We count every edge
exactly twice, one for each of its ends.

Corollary 1 Let G = (V,E) be a graph. Then, #{v | dG(v) is odd} is even.

Proof. For each v ∈ V we have

dG(v) ≡

{
1 (mod 2) if dG(v) is odd,
0 (mod 2) if dG(v) is even.

.

Thus,
∑
v∈V

dG(v) ≡ # vertices of odd degree (mod 2).

By the Handshaking Lemma 1,
∑
v∈V

dG(v) ≡ 0 (mod 2). So, the number of

vertices with odd degree is also even.
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Example 8 Let G be the graph in Example 7. The sum of the degrees is 8 and
we have 4 vertices of odd degree: a,b,c,d.

A graph G = (V,E) is called k-regular if dG(v) = k for every v ∈ V .

Example 9 Kn is (n− 1)-regular for every n ∈ N0. A 3-regular graph is called
a cubic graph (see Figure 10).

K4

1 2

34
K3,3

a b c

d e f
Q3

a b

cd

e f

gh

Figure 10: Three cubic graphs.

A graph in which each vertex has even degree is called an even graph.

Example 10 The graph K2 (Figure 4) is even, while the graph K1,6 (Figure 5)
is not.

5 Graphic sequences
A sequence (di)

n
i=1 is called graphic if there exists a simple graph G = (V,E)

with V = {v1, v2, . . . , vn} such that for every 1 ≤ i ≤ n we have dG(vi) = di. In
this case we say that G realises the sequence (di)

n
i=1.

We usually order the sequence s.t. d1 ≥ d2 ≥ . . . ≥ dn ≥ 0.
Clearly not every sequence of non-negative integers is graphic. The Hand-

shaking Lemma 1 gives us a necessary condition:
∑n

i=1 di must be even. Also,
in this case we must have d1 ≤ n− 1.

Example 11

• The sequence (2, 2, 1, 1) is graphic.
A graph realising it is G = ({v1, v2, v3, v4}, {{v1, v2}, {v1, v3}, {v2, v4}}).

v1
v2 v4

v3

• The sequence (2, 1) is not graphic. Indeed 2 + 1 = 3 is not even.

v1
v2

?
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• The sequence (2, 2) is not graphic. Indeed d1 = 2 > 2− 1 = 1.

v1
v2

?

?

• The sequence (3, 3, 1, 1) is not graphic (why?).

v1

v2

v3

v4

?

?

Theorem 1 (Havel (1955), Hakimi (1961)) A non-increasing non-negative
sequence (di)

n
i=1 is graphic if and only if

(d2 − 1, d3 − 1, . . . dd1+1 − 1, dd1+2, dd1+3, . . . , dn)

is graphic.

To prove Havel-Hakimi Theorem we need the following result.

Lemma 2 Let (di)
n
i=1 be a graphic sequence with d1 ≥ d2 ≥ . . . ≥ dn ≥ 0.

Then, there is a simple graph G = (V,E) realising (di)
n
i=1 such that V =

{v1, . . . , vn}, dG(vi) = di for every i, and NG (v1) = {v2, . . . , vd1+1}.

Proof. Let S = {v2, . . . , vd1+1}. From all graphs realising (di)
n
i=1 let us select

G s.t. r = |NG (v1) ∩ S| is maximum.
If r = d1, then G is the graph we are looking for and we are done.
If, by contradiction, r < d1, then there exist s, t with 1 ≤ s ≤ d1 + 1 <

t ≤ n such that {v1, vt} ∈ E and {v1, vs} /∈ E. Since dG(vs) ≥ dG(vt) and
{v1, vt} ∈ E, there exists vk such that {vs, vk} ∈ E and {vt, vk} /∈ E. Let
G′ = (G \ {{v1, vt}, {vs, vk}}) + {{v1, vs}, {vt, vk}}.

G
v1 vs

vt vk

S

G′

v1 vs

vt vk

S

We have |NG′ (v1) ∩ S| = r + 1 > r, which contradict the maximality of r.

Proof of Havel-Hakimi Theorem.
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(⇒) If (di)i is graphical, by Lemma 2 there exists a graph G realising it
with NG (v1) = {v2, . . . , vd1+1}. Thus G \ {v1} has degree sequence
(d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn).

(⇐) If (d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn) is graphical, there exists a graph
G′ = (V ′, E′) with #V ′ = n− 1, V ′ = {v2, . . . , vn} such that

dG′(vi) =

{
di − 1 for 2 ≤ i ≤ dd1+1

di for dd1+2 ≤ i ≤ n
.

Thus the graph G =

(
V ′ ∪ {v1}, E′ +

d1+1⋃
i=2

{v1, vi}

)
realises (di)

n
i=1.

Havel-Hakimi Theorem gives us a recursive algorithm to check whether a
sequence is graphic.
Algorithm 1: GraphicSequence(d1, d2, . . . , dn)
Input: non-increasing sequence (d1, d2, . . . , dn)
Output: TRUE if (di)

n
i=1 is graphic; FALSE if not

1 if (d1 > n− 1) or (dn < 0) then
2 return FALSE

3 else if d1 = 0 then
4 return TRUE

5 else
6 Let (a1, a2, . . . , an−1) non-increasing permutation of

(d2 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn)
7 GraphicSequence(a1, a2, . . . , an−1)

Example 12

• (2, 1) is not a graphic sequence, since 2 > 1.

• (3, 2, 1, 1)→ (1, 0, 0)→ (−1, 0) ∼ (0,−1) is not graphic since −1 < 0.

• (2, 2, 1, 1)→ (1, 0, 1) ∼ (1, 1, 0)→ (0, 0) is graphic (see Figure 11).

We can also use the algorithm backwards to realise a graphic sequence: we
start with as many vertices are there are 0s in the last sequence and then, at
each step, add a vertex with edges according to its degree (see Figure 11).
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v1 v2 v3 v4 v2 v3 v4 v2 v4 v3 v4 v3

(2, 2, 1, 1) → (1, 0, 1) ∼ (1, 1, 0) → (0, 0)

v1 v2

v3 v4
←−

v2

v3 v4
←−

v3 v4

Figure 11: Realising a graph from a graphic sequence.

Exercise. Determine which of the following sequences are graphic, and in
the positive case find a graph realising them: (7, 6, 5, 4, 3, 3, 2), (3, 3, 2, 2, 1, 1).

We also have the following non recursive result.

Theorem 2 (Erdős, Gallai (1960)) A sequence (di)
n
i=1 with d1 ≥ d2 ≥ . . . ≥

dn ≥ 0 is graphic if and only if

n∑
i=1

di is even and
k∑

i=1

di < k(k − 1) +

n∑
i=k+1

min{k, di} ∀ 1 ≤ k ≤ n.
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