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Solution of Exercise in previous Lecture. Determine which of the
following sequences are graphic, and in the positive case find a graph realising
them: (7, 6, 5, 4, 3, 3, 2), (3, 3, 2, 2, 1, 1).

• (7, 6, 5, 4, 3, 3, 2) is not a graphic sequence, since 7 > 6.

• (3, 3, 2, 2, 1, 1) → (2, 1, 1, 1, 1) → (0, 0, 1, 1) ∼ (1, 1, 0, 0) → (0, 0, 0) is
graphic (see Figure 1).
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(3, 3, 2, 2, 1, 1) → (2, 1, 1, 1, 1) → (0, 0, 1, 1) ∼ (1, 1, 0, 0) → (0, 0, 0)
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Figure 1: Realising a graph from a graphic sequence.
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1 Subgraphs
Let G = (V,E) be a graph. A graph H = (U,F ) is a subgraph of G, written
H ⊆ G (or, G is a supergraph of H, written G ⊇ H) if U ⊆ V and F ⊆ E. We
say that H is contained in G (or, G contains H).

Example 1 The graphs H1, H2, H3 in Figure 2 are subgraphs of G. On the
other hand, H4 is not a subgraph of G.
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Figure 2: Five graphs with vertices (subsets of) {a, b, c, d}.

A subgraph H = (U,F ) of G = (V,E) is called an induced subgraph of G
by U , and we write H = G[U ], if for every two vertices x, y ∈ U we have
{x, y} ∈ F ⇔ {x, y} ∈ E. That is, the vertices in H are connected by exactly
the same edges as in G. When H is simple we have H = G[U ] =

(
U,E ∩

(
U
2

))
.

Example 2 Let G,H1, H2 and H3 as in Example 1. We have H2 = G[{b, c, d}]
and H3 = G[{a, b, c}]. Note that H1 is not an induced subgraph of G, since
{b, c} is an edge of G but not of H1.

If U ⊂ V and F ⊂
(
V
2

)
, we write G − U = G[V \ U ]. That is, G − U is

obtained from G by deleting all vertices in U and their incident edges.
Given a graph G = (V,E) and a set of edges F , the graph G\F = (V,E \F )

is obtained by deleting some edges, the ones in E ∩ F , but keeping all vertices.
We call G \ F a spanning subgraph of G.

In a similar way, given a set of vertices U and a set of edges F , we define
G+ U = (V ∪ U,E) and G+ F = (V,E ∪ F ).

When U = {u} we just write G+ u instead of G+ {u} and G− u instead of
G− {u}. Similarly when E = {e} we write G+ e and G \ e.

Example 3 Let G,H1H2, H3 and H4 as in Example 1. Then H2 = G − a

and H3 = G − d. The graph H1 is a spanning subgraph of H2, indeed H1 =
H2 \ {b, c}. Obviously we also have H2 = H1 + {b, c}. Moreover G = H2 + a.

2 Paths and cycles
A path is a non-empty graph P = (V,E) with V = {v0, v1, . . . , vk} and E =
{{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} The vertices v0, vk are linked by P and are
called its endpoints. The vertices v1, v2, . . . , vk−1 are the inner vertices of P .
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If k ≥ 3, we call cycle a graph of the form C = (P − vk) + {vk−1, v0}.
The length of P (resp., of C) is k. A path (resp., cycle) is odd or even

according to the parity of k. When a path (resp., cycle) appears as a subgraph
G, we say that the path (resp., cycle) is in G.

We can represent a path (resp., a cycle) as a sequence of vertices

(v0, v1, . . . , vk)

or as a sequence of edges
(e1, e2, . . . , ek)

or, when interested in both vertices and edges, using the notation

(v0
e1→ v1

e2→ · · · ek−1→ vk−1
ek→ vk)

where ei = {vi−1, vi}.
The distance between two vertices u, v ∈ V in a graph G = (V,E), denoted

by dG(u, v), is the length of the shortest path in G with endpoints u and v. The
eccentricity of v is defined as eccG(v) = max{dG(v, u) | u ∈ V }.

The center of G is the set of its vertices with minimal eccentricity, i.e.,

C(G) = argminv∈V eccG(v) =
{
v ∈ V | eccG(v) = min

u∈V
eccG(u)

}
.

Example 4 The path P4 and the cycle C3 are represented on the left of Fig-
ure 3. On the right of the same figure you can see a path of length 5, (b, c, d, e, f),
and a cycle of length 4, (b, c, d, e), in a graph G.

Note that we have dG(b, f) = 2 since a shortest path in G between the two
vertices is (b, e, f). One can check that, e.g., eccP4

(v0) = 4, eccP4
(v3) = 3;

eccC3
(u2) = 1; eccG(a) = 3, and eccG(c) = 2. Moreover C(P4) = {v2}, C(C3) =

{u0, u1, u2}, and C(G) = {b, c, d, e}.
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Figure 3: Paths and cycles.

3 Connected graphs
A graph is connected if it is non-empty and every two of its vertices are linked
by a path in it. A maximal connected subgraph is a component of the graph.
A graph with more than one component (i.e., that is not connected) is called
disconnected.

3



Example 5 The graph G in Figure 4 has three components:

H1 = G[{a, b, c, d, e}], H2 = G[{f, g, h, i}] and H3 = G[{j}].
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Figure 4: A graph with three components.

Let Sn be the number of different connected graphs on n vertices.

• If V = {a}, there is only one possible graph, so S1 = 1.

a

• If V = {a, b}, the two vertices are connected by an edge, so S2 = 1.

a b

• If V = {a, b, c}, there are four possible connected graphs, so S3 = 4.

a

b c ,

a

b c ,

a

b c ,

a

b c

Theorem 1 For every n ∈ N

n · 2(
n
2) =

n∑
k=1

(
n

k

)
Sk · k · 2(

n−k
2 ).

Proof. Let us count, in two different ways, all "rooted" graphs on n vertices,
i.e., graphs with one particular vertex emphasised.

We know that the number of labelled graphs (connected or not) is 2(
n
2). So,

the total number of rooted graphs is n · 2(
n
2).

On the other hand, each "root" will appear in a connected component of
size k, with 1 ≤ k ≤ n. For a fixed k, we have

(
n
k

)
possibilites to select the k

vertices, Sk ways of having the component connected, and k ways of selecting
the "root" in the connected component; we do not know whether the remaining
n − k vertices are connected or not, so we have 2(

n−k
2 ) possibilites for them.

Theorem 1 is quite unsatisfactory since it is a recursive formula. To compute,
e.g., S20 one needs to successively compute S1, S2, S3, . . . , S19.
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Example 6 We can compute S4 using Theorem 1, since

4 · 2(
4
2) =

(
4

1

)
S1 · 1 · 2(

3
2) +

(
4

2

)
S2 · 2 · 2(

2
2) +

(
4

4

)
S3 · 3 · 2(

1
2) +

(
4

4

)
S4 · 4 · 2(

0
2)

we have, using the known values of S1, S2 and S3,

4 · 64 = 4 · 1 · 1 · 8 + 6 · 1 · 2 · 2 + 4 · 4 · 3 · 1 + 1 · S4 · 4 · 1.

Hence S4 = 64− 8− 12 = 38.

Exercise. Find all connected simple graphs of order 4.

4 Walks
Given a simple graph G = (V,E), a sequence (vi)

k
i=0 of vertices vi ∈ V is called

a walk (or k-walk) in G if for every 1 ≤ j ≤ k we have {vj−1, vj} ∈ E.
A walk is closed if its initial and terminal vertices are the same. A walk

where all its edges are distinct is called a trail.
The notions of length, endpoints, inner vertices in a walk are defined analo-

gously as in a path. Nevertheless, note that, contrary to paths (resp., cycles),
vertices in a walk (resp., closed walk) can be repeated.

Example 7 Let G be the graph in Figure 5. The sequence (d, a, c, a, b) is a
walk in G but not a path. The sequence (a, c, b, c, a) is a closed walk in G but
not a cycle. The sequence (d, a, b, c) is both a walk and a path. The sequence
(d, a, b, c, a) is a trail (but not a path nor a cycle).

G a

b

c

d

Figure 5: A graph G.

Connectedeness of a pair of vertices in a graph through a walk is an equiva-
lence relation. Indeed:

• every vertex is connected by a 0-walk to itself;

• if there is a walk W = (vi)
k
i=0 from a to b, then the reverse walk W̃ =

(vk−i)
k
i=0 connects b to a;

• if a, b are connected by a walk W1 = (vi)
k
i=0 and v, w are connected by a

walk W2 = (ui)
h
i=0, then there is a walk from u to w obtained W1W2 =

(wi)
k+h
i=0 , where wi = vi for 0 ≤ i ≤ k and wi = ui+k for k+1 ≤ k ≤ k+h.
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The equivalence class of a vertex v determined by the connectedness relation
gives the component of the graph containing the vertex v.

We can also consider walks in non simple graphs.

Example 8 Let G be the graph in Figure 6. A walk in G is given by

(h, j, j, i, e, f, f) = (b
h→ c

j→ c
j→ c

i→ b
e→ a

f→ d
f→ a).

G a
b c

d

e

f g

j

h

i

Figure 6: A non simple graph G.

5 Trees
A graph that does not have any cycle in it is called acyclic. An acyclic graph
is also called a forest. A connected forest, i.e., a graph that is both connected
and acyclic, is called a tree. Vertices of degree 1 in a tree are called leaves.

Example 9 The graph G on the left of Figure 7 is not acyclic. The graph H
on the centre is a forest. The graph K1,5, on the right, is a tree.

G

u

v

x

y

H

a

b

c

d

e

f
K1,5 0

1
23

45

Figure 7: A graph with a cycle (left) a forest (centre) and a tree (right).

The trivial graph has exactly one leaf. Every tree having more than one
vertex has at least 2 leaves. Indeed, it is enough to consider the endpoints of a
longest path.

Theorem 2 Let G = (V,E) be a graph s.t. dG(v) ≥ 2 for every v ∈ V . Then
G contains a cycle.

Proof. The statement is clear if G has a loop or two parallel edges. Thus,
WLOG, let us suppose that G is simple.

Let P = (v0, v1, . . . , vk−1, vk) be a longest path in G. Since dG(vk) ≥ 2, then
there exists v ∈ NG (vk) with v 6= vk−1. If v /∈ P , then P + {v} would be a path

6



longer than P , which is a contradiction. Thus, v = vi ∈ P , which implies that
(vi, . . . , vk−1, vk) is a cycle in G.

A graph G = (V,E) is minimally connected if it is connected but G \ e is
disconnected for every e ∈ E. It is maximally acyclic if it is acyclic but for any
two vertices u, v ∈ V s.t. {u, v} /∈ E we have that G+ {u, v} contains a cycle.

Theorem 3 The following are equivalent for a graph G = (V,E).

1. G is a tree.

2. Any two vertices in V are linked by a unique path in G.

3. G is minimally connected.

4. G is maximally acyclic.

Proof. Exercise.

Corollary 1 (Euler’s formula for trees) A connected graph of order n is a
tree if and only if it has size n− 1.

The hypothesis of connectedness is necessary.

Example 10 Let us consider the graphs G,H and K1,5 in Example 9. The
graph H, a forest but not a tree, has order 6 and size 4. The tree K1,5 has order
5 and size 4. The graph G, which is not a forest, has order 4 and size 3.

Theorem 4 (Cayley’s formula) Let #V = n. The number of trees with set
of vertices V is nn−2.

Example 11 The only tree with one vertex is the trivial one. The only tree
with two vertices a, b is the one with one edge {a, b}. If the set of vertices is
{a, b, c} we have three possible trees (see Figure 8). According to Theorem 4
there are 16 labelled trees on V = {a, b, c, d} (which ones?).

a
a

b

a

b

c

b

a

c

c

a

b

Figure 8: Possible trees on 1, 2 and 3 vertices.

A rooted tree T (r) is a tree T = (V,E) with a specified vertex r ∈ V called
the root of T . Given a vertex v in a rooted tree T (r) different than r, we say
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that a vertex in NT (v) on the unique path between r and v is a parent of v; all
vertices in this path are called ancestors of v. Similarly, a vertex is a child of
its parent, and u is a descendant of v if v is an ancestor of u.

We call level `T (v) of a vertex v in a rooted tree T (r) the distance dT (r, v)
(i.e., the length of the path from r to v in the tree). The root is the only vertex
with level 0. The height of a rooted tree is the maximal level.

Note that when dealing with rooted trees we call leaf a vertex of degree 1
that has no children. Hence, except for the trivial tree with one vertex, the root
is (in this context) never a leaf.

Example 12 The graph in Figure 9 is a rooted tree with root r. The vertices
a,b,c are children of r. The vertex h is a child of e and a descendant of a
(hence e is a parent of h and a an ancestor of h). The vertices d,e,f,g have
level 2, while the height of the tree is 3 (h is a vertex of maximal level).

r

a b c

d e f g

h

level 0

level 1

level 2

level 3

Figure 9: A rooted tree.

An ordered tree T (r,�) is a rooted tree T (r) = (V,E) with root r and a
partial order � on V giving the order of children of each vertex. We usually
represent it by drawing the children of a node from left to right starting from
the smallest.

Example 13 Let T be the rooted tree in Example 12 and represented in Fig-
ure 9. Then, T (r,�), with the partial order � defined by

a ≺ b ≺ c, d ≺ e and f ≺ g

is a ordered tree.
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