Elementary Introduction to Graph Theory

 $(01EIG\ 2025/2026)$

Lecture 2

Francesco Dolce dolcefra@fit.cvut.cz

October 3, 2025

updated: October 6, 2025

PDF available at the address: dolcefra.pages.fit/ens/2526/EIG-lecture-02.pdf

Solution of Exercise in previous Lecture. Determine which of the following sequences are graphic, and in the positive case find a graph realising them: (7,6,5,4,3,3,2), (3,3,2,2,1,1).

- (7,6,5,4,3,3,2) is not a graphic sequence, since 7 > 6.
- $(3, \underline{3, 2, 2, 1, 1}) \rightarrow (2, \underline{1, 1}, 1, 1) \rightarrow (0, 0, 1, 1) \sim (1, \underline{1}, 0, 0) \rightarrow (0, 0, 0)$ is graphic (see Figure 1).

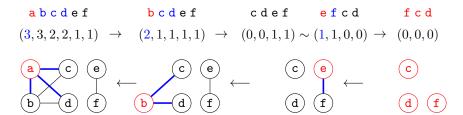


Figure 1: Realising a graph from a graphic sequence.

1 Subgraphs

Let G = (V, E) be a graph. A graph H = (U, F) is a *subgraph* of G, written $H \subseteq G$ (or, G is a *supergraph* of H, written $G \supseteq H$) if $U \subseteq V$ and $F \subseteq E$. We say that H is *contained in* G (or, G *contains* H).

Example 1 The graphs H_1, H_2, H_3 in Figure 2 are subgraphs of G. On the other hand, H_4 is not a subgraph of G.

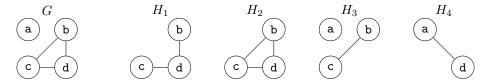


Figure 2: Five graphs with vertices (subsets of) {a,b,c,d}.

A subgraph H = (U, F) of G = (V, E) is called an *induced subgraph* of G by U, and we write H = G[U], if for every two vertices $x, y \in U$ we have $\{x, y\} \in F \Leftrightarrow \{x, y\} \in E$. That is, the vertices in H are connected by exactly the same edges as in G. When H is simple we have $H = G[U] = (U, E \cap \binom{U}{2})$.

Example 2 Let G, H_1, H_2 and H_3 as in Example 1. We have $H_2 = G[\{b, c, d\}]$ and $H_3 = G[\{a, b, c\}]$. Note that H_1 is not an induced subgraph of G, since $\{b, c\}$ is an edge of G but not of H_1 .

If $U \subset V$ and $F \subset \binom{V}{2}$, we write $G - U = G[V \setminus U]$. That is, G - U is obtained from G by deleting all vertices in U and their incident edges.

Given a graph G=(V,E) and a set of edges F, the graph $G\setminus F=(V,E\setminus F)$ is obtained by deleting some edges, the ones in $E\cap F$, but keeping all vertices. We call $G\setminus F$ a spanning subgraph of G.

In a similar way, given a set of vertices U and a set of edges F, we define $G+U=(V\cup U,E)$ and $G+F=(V,E\cup F)$.

When $U = \{u\}$ we just write G + u instead of $G + \{u\}$ and G - u instead of $G - \{u\}$. Similarly when $E = \{e\}$ we write G + e and $G \setminus e$.

Example 3 Let G, H_1H_2, H_3 and H_4 as in Example 1. Then $H_2 = G - a$ and $H_3 = G - d$. The graph H_1 is a spanning subgraph of H_2 , indeed $H_1 = H_2 \setminus \{b, c\}$. Obviously we also have $H_2 = H_1 + \{b, c\}$. Moreover $G = H_2 + a$.

2 Paths and cycles

A path is a non-empty graph P=(V,E) with $V=\{v_0,v_1,\ldots,v_k\}$ and $E=\{\{v_0,v_1\},\{v_1,v_2\},\ldots,\{v_{k-1},v_k\}\}$ The vertices v_0,v_k are linked by P and are called its endpoints. The vertices v_1,v_2,\ldots,v_{k-1} are the inner vertices of P.

If $k \geq 3$, we call *cycle* a graph of the form $C = (P - v_k) + \{v_{k-1}, v_0\}$.

The *length* of P (resp., of C) is k. A path (resp., cycle) is *odd* or *even* according to the parity of k. When a path (resp., cycle) appears as a subgraph G, we say that the path (resp., cycle) is *in* G.

We can represent a path (resp., a cycle) as a sequence of vertices

$$(v_0, v_1, \ldots, v_k)$$

or as a sequence of edges

$$(e_1, e_2, \ldots, e_k)$$

or, when interested in both vertices and edges, using the notation

$$(v_0 \xrightarrow{e_1} v_1 \xrightarrow{e_2} \cdots \xrightarrow{e_{k-1}} v_{k-1} \xrightarrow{e_k} v_k)$$

where $e_i = \{v_{i-1}, v_i\}.$

The distance between two vertices $u, v \in V$ in a graph G = (V, E), denoted by $d_G(u, v)$, is the length of the shortest path in G with endpoints u and v. The eccentricity of v is defined as $ecc_G(v) = max\{d_G(v, u) \mid u \in V\}$.

The *center* of G is the set of its vertices with minimal eccentricity, i.e.,

$$\mathcal{C}(G) = \operatorname{argmin}_{v \in V} \operatorname{ecc}_G(v) = \left\{ v \in V \mid \operatorname{ecc}_G(v) = \min_{u \in V} \operatorname{ecc}_G(u) \right\}.$$

Example 4 The path P_4 and the cycle C_3 are represented on the left of Figure 3. On the right of the same figure you can see a path of length 5, (b, c, d, e, f), and a cycle of length 4, (b, c, d, e), in a graph G.

Note that we have $d_G(b, f) = 2$ since a shortest path in G between the two vertices is (b, e, f). One can check that, e.g., $\operatorname{ecc}_{P_4}(v_0) = 4$, $\operatorname{ecc}_{P_4}(v_3) = 3$; $\operatorname{ecc}_{C_3}(u_2) = 1$; $\operatorname{ecc}_G(a) = 3$, and $\operatorname{ecc}_G(c) = 2$. Moreover $\mathcal{C}(P_4) = \{v_2\}$, $\mathcal{C}(C_3) = \{u_0, u_1, u_2\}$, and $\mathcal{C}(G) = \{b, c, d, e\}$.

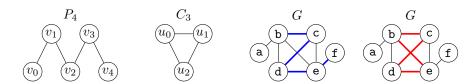


Figure 3: Paths and cycles.

3 Connected graphs

A graph is *connected* if it is non-empty and every two of its vertices are linked by a path in it. A maximal connected subgraph is a *component* of the graph. A graph with more than one component (i.e., that is not connected) is called *disconnected*.

Example 5 The graph G in Figure 4 has three components:

$$H_1 = G[\{a, b, c, d, e\}], \quad H_2 = G[\{f, g, h, i\}] \quad \text{and} \quad H_3 = G[\{j\}].$$

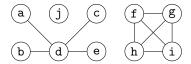


Figure 4: A graph with three components.

Let S_n be the number of different connected graphs on n vertices.

• If $V = \{a\}$, there is only one possible graph, so $S_1 = 1$.

(a)

• If $V = \{a, b\}$, the two vertices are connected by an edge, so $S_2 = 1$.

• If $V = \{a, b, c\}$, there are four possible connected graphs, so $S_3 = 4$.

Theorem 1 For every $n \in \mathbb{N}$

$$n \cdot 2^{\binom{n}{2}} = \sum_{k=1}^{n} \binom{n}{k} S_k \cdot k \cdot 2^{\binom{n-k}{2}}.$$

Proof. Let us count, in two different ways, all "rooted" graphs on n vertices, i.e., graphs with one particular vertex emphasised.

We know that the number of labelled graphs (connected or not) is $2^{\binom{n}{2}}$. So, the total number of rooted graphs is $n \cdot 2^{\binom{n}{2}}$.

On the other hand, each "root" will appear in a connected component of size k, with $1 \le k \le n$. For a fixed k, we have $\binom{n}{k}$ possibilities to select the k vertices, S_k ways of having the component connected, and k ways of selecting the "root" in the connected component; we do not know whether the remaining n-k vertices are connected or not, so we have $2^{\binom{n-k}{2}}$ possibilities for them.

Theorem 1 is quite unsatisfactory since it is a recursive formula. To compute, e.g., S_{20} one needs to successively compute $S_1, S_2, S_3, \ldots, S_{19}$.

Example 6 We can compute S_4 using Theorem 1, since

$$4 \cdot 2^{\binom{4}{2}} = \binom{4}{1} S_1 \cdot 1 \cdot 2^{\binom{3}{2}} + \binom{4}{2} S_2 \cdot 2 \cdot 2^{\binom{2}{2}} + \binom{4}{4} S_3 \cdot 3 \cdot 2^{\binom{1}{2}} + \binom{4}{4} S_4 \cdot 4 \cdot 2^{\binom{0}{2}}$$

we have, using the known values of S_1, S_2 and S_3 ,

$$4\cdot 64 \ = \ 4\cdot 1\cdot 1\cdot 8 \ + \ 6\cdot 1\cdot 2\cdot 2 \ + \ 4\cdot 4\cdot 3\cdot 1 \ + \ 1\cdot S_4\cdot 4\cdot 1.$$

Hence $S_4 = 64 - 8 - 12 = 38$.

Exercise. Find all connected simple graphs of order 4.

4 Walks

Given a simple graph G=(V,E), a sequence $(v_i)_{i=0}^k$ of vertices $v_i \in V$ is called a walk (or k-walk) in G if for every $1 \leq j \leq k$ we have $\{v_{j-1},v_j\} \in E$.

A walk is *closed* if its initial and terminal vertices are the same. A walk where all its edges are distinct is called a *trail*.

The notions of *length*, *endpoints*, *inner vertices* in a walk are defined analogously as in a path. Nevertheless, note that, contrary to paths (resp., cycles), vertices in a walk (resp., closed walk) can be repeated.

Example 7 Let G be the graph in Figure 5. The sequence (d, a, c, a, b) is a walk in G but not a path. The sequence (a, c, b, c, a) is a closed walk in G but not a cycle. The sequence (d, a, b, c) is both a walk and a path. The sequence (d, a, b, c, a) is a trail (but not a path nor a cycle).

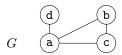


Figure 5: A graph G.

Connectedeness of a pair of vertices in a graph through a walk is an equivalence relation. Indeed:

- every vertex is connected by a 0-walk to itself;
- if there is a walk $W = (v_i)_{i=0}^k$ from a to b, then the reverse walk $\widetilde{W} = (v_{k-i})_{i=0}^k$ connects b to a;
- if a, b are connected by a walk $W_1 = (v_i)_{i=0}^k$ and v, w are connected by a walk $W_2 = (u_i)_{i=0}^h$, then there is a walk from u to w obtained $W_1W_2 = (w_i)_{i=0}^{k+h}$, where $w_i = v_i$ for $0 \le i \le k$ and $w_i = u_{i+k}$ for $k+1 \le k \le k+h$.

The equivalence class of a vertex v determined by the connectedness relation gives the component of the graph containing the vertex v.

We can also consider walks in non simple graphs.

Example 8 Let G be the graph in Figure 6. A walk in G is given by

$$(h,j,j,i,e,f,f) = (\mathbf{b} \overset{h}{\to} \mathbf{c} \overset{j}{\to} \mathbf{c} \overset{j}{\to} \mathbf{c} \overset{i}{\to} \mathbf{b} \overset{e}{\to} \mathbf{a} \overset{f}{\to} \mathbf{d} \overset{f}{\to} \mathbf{a}).$$

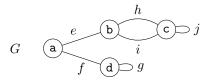


Figure 6: A non simple graph G.

5 Trees

A graph that does not have any cycle in it is called *acyclic*. An acyclic graph is also called a *forest*. A connected forest, i.e., a graph that is both connected and acyclic, is called a *tree*. Vertices of degree 1 in a tree are called *leaves*.

Example 9 The graph G on the left of Figure 7 is not acyclic. The graph H on the centre is a forest. The graph $K_{1,5}$, on the right, is a tree.

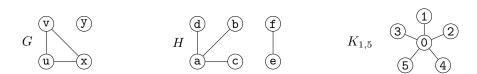


Figure 7: A graph with a cycle (left) a forest (centre) and a tree (right).

The trivial graph has exactly one leaf. Every tree having more than one vertex has at least 2 leaves. Indeed, it is enough to consider the endpoints of a longest path.

Theorem 2 Let G = (V, E) be a graph s.t. $d_G(v) \ge 2$ for every $v \in V$. Then G contains a cycle.

Proof. The statement is clear if G has a loop or two parallel edges. Thus, WLOG, let us suppose that G is simple.

Let $P = (v_0, v_1, \dots, v_{k-1}, v_k)$ be a longest path in G. Since $d_G(v_k) \ge 2$, then there exists $v \in \mathcal{N}_G(v_k)$ with $v \ne v_{k-1}$. If $v \notin P$, then $P + \{v\}$ would be a path

longer than P, which is a contradiction. Thus, $v = v_i \in P$, which implies that $(v_i, \ldots, v_{k-1}, v_k)$ is a cycle in G.

A graph G = (V, E) is minimally connected if it is connected but $G \setminus e$ is disconnected for every $e \in E$. It is maximally acyclic if it is acyclic but for any two vertices $u, v \in V$ s.t. $\{u, v\} \notin E$ we have that $G + \{u, v\}$ contains a cycle.

Theorem 3 The following are equivalent for a graph G = (V, E).

- 1. G is a tree.
- 2. Any two vertices in V are linked by a unique path in G.
- 3. G is minimally connected.
- 4. G is maximally acyclic.

Proof. Exercise.

Corollary 1 (Euler's formula for trees) A connected graph of order n is a tree if and only if it has size n-1.

The hypothesis of connectedness is necessary.

Example 10 Let us consider the graphs G, H and $K_{1,5}$ in Example 9. The graph H, a forest but not a tree, has order 6 and size 4. The tree $K_{1,5}$ has order 5 and size 4. The graph G, which is not a forest, has order 4 and size 3.

Theorem 4 (Cayley's formula) Let #V = n. The number of trees with set of vertices V is n^{n-2} .

Example 11 The only tree with one vertex is the trivial one. The only tree with two vertices a, b is the one with one edge $\{a, b\}$. If the set of vertices is $\{a, b, c\}$ we have three possible trees (see Figure 8). According to Theorem 4 there are 16 labelled trees on $V = \{a, b, c, d\}$ (which ones?).

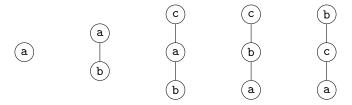


Figure 8: Possible trees on 1, 2 and 3 vertices.

A rooted tree T(r) is a tree T = (V, E) with a specified vertex $r \in V$ called the root of T. Given a vertex v in a rooted tree T(r) different than r, we say

that a vertex in $N_T(v)$ on the unique path between r and v is a parent of v; all vertices in this path are called ancestors of v. Similarly, a vertex is a child of its parent, and u is a descendant of v if v is an ancestor of u.

We call level $\ell_T(v)$ of a vertex v in a rooted tree T(r) the distance $d_T(r,v)$ (i.e., the length of the path from r to v in the tree). The root is the only vertex with level 0. The height of a rooted tree is the maximal level.

Note that when dealing with rooted trees we call *leaf* a vertex of degree 1 that has no children. Hence, except for the trivial tree with one vertex, the root is (in this context) never a leaf.

Example 12 The graph in Figure 9 is a rooted tree with root r. The vertices a,b,c are children of r. The vertex h is a child of e and a descendant of a (hence e is a parent of h and a an ancestor of h). The vertices d,e,f,g have level 2, while the height of the tree is 3 (h is a vertex of maximal level).

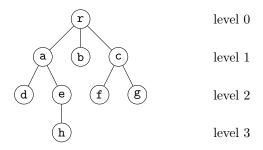


Figure 9: A rooted tree.

An ordered tree $T(r, \preceq)$ is a rooted tree T(r) = (V, E) with root r and a partial order \preceq on V giving the order of children of each vertex. We usually represent it by drawing the children of a node from left to right starting from the smallest.

Example 13 Let T be the rooted tree in Example 12 and represented in Figure 9. Then, $T(\mathbf{r}, \preceq)$, with the partial order \preceq defined by

$$a \prec b \prec c$$
, $d \prec e$ and $f \prec g$

is a ordered tree.