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Solution of Exercise in previous Lecture. Determine which of the
following sequences are graphic, and in the positive case find a graph realising
them: (7,6,5,4,3,3,2), (3,3,2,2,1,1).

e (7,6,5,4,3,3,2) is not a graphic sequence, since 7 > 6.

e (3,3,2,2,1,1) — (2,1,1,1,1) — (0,0,1,1) ~ (1,1,0,0) — (0,0,0) is
graphic (see Figure|[1)).

abcdef bcdef cdef efcd fcd
33,2,2,1,1 — 2,1,1,1,1 — 00,1,1 1,1,00 000)

RI20 %0 o

Figure 1: Realising a graph from a graphic sequence.
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1 Subgraphs

Let G = (V,E) be a graph. A graph H = (U, F) is a subgraph of G, written
H C G (or, G is a supergraph of H, written G D H) if U CV and F C E. We
say that H is contained in G (or, G contains H).

Example 1 The graphs Hi, Ho, Hs in Figure [2] are subgraphs of G. On the
other hand, Hy is not a subgraph of G.

Figure 2: Five graphs with vertices (subsets of) {a, b, c,d}.

A subgraph H = (U, F) of G = (V, E) is called an induced subgraph of G
by U, and we write H = G[U], if for every two vertices z,y € U we have
{z,y} € F & {z,y} € E. That is, the vertices in H are connected by exactly

the same edges as in G. When H is simple we have H = G[U] = (U, EnN ((2]))

Example 2 Let G, Hy, H; and Hj as in Example[]] We have H, = G[{b, c,d}]
and H; = G[{a,b,c}]. Note that H; is not an induced subgraph of G, since
{b,c} is an edge of G but not of Hj.

IfU CVand F C (Y), we write G — U = G[V \ U]. That is, G — U is
obtained from G by deleting all vertices in U and their incident edges.

Given a graph G = (V| E) and a set of edges F, the graph G\ F' = (V, E\ F)
is obtained by deleting some edges, the ones in £ N F', but keeping all vertices.
We call G\ F' a spanning subgraph of G.

In a similar way, given a set of vertices U and a set of edges F', we define
G4+U=(VUUE)and G+ F=(V,EUF).

When U = {u} we just write G + u instead of G + {u} and G — u instead of
G — {u}. Similarly when F = {e} we write G+ e and G \ e.

Example 3 Let G, H{Hy, H3 and H, as in Example Then Hy = G — a
and H3 = G —d. The graph H; is a spanning subgraph of Hs, indeed H; =
Hj \ {b,c}. Obviously we also have Hy = H; + {b,c}. Moreover G = Hs + a.

2 Paths and cycles
A path is a non-empty graph P = (V, E) with V = {vg,v1,...,0x} and E =

{{vo,v1},{v1,v2},...,{vg—1,vr}} The vertices vy, vy are linked by P and are
called its endpoints. The vertices vi,vs,...,vr_1 are the inner vertices of P.



If k > 3, we call cycle a graph of the form C = (P — vi) 4+ {vk—1,v0}.

The length of P (resp., of C) is k. A path (resp., cycle) is odd or even
according to the parity of k. When a path (resp., cycle) appears as a subgraph
G, we say that the path (resp., cycle) is in G.

We can represent a path (resp., a cycle) as a sequence of vertices

(vo,vl,...,vk)

or as a sequence of edges
(61, €2, ..., ek)

or, when interested in both vertices and edges, using the notation
(vo S o1 B3y By

where e; = {v;_1,v;}.

The distance between two vertices u,v € V in a graph G = (V, E), denoted
by dg(u,v), is the length of the shortest path in G with endpoints v and v. The
eccentricity of v is defined as eccg(v) = max{dg(v,u) |u € V}.

The center of G is the set of its vertices with minimal eccentricity, i.e.,

C(G) = argmin, ¢y -eccq(v) = {v eV ]eccg(v) = mi‘r/l eccG(u)} .
ue

Example 4 The path P, and the cycle C5 are represented on the left of Fig-
ure On the right of the same figure you can see a path of length 5, (b, c,d, e, ),
and a cycle of length 4, (b, c,d,e), in a graph G.

Note that we have dg(b, f) = 2 since a shortest path in G between the two
vertices is (b,e,f). One can check that, e.g., eccp,(vg) = 4, eccp,(vs) = 3;
ecco, (u2) = 1; eccg(a) = 3, and eccg(c) = 2. Moreover C(Py) = {v2}, C(C3) =
{up, u1,us}, and C(G) = {b, c,d, e}.

Figure 3: Paths and cycles.

3 Connected graphs

A graph is connected if it is non-empty and every two of its vertices are linked
by a path in it. A maximal connected subgraph is a component of the graph.
A graph with more than one component (i.e., that is not connected) is called
disconnected.



Example 5 The graph G in Figure [4 has three components:
H, =G[{a,b,c,d,e}], Hy=G[{f,gh,i}] and H;=G[{j}]

Figure 4: A graph with three components.

Let S, be the number of different connected graphs on n vertices.

e If V = {a}, there is only one possible graph, so S; = 1.

o If V = {a,b}, the two vertices are connected by an edge, so Sy = 1.

e If V = {a,b,c}, there are four possible connected graphs, so S3 = 4.

Fo . S - ot o

Theorem 1 For everyn € N

w23 — k”l @ )

Proof. Let us count, in two different ways, all "rooted" graphs on n vertices,
i.e., graphs with one particular vertex emphasised.

We know that the number of labelled graphs (connected or not) is 2(3). So,
the total number of rooted graphs is n - 2(3).

On the other hand, each "root" will appear in a connected component of
size k, with 1 < k < n. For a fixed k, we have (") possibilites to select the k
vertices, S ways of having the component connected, and k ways of selecting
the "root" in the connected component; we do not know whether the remaining
n — k vertices are connected or not, so we have 2("2") possibilites for them.

Theorem[I]is quite unsatisfactory since it is a recursive formula. To compute,
e.g., Syp one needs to successively compute S1,S3,.93,...,S19.



Example 6 We can compute S, using Theorem [I| since
4 4 4 4
490 = <1)51 120 4 @52.2.2@) + (4)53.3.2@) + (4)54.4.2(S>

we have, using the known values of S1,S; and Ss,
4-64 =4-1-1-84+6-1-2-24+4-4-3-1 4+ 1-54-4-1.
Hence S; =64 — 8 — 12 = 38.

Exercise. Find all connected simple graphs of order 4.

4 Walks

Given a simple graph G = (V, E), a sequence (v;)¥_ of vertices v; € V is called
a walk (or k-walk) in G if for every 1 < j < k we have {v;_1,v;} € E.

A walk is closed if its initial and terminal vertices are the same. A walk
where all its edges are distinct is called a traul.

The notions of length, endpoints, inner vertices in a walk are defined analo-
gously as in a path. Nevertheless, note that, contrary to paths (resp., cycles),
vertices in a walk (resp., closed walk) can be repeated.

Example 7 Let G be the graph in Figure The sequence (d,a,c,a,b) is a
walk in G but not a path. The sequence (a,c,b, c,a) is a closed walk in G but
not a cycle. The sequence (d, a,b, c) is both a walk and a path. The sequence
(d,a,b,c,a) is a trail (but not a path nor a cycle).

: e‘g

Figure 5: A graph G.
Connectedeness of a pair of vertices in a graph through a walk is an equiva-
lence relation. Indeed:

e cvery vertex is connected by a 0-walk to itself;

e if there is a walk W = (v;)%_, from a to b, then the reverse walk W =
(vk—i)F_, connects b to a;

e if a,b are connected by a walk W; = (Ui)fzo and v, w are connected by a
walk Wy = (u;)", then there is a walk from u to w obtained W;Wy =
(wi)fiél, where w; = v; for 0 <i < k and w; = uj4p for k+1 < k < k+h.



The equivalence class of a vertex v determined by the connectedness relation
gives the component of the graph containing the vertex v.
We can also consider walks in non simple graphs.

Example 8 Let G be the graph in Figure[f] A walk in G is given by

(h,j,j,i,e,f,f):(bgcl>c—>c—i>bi>ai>di>a).

Figure 6: A non simple graph G.

5 Trees

A graph that does not have any cycle in it is called acyclic. An acyclic graph
is also called a forest. A connected forest, i.e., a graph that is both connected
and acyclic, is called a tree. Vertices of degree 1 in a tree are called leaves.

Example 9 The graph G on the left of Figure [7]is not acyclic. The graph H
on the centre is a forest. The graph K 5, on the right, is a tree.

@
Gi@ z:: K @@
@—© G @

Figure 7: A graph with a cycle (left) a forest (centre) and a tree (right).

The trivial graph has exactly one leaf. Every tree having more than one
vertex has at least 2 leaves. Indeed, it is enough to consider the endpoints of a
longest path.

Theorem 2 Let G = (V, E) be a graph s.t. dg(v) > 2 for every v € V. Then
G contains a cycle.

Proof. The statement is clear if G has a loop or two parallel edges. Thus,
WLOG, let us suppose that G is simple.

Let P = (vg,v1,...,Vk—1,Vx) be a longest path in G. Since dg(vy) > 2, then
there exists v € Ng (vg) with v # vg—1. If v ¢ P, then P+ {v} would be a path



longer than P, which is a contradiction. Thus, v = v; € P, which implies that
(Viy...,V—1,0) is & cycle in G. n

A graph G = (V, E) is minimally connected if it is connected but G \ e is
disconnected for every e € E. It is mazimally acyclic if it is acyclic but for any
two vertices u,v € V s.t. {u,v} ¢ E we have that G + {u,v} contains a cycle.

Theorem 3 The following are equivalent for a graph G = (V, E).
1. G is a tree.
2. Any two vertices in V are linked by a unique path in G.
8. G is minimally connected.
4. G is maximally acyclic.

Proof. Exercise. "

Corollary 1 (Euler’s formula for trees) A connected graph of order n is a
tree if and only if it has size n — 1.

The hypothesis of connectedness is necessary.
Example 10 Let us consider the graphs G, H and K; 5 in Example @ The
graph H, a forest but not a tree, has order 6 and size 4. The tree K; 5 has order
5 and size 4. The graph G, which is not a forest, has order 4 and size 3.

Theorem 4 (Cayley’s formula) Let #V = n. The number of trees with set
of vertices V is n" 2.

Example 11 The only tree with one vertex is the trivial one. The only tree
with two vertices a,b is the one with one edge {a,b}. If the set of vertices is

{a,b,c} we have three possible trees (see Figure [§). According to Theorem
there are 16 labelled trees on V = {a,b, c,d} (which ones?).
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Figure 8: Possible trees on 1, 2 and 3 vertices.

A rooted tree T(r) is a tree T = (V, E) with a specified vertex r € V' called
the root of T. Given a vertex v in a rooted tree T(r) different than r, we say



that a vertex in Np (v) on the unique path between r and v is a parent of v; all
vertices in this path are called ancestors of v. Similarly, a vertex is a child of
its parent, and u is a descendant of v if v is an ancestor of u.

We call level 7 (v) of a vertex v in a rooted tree T'(r) the distance dr(r,v)
(i.e., the length of the path from r to v in the tree). The root is the only vertex
with level 0. The height of a rooted tree is the maximal level.

Note that when dealing with rooted trees we call leaf a vertex of degree 1
that has no children. Hence, except for the trivial tree with one vertex, the root
is (in this context) never a leaf.

Example 12 The graph in Figure [9]is a rooted tree with root r. The vertices
a,b,c are children of r. The vertex h is a child of e and a descendant of a

(hence e is a parent of h and a an ancestor of h). The vertices d,e,f,g have
level 2, while the height of the tree is 3 (h is a vertex of maximal level).

() level 0

(a) (v) (¢) level 1
@ (o) () (& level 2
(n) level 3

Figure 9: A rooted tree.

An ordered tree T(r,=) is a rooted tree T(r) = (V, E) with root r and a
partial order =< on V giving the order of children of each vertex. We usually
represent it by drawing the children of a node from left to right starting from
the smallest.

Example 13 Let T be the rooted tree in Example [12] and represented in Fig-
ure @ Then, T'(r, =), with the partial order < defined by

a<b<c, d=<e and f<g

is a ordered tree.
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