
Elementary Introduction to Graph Theory
(01EIG 2025/2026)

Lecture 3

Francesco Dolce
dolcefra@fit.cvut.cz

October 10, 2025
updated: October 10, 2025

PDF available at the address: dolcefra.pages.fit/ens/2526/EIG-lecture-03.pdf

Solution of Exercise in previous Lecture. The number of connected
graphs on 4 vertices, S4, is 38. These 38 graphs are:

a) 1 complete graph;

a b

c d

b) 6 =
(
6
1

)
graphs with one edge missing;

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d

c) 15 =
(
6
2

)
graphs with two edges missing;

1

dolcefra.pages.fit/ens/2526/EIG-lecture-03.pdf

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d

d) 4 graphs with one vertex with degree 3, connected to the other 3 vertices of
degree 1;

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d

e) 12 = 6 · 2 graphs that are paths of length 3, since we have 6 possibilities for
the middle segment and 2 possibilities for the end segments;

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d
,

a b

c d

1 Adjacency matrix
The adjacency matrix AG of a simple graph G = (V,E), where V = {v1, v2, . . . , vn}
is the n× n matrix defined by

[AG]i,j =

{
1 if {vi, vj} ∈ E

0 otherwise
.

Clearly AG is a non-negative symmetric matrix.

Example 1 Let G = ({a, b, c, d}, {{a, b}, {a, c}, {a, d}, {b, c}}). The adjacency
matrix of G is

AG =


0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 .

Note that the definition of AG can be generalised to non-simple graphs by
replacing 1 with the number of parallel edges and counting each loop twice.

2

Theorem 1 Let k ∈ N0 and let AG be the adjacency matrix of a graph G =
(V,E) with V = {v1, v2, . . . , vn}. Then

[
Ak

G

]
i,j

is the number of walks of length
k with endpoints vi and vj in G.

Proof. The case k = 0 is trivial since we have A0
G = In, and the only walks of

length 0 are the ones connecting a vertex to itself.
Let us prove it by induction on k ≥ 1.

(k = 1) It follows directly from the definition of adjacency matrix, since a walk of
length 1 is exactly an edge.

(k − 1 → k) The (i, j)-element of Ak
G is given by

[
Ak

G

]
i,j

=
[
Ak−1

G ·AG

]
i,j

=

n∑
`=1

[
Ak−1

G

]
i,`

· [AG]`,j =

n∑
`=1

{v`,vj}∈E

[
Ak−1

G

]
i,`

but
[
Ak−1

G

]
i,`

is, by induction hypothesis, the number of walks of length
k−1 with endpoints vi and v`. Since we are summing only the walks that
can be prolonged from v` to vj (for every possibile choice of v`) we can
conclude (see Figure 1).

G vi

v`
...

NG (vj)

walks of length k−1
between vi and NG(vj)

vj

Figure 1: Illustration of the proof of Theorem 1.

Corollary 1 A graph G = (V,E) is connected if and only if
#V−1∑
k=0

Ak
G is a

positive matrix.

Proof.

(⇒) Let vi, vj ∈ V . Since G is connected the two vertices are linked in G.
Thus, there is a walk of length k ≤ #V − 1 in G with endpoints vi and
vj . Hence,

[
Ak

G

]
i,j

≥ 1.

3

(⇐) Let i, j with 0 < i, j < n. Since
[
n−1∑
k=0

Ak
G

]
i,j

> 0, there exists `, with

0 ≤ ` ≤ n− 1 such that
[
A`

G

]
i,j

≥ 1. Thus, there is a walk of length ` in
G with endpoints vi and vj .

Example 2 Let AG be the adjacency matrix seen in Example 1. We have

A2
G =


3 1 1 0
1 2 1 1
1 1 2 1
0 1 1 1

 and A3
G =


2 4 4 3
4 3 3 2
4 3 2 1
3 2 1 0

 .

Indeed, we have, e.g., three walks of length 2 from a to a, namely (a,b,a),
(a,c,a) and (a,d,a); and four walks of length 3 from a to c, namely: (a,b,a,c),
(a,c,a,c), (a,c,b,c) and (a,d,a,c).

Notice also that

3∑
k=0

Ak
G = I4 +AG +A2

G +A3
G =


6 6 6 4
6 6 5 3
6 5 5 2
4 3 2 2

 .

is a positive matrix.

2 Isomorphism of graphs
Two graphs G = (V,E) and H = (U,F) are identical if V = U and E = F .

They are isomorphic, denoted G ∼ H (or G ∼= H), if there exists a bijection
ϕ : V → U , called an isomorphism, such that for every u, v ∈ V

{u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ F.

Clearly when ϕ = id, the two graphs are identical.

Example 3 The graphs G =
(
V,

(
V
2

))
and H =

(
U,

(
U
2

))
with V = {a, b, c, d}

and U = {x, y, z, t} are isomorphic (see Figure 2), with bijection, e.g.,

ϕ :


a 7→ x

b 7→ y

c 7→ z

d 7→ t

4

a b

c d

,

a

b c
d ,

x y

z t

Figure 2: Three isomorphic graphs (the first two are identical).

Thus, two graphs are isomorphic if they are "the same" up to relabelling the
vertices. Clearly, degree and distance are preserved under isomorphism.

Proposition 1 Let G = (V,E) and H = (U,F) be two isomorphic graphs with
isomorphism ϕ. Then, for every u, v ∈ V we have

1. dG(v) = dH(ϕ(v)),

2. dG(u, v) = dH(ϕ(u), ϕ(v)).

Proof.

1. From the definition of isomorphism it follows that u ∈ NG (v) if and only if
ϕ(u) ∈ NH (ϕ(v)). Thus the cardinality of the two sets, i.e., the two degrees
dG(v) and dH(ϕ(v)), coincide.

2. Exercise.

Example 4 The graphs represented in Figure 3 are isomorphic. A possible
bijection is

ϕ :



a 7→ 1

b 7→ 4

c 7→ 2

d 7→ 5

e 7→ 3

f 7→ 6

.

One can check, e.g., that dG(a) = dH(1) = 3, and that dG(a, e) = dH(1, 3) = 2.

G

a

d

b

e

cf H

1 2 3

4 5 6

Figure 3: Two isomorphic graphs.

We do not normally distinguish between isomorphic graphs. When dealing
with a graph up to isomorphism we can forget the labels in the drawing.

5

If two graphs are isomorphic, then clearly they have the same order and the
same size. The opposite is not true.

Exercise. Show that the two unlabeled graphs in Figure 4, which have both
order 4 and size 3, are not isomorphic.

Figure 4: Two non-isomorphic graphs with the same order and size.

The graph isomorphism problem (deciding whether two graphs are isomor-
pic) is NP, but it is not known to belong to either P or NP-complete.

3 Tree isomorphism problem
We will see a polynomial-time algorithm for isomorphism of trees. To do it we
proceed in three steps, giving three different algorithms:

1. algorithm for isomorphism of ordered trees;

2. algorithm for isomorphism of rooted trees;

3. general algorithm for isomorphism of trees.

Two trees T1 = (V1, E1) and T2 = (V2, E2) are isomorphic, denoted

T1 ∼ T2,

if the two trees are isomorphic as graphs, i.e., there exists a bijective mapping
ϕ : V1 → V2 such that for every u, v ∈ V1

{u, v} ∈ E1 ⇔ {ϕ(u), ϕ(v)} ∈ E2.

Two rooted trees T1(r1) and T2(r2) are isomorphic, denoted

T1(r1) ∼R T2(r2),

if T1 ∼ T2 with isomorphism ϕ, and the morphism is sending root to root, i.e.,
ϕ(r1) = r2.

Two ordered trees T1(r1,�1) and T2(r2,�2) are isomorphic, denoted

T1(r1,�1) ∼O T2(r2,�2),

if T1(r1) ∼R T2(r2) with isomorphism ϕ, and the mapping ϕ preserves the
partial order of children of each vertex, i.e., for every u, v ∈ V1

u �1 v ⇔ ϕ(u) �2 ϕ(v).

6

Example 5 The two trees T1 and T2 in Figure 5 are isomorphic. Indeed an
isomorphism is given by

ϕ :



a 7→ E

b 7→ D

c 7→ C

D 7→ B

e 7→ A

.

As rooted trees, though, T1(d) and T2(C) are not isomorphic since there is no
isomorphism sending d to C (why?)

T1

d

c e

b

a

T2

C

D B

E A

Figure 5: T1 ∼ T2 but T1(d) 6∼R T2(C).

Example 6 The two rooted trees T3(r) and T4(R) in Figure 6 are isomorphic.
Indeed it is enough to consider the bijection

ϕ :



r 7→ R

a 7→ C

b 7→ B

c 7→ D

d 7→ A

.

They are not isomorphic as ordered trees (why?)
The two ordered trees T4(R,�4) and T5(s,�5) in the same figure are isomor-

phic (find the isomorphism!).

T3(r)

r

a b c

d

T4(R)

R

B C D

A

T5(s)

s

w x y

z

Figure 6: Three ordered trees.

7

4 Isomorphism of ordered trees
We will code a ordered tree by a sequence of 0s and 1s such that:

• the encoding uses only properties fixed by the mapping ϕ;

• the code is uniquely (up to isomorphism) decodable.

These two properties of the encoding imply that two ordered trees are iso-
morphic if and only if their codes are the same.

We code an ordered tree T (r,�) in the following way:

◦ each leaf gets the code 01;

◦ given a node v with children v1 ≺ v2 ≺ . . . ≺ vk having encoding
C(v1), C(v2), . . . , C(vk), we define C(v) = 0C(v1)C(v2) · · ·C(vk) 1;

◦ C(T) = C(r), i.e., the code of a tree coincides with the code of its root.

Example 7 Let T3(r,�3) be the ordered tree in Example 6. Then

C(a) = C(c) = C(d) = 01; C(b) = 0.C(d).1 = 0011;

and
C(T3) = C(r) = 0.C(a).C(b).C(c).1 = 0010011011.

One can check that C(T4) = C(T5) = 0001101011 6= C(T3).

We can also decode a code C of an ordered tree T (r,≺). If C(T) = 0w1,
then w corresponds to the concatenations of codes of ordered trees with roots
corresponding to the children of r.

In particular, if w = C(v1)C(v2) · · ·C(vk), then C(v1) is the shortest prefix
of w with the same number of 0s and 1s. We can cut C(v1) and continue
analogously.

Example 8 Let C(T3) = 0.01001101.1 as in Example ??. The shortest prefix
of w = 01 0011 01 having the same number of 0s and 1s is C(v1) = 01. Similarly
C(v2) = 0011 and C(v3) = 01. The vertex v2 has a child v4 with encoding
C(v4) = 01. Thus v1, v3, v4 are leaves and the T3 is isomorphic to the ordered
tree T = ({r, v1, v2, v3, v4}, {{r, v1}, {r, v2}, {r, v3}, {v2, v4}}).

5 Isomorphism of rooted trees
We would like to modify the encoding of ordered trees so that it can be used
for deciding the isomorphism of rooted trees.

Which properties used in the previous case can we also use in the case of
rooted trees?

1) a vertex is a root, X

8

2) a vertex is a leaf, X

3) a vertex is a child of a vertex, X

4) children of the same vertex are ordered. 8

So we have to compensate for the fact that children of a vertex do not have
a fixed (under isomorphism) order. To do that we:

• choose an ordering ≤ on strings over {0, 1} (e.g., lexicographical or radix),

• if v has children v1, v2, . . . , vk such that C(v1) ≤ C(v2) ≤ . . . ≤ C(vk),
then we define C(v) = 0C(v1)C(v2) · · ·C(vk) 1.

Example 9 Let T1(d) and T2(C) be the rooted tree in Example 5. We have

C(a) = C(e) = 01, C(b) = 0011 and C(C) = 000110.

If we use the lexicographic order ≤lex we have

C(c) = 000111 <lex 01 = C(e),

so
C(T1) = C(d) = 0.C(c).C(e).1 = 0000111011

Similarly, we have

C(A) = C(E) = 01, C(B) = C(D) = 0011, andC(D) = 0011 = C(B).

Hence, C(T2) = C(C) = 0001100111 6= C(T1).
On the other hand, one can check that the three trees in Example 6 have all

the same encoding (using the lexicographic order) 0001101011.

Exercise. Prove, using the radix order, that:

a) T1(d) 6∼R T2(c),

b) T3(r) ∼R T4(R) ∼R T5(s).

6 Isomorphism of general trees
Again, we would like to adapt the encoding of rooted trees to decide isomorphism
of general trees. Problems in this case, i.e., in switching from rooted to general
trees, are much more serious. Indeed, we don’t have the root, thus we cannot
establish the child/parent relationship between nodes.

Therefore, we have to find a suitable (i.e., preserved under isomorphism)
substitute for the root. To do that we use the centre of a tree.

While for a general graph G = (V,E) the centre of G can be any subset of
V (see, e.g., C(C3) where the centre is the entire set of vertices), in the case of
trees the situation is simpler.

9

Theorem 2 Let T = (V,E) be a tree. Then either C(T) = {x} or C(T) =
{x, y}, with x, y ∈ V . Moreover, in the latter case we have {x, y} ∈ E.

Example 10 Let T1 and T2 be the trees in Example 5, and T3, T4, T5 the ones
in Example 6. One can check that

C(T1) = {c}, C(T2) = {C}, C(T3) = {b, r}, C(T4) = {B, R}, C(T5) = {w, s}.

Since the only graph property used in the definition of centre of a tree is the
distance, and since distance of vertices is preserved under the isomorphism, we
can use the centre of a tree instead of the root. In particular, when the centre
is a singleton we consider it as the root of the tree. When the centre is a set of
cardinality two, we use these two vertices as roots of two new trees obtained as
subgraphs of the original one.

Algorithm 1: IsoTrees(T1, T2)
Input: Two trees T1 = (V1, E1) and T2 = (V2, E2)
Output: TRUE if T1 ∼ T2; FALSE if not

1 Find centres C(T1) and C(T2)
2 if #C(T1) 6= #C(T2) then
3 return FALSE // T1 6∼ T2

4 else if
(
C(T1) = {x} and C(T2) = {y}

)
then

5 return IsoRootTrees(T1(x), T2(y)) // T1 ∼ T2 ⇔ T1(x) ∼R T2(y)

6 else
7 Let C(T1) = {x1, x2} and C(T2) = {y1, y2}.
8 We use 4 rooted trees:
9 T

(1)
1 (x1): the component of T1 \ {x1, x2} containing x1;

10 T
(2)
1 (x2): the component of T1 \ {x1, x2} containing x2;

11 T
(1)
2 (y1): the component of T2 \ {y1, y2} containing y1.

12 T
(2)
2 (y2): the component of T2 \ {y1, y2} containing y2.

13 return
((

IsoRootTrees(T (1)
1 (x1), T

(1)
2 (y1)) and

IsoRootTrees(T (2)
1 (x2), T

(2)
2 (y2))

)
or(

IsoRootTrees(T (1)
1 (x1), T

(2)
2 (y2)) and

IsoRootTrees(T (2)
1 (x2), T

(1)
2 (y1))

))
14 // T1 ∼ T2 ⇔

(
T

(1)
1 (x1) ∼R T

(1)
2 (y1) ∧ T

(2)
1 (x2) ∼R T

(2)
2 (y2)

)
∨
(
T

(1)
1 (x1) ∼R T

(2)
2 (y2) ∧ T

(2)
1 (x2) ∼R T

(1)
2 (y1)

)

Example 11 Let T1, T2, T3, and T4 as in Examples 5 and 6.

• Clearly T1 6∼ T3 since #C(T1) 6= #C(T3).

• We have T1 ∼ T2 since one can easily check that T1(c) ∼R T2(C).

10

• We have T3 ∼ T4 since one can build the rooted trees T (1)
3 (b), T

(2)
3 (r), T

(1)
4 (B)

and T
(2)
4 (R) (see Figure 7) and easily check that T

(1)
3 (b) ∼R T

(1)
4 (B) and

T
(2)
3 (r) ∼R T

(2)
4 (R).

T
(1)
3 (b) b

d

T
(2)
3 (r)

r

a c T
(1)
4 (B) B

A

T
(2)
4 (R)

R

C D

Figure 7: The trees obtained by deleting the central edges in T3 and T4.

11

	Adjacency matrix
	Isomorphism of graphs
	Tree isomorphism problem
	Isomorphism of ordered trees
	Isomorphism of rooted trees
	Isomorphism of general trees

