
Elementary Introduction to Graph Theory
(01EIG 2025/2026)

Lecture 4

Francesco Dolce
dolcefra@fit.cvut.cz

October 17, 2025
updated: October 17, 2025

PDF available at the address: dolcefra.pages.fit/ens/2526/EIG-lecture-04.pdf

Solution of Exercise in previous Lecture. Let G = (V,E) and H =
(U,F ) be two isomorphic graph with isomorphism ϕ. Each vertex v ∈ V is sent
to a vertex ϕ(v) ∈ U having the same degree. Indeed, ϕ is, in particular, a
bijection between NG (v) and NH (ϕ(v)). Thus,

dG(v) = #NG (v) = #NH (ϕ(v)) = dH(ϕ(v)).

In the first graph all vertices have degree 2, while in the second one we have
a vertex of degree 3, two vertices of degree 2 and one vertex of degree 1. Thus
G and H cannot be isomorphic.

Solution of Exercise in previous Lecture. Let us use the radix order
to compare coding of children of the same node.

a) The nodes of the rooted tree T1(d) have coding

C(a) = C(e) = 01, C(b) = 0.01.1, C(c) = 0.0011.1

and C(d) = 0.01.000111.1, since 01 <rad 000111.

The nodes of the rooted tree T2(C) have coding

C(E) = C(A) = 01, C(D) = C(B) = 0.01.1

1

dolcefra.pages.fit/ens/2526/EIG-lecture-04.pdf


and C(C) = 0.0011.0011.1, since 0011 =rad 0011.

Since C(d) 6= C(C) we can conclude that T1(d) 6∼R T2(c),

b) The nodes of the rooted trees T3(r), T4(R) and T5(s) have coding

C(a) = C(d) = C(c) = C(A) = C(C) = C(D) = C(z) = C(x) = C(y) = 01,

and
C(b) = C(B) = C(w) = 0.01.1.

Since 01 =rad 01 <rad 0011, we have

C(r) = C(R) = C(s) = 0.01.01.0011.1,

which implies T3(r) ∼R T4(R) ∼R T5(s).

1 Directed graphs
A directed graph or digraph (or oriented graph) is a pair D(V,E), where V is a
(finite) set, and a ∈ V × V for every a ∈ E.

Elements of V are called vertices, while elements of E are called arcs (or
directed edges, or oriented edges).

Given an arc a = (u, v) ∈ E, we call u the tail of a and v the head of a.
Both u, v are the ends of a. The vertex u is called an in-neighbour of v, and
the vertex v a out-neighbour of u. It is thus natural to define

N−G(v) = {u | (u, v) ∈ E} and N+
G(v) = {u | (v, u) ∈ E} .

The in-degree and the out-degree of a vertex v are defined respectively as

d−G(v) = #N−G(v) and d+G(v) = #N+
G(v).

Given an arc a = (u, v), we also denote by a− = u its starting vertex and by
a+ = v its ending vertex.

a− a+
a

A graph G = (V ′, E′) is the underlying graph of a digraph D if V ′ = V and
{u, v} ∈ E′ if (u, v) ∈ E.

Example 1 The digraph D = (V,E), with vertices V = {u, v, w, x, y} and arcs
E = {(u, v), (u, w), (v, x), (x, v), (y, v), (y, y)} is shown in Figure 1 on the left.
One can check that d−G(v) = 3 and d+G(v) = 1.

The underlying graph G of D is shown on the same figure on the right.

2



D

u

w

v

x

y

G

u

w

v

x

y

Figure 1: A digraph D (left) and its underlying graph G (right).

An orientation of a graph G = (V,E) is a digraph obtained by choosing a
direction for every edge in E. The converse of a digraph D = (V,E) is the
digraph D′ = (V ′, E′) with set of vertices V = V ′ and seet of arcs given by
(u, v) ∈ E ⇔ (v, u) ∈ E′.

Clearly, both a digraph and its converse are orientations of the same graph.

Example 2 An orientation of the graph G = ({a, b, c}, {{a, b}, {b, c}}) is the
digraph D = ({a, b, c}, {(a, b), (c, b)}). The converse of D is the digraph D′ =
({a, b, c}, {(b, a), (b, c)}) (see Figure 2).

a b

c

a b

c

a b

c

Figure 2: A graph (left) and two of its possible orientations (centre and right).

2 Branching
An orientation of a rooted tree such that every vertex but the root has in-degree
1 is called a branching.

It is clear that (u, v) is an arc in a branching if and only if v is a child of u
in the correspective tree.

Example 3 Let T (r) be the rooted tree shown on the left of Figure 3. A
branching D of T (r) is shown on the right of the same Figure 3.

T (r)

r

a b

c d e

D

r

a b

c d e

Figure 3: A rooted tree (left) and its branching (right).

3



3 Graph Traversal Algorithms (GTS)
A graph traversal is the process of visiting each vertex of a (connected) graph.
It is a key ingredient of many graph algorithms.

Tarry’s algorithm. The oldest known GTS algorithm, Tarry’s algorithm,
uses two rules while traversing the graph:

(R1) every edge can be used at most once in every direction;

(R2) the edge of the first arrival to a vertex can be used (in the opposite direc-
tion) only if there is no other possibility.

Theorem 1 Tarry’s traversal is finite.
Moreover, if there is no way to continue with the traversal, we have returned

to the starting vertex, and, moreover, every edge of G has been used exactly
twice.

Example 4 Let G be the graph in Figure 4. If the starting point is the vertex
a, a possible traversal is the walk (a,d,b,c,f,e,d,g,h,i).

G a

b c

d e f

g h i

Figure 4: The walk (a,d,b,c,f,e,d,g,h,i) is a traversal.

Note that in a traversal we do not necessarily use all edges, and we may visit
the same vertex more than once.

Today, the two primary graph traversal (or searching) algorithms are:

• Breadth-First Search (using queues).

• Depth-First Search (using stacks),

The following algorithm can be used with D either a queue, for BFS, or a
stack, for DFS.
Algorithm 1: Traversal(G)
Input: graph G
Init: choose a vertex and put it in D

1 repeat
2 pop a vertex from D
3 process it
4 put all its unprocessed neighbours in D

5 until D is empty

4



Example 5 A possible traversal of the graph G in Figure 4 starting from a is
given by the queue (using BFS):

∅ → (a)→ (a, d)→ (d, b, e, g)→ (b, e, g, c)→ (e, g, c, f, h)
→ (g, c, f, h)→ (c, f, h)→ (f, h)→ (h, i)→ (i)→ ∅.

Example 6 A possible traversal of the graph G in Figure 4 starting from a is
given by the stack (using DFS):

∅ → [a]→ [a, d]→ [a, d, e]→ [a, d, e, f]→ [a, d, e, f, c]
→ [a, d, e, f, c, b]→ [a, d, e, f, c]→ [a, d, e, f]→ [a, d, e, f, h]
→ [a, d, e, f, h, g]→ [a, d, e, f, h]→ [a, d, e, f, h, i]→ [a, d, e, f, h]
→ [a, d, e, f]→ [a, d, e]→ [a, d]→ [a]→ ∅.

We can use a GTS algorithm, e.g., to find the components of a (not neces-
sarily connected) graph G:

1. use DFS from a starting point (i.e., any vertex) v ∈ V ;

2. if the algorithm stops, then all vertices are processed: we have the com-
ponent of G containing v.

4 Tree-Search Algorithms: BFS vs DFS
Let G = (V,E) be a graph. A spanning tree of G is a spanning graph of G that
is a tree, i.e., a tree T = (V,E′) with E′ ⊆ E.

A graph that is not connected cannot contain any spanning tree.
On the other hand, any connected graph contains at least one spanning tree.

Example 7 Let G be the graph in Figure 5 on the left. Two possible spanning
trees are represented on the right of the same figure.

G

a b

c d
T1

a b

c d
T2

a b

c d

Figure 5: A graph and two of its possible spanning trees.

One can modify Algorithm 1 to construct the spanning tree of a graph. For
instance, the following algorithm uses BFS, and a queue, to construct a spanning

5



tree of a given graph.
Algorithm 2: Breadth-FirstSearch(G)
Input: graph G
Output: a spanning tree T = (V,E) of G
Init: choose a vertex v and append it to Q

1 V = {v}, E = ∅
2 repeat
3 let x be the head of Q
4 foreach y ∈ NG (x) do
5 if y /∈ V then
6 append y to Q
7 V ← V ∪ {y}
8 E ← E ∪ {x, y} // y is a child of x

9 remove x from Q

10 until Q is empty

Example 8 Let G be the graph in Figure 4. A spanning tree is given by the
following queue (see also Figure 6):

∅ → (a)
{a,d}→ (a, d)→ (d)

{d,b}→ (d, b)
{d,e}→ (d, b, e)

{d,g}→ (d, b, e, g)

→ (b, e, g)
{b,c}→ (b, e, g, c)→ (e, g, c)

{e,f}→ (e, g, c, f)
{e,h}→ (e, g, c, f, h)→ (g, c, f, h)→ (c, f, h)→ (f, h)→ (h)
{h,i}→ (h, i)→ (i)→ ∅.

T (a) a

b c

d e f

g h i

Figure 6: A spanning tree obtained by BFS.

Remember that, for a rooted tree T (r) the level of a vertex v in T is defined
as `T (v) = dT (r, v).

Let T (r) be a spanning tree of a connected graph G obtained by BFS . Then
it is easy to show that for every vertex v of G we have `T (v) = dG(r, v) , i.e.,
the distance between r and v in the original graph is the same as the distance
in the spanning tree.

Example 9 Let G be the graph in Example 4 and T (a) be the rooted spanning
tree obtained from it in Example 8. One can check that we have, e.g., dG(a, h) =
dT (a, h) = 3.

6



Similarly we can construct a spanning tree of a graph using DFS, with a
stack as data structure.
Algorithm 3: Depth-FirstSearch(G)
Input: graph G
Output: a spanning tree T = (V,E) of G
Init: choose a vertex v and push it to the top of S

1 V = {v}, E = ∅
2 repeat
3 let x be the top of S
4 if NG (x) \ V is not empty then
5 choose y ∈ NG (x) \ V
6 push y to the top of S
7 V ← V ∪ {y}
8 E ← E ∪ {x, y} // y is a child of x

9 else
10 remove x from S

11 until S is empty

Example 10 Let G be the graph in Figure 4. A spanning tree is given by the
following stack (see also Figure 7):

∅ → [a]
{a,d}→ [a, d]

{d,e}→ [a, d, e]
{e,f}→ [a, d, e, f]

{f,c}→ [a, d, e, f, c]
{c,b}→ [a, d, e, f, c, b]→ [a, d, e, f, c]→ [a, d, e, f]

{f,h}→ [a, d, e, f, h]
{h,g}→ [a, d, e, f, h, g]→ [a, d, e, f, h]

{h,i}→ [a, d, e, f, h, i]
→ [a, d, e, f, h]→ [a, d, e, f]→ [a, d, e]→ [a, d]→ [a]→ ∅.

T (a) a

b c

d e f

g h i

Figure 7: A spanning tree obtained by DFS.

5 Tree-Search Algorithms: ordered edges
A different algorithm to obtain a spanning tree T from a graph G = (V,E) is
given by adding a vertex at a time without creating any cycles.

1. Let us assume that the edges of E are ordered: e1 < e2 < . . . < em.

7



2. Construct a sequence of subgraphs

G0 ⊆ G1 ⊆ · · · ⊆ Gk

such that

• G0 = (V, ∅), i.e., we start with no edges;

• for every i we define V (Gi) = V , i.e., all graphs have the same set of
vertices, and

E(Gi+1) =

{
E(Gi) ∪ {ei} if by adding ei no cycle is created in E(Gi),

E(Gi) otherwise.

3. We stop when #Ei = #V − 1.

In the last step, we rely on Euler’s formula for trees.
The algorithm can be written in pseudo-code as follows.

Algorithm 4: TreeSearchEdges(G)
Input: graph G = (V,E) with E = {e1 < e2 < . . . < em}
Output: spanning tree T = (V,E′) of G

1 E′ = ∅, i = 1
2 repeat
3 if (T + ei is acyclic) then
4 E′ ← E′ ∪ {ei}
5 i→ i+ 1

6 until #E′ = #V − 1

Example 11 Let us consider the graph of Example 4 with edges ordered as on
the left of Figure 8: e1 < e2 < . . . < e12. The spanning tree obtained using the
algorithm above is shown on the right of the same figure. For instance, we do
not add e6 since this would add a cycle (b, c, e, d).

G a

b c

d e f

g h i

e1

e2

e3 e4
e5

e6

e7

e8

e9 e10

e11 e12

T a

b c

d e f

g h i

e1

e2

e3 e4
e5

e7 e9

e12

Figure 8: A graph and one of its spanning tree.

8



6 Weighted graphs
In some applications it is important to consider edges differently and to associate
to each of them a different number.

A weighted graph (G,w) is a graph G = (V,E) together with a function
w : E → R, called weight function, associating to each edge e its weight w(e).
Given a subgraph H = (U,F ) of G, we call w(H) =

∑
e∈F

w(e) the weight of H.

Example 12 Let G be the simple graph in Figure 9 where the weight of each
edge is represented above it. Let P be the path (a, d, e, f, g) in G (edges are in
blue in Figure 9). Then w(G) = 22 and w(P ) = 14.

a

b

c

d

e

f g2

3

1

4 1

4 2

5

Figure 9: A weighted graph.

7 Minimal spanning trees
Let (G,w) be a weighted graph, with G = (V,E). A minimum spanning tree
(or optimal tree) of G is a spanning tree T = (V,E′) of G such that the cost
w(T ) =

∑
e∈E′

w(e) of T is minimal.

Several known algorithms exist for finding a minimum spanning tree. The
most used is the so-called Kruskal’s algorithm

Algorithm 5: Kruskal((G,w))
Input: weighted graph (G,w) with G = (V,E)
Output: minimal spanning tree T = (V,E′) of G

1 sort E s.t. w(e1) ≤ w(e2) ≤ · · · ≤ w(em)
2 return TreeSearchEdges(G,E)

Example 13 ČEZ wants to connect some major cities (Prague, Brno, Liberec,
Ústí nad Labem, Olomouc, Hradec Králove, Zlín, České Buděovice) to the
electricity network. The network has to be connected, otherwise some towns
will not get the electricity. On the other hand, ČEZ wants to keep the building
costs as low as possible. Thus, they want to build a connected graph with
the lowest possible total cost of links. Assuming that the cost of building a
link between two cities is proportional to the distance between these cities (see
Table 1), find an optimal subgraph.

9



km P B L Ú O H Z Č
P – 185 88 69 209 101 252 124
B – 207 246 65 126 77 157
L – 73 204 83 254 204
Ú – 258 137 305 191
O – 122 51 213
H – 171 169
Z – 234
Č –

Table 1: Distance between cities in Czechia.

Using the distance between the cities we can construct a weighted complete
graph K8 on 8 vertices {P, B, L, Ú, O, H, Z, Č}. This complete graph has
8·7
2 = 24 edges. Let’s order them according to their weight:

e1 = {O, Z}, e2 = {B, O}, e3 = {P, Ú}, e4 = {L, Ú},
e5 = {B, Z}, e6 = {L, H}, e7 = {P, L}, e8 = {P, H},
e9 = {P, Č}, e10 = {O, H}, e11 = {B, H}, e12 = {Ú, H},
e13 = {B, Č}, e14 = {H, Č}, e15 = {H, Z}, e16 = {P, B},
e17 = {Ú, Č}, e18 = {L, O}, e19 = {L, Č}, e20 = {P, O},
e21 = {B, L}, e22 = {O, Č}, e23 = {Z, Č}, e24 = {B, Ú},
e25 = {P, Z}, e26 = {L, Z}, e27 = {Ú, O}, e28 = {Ú, Z}.

The minimal spanning tree of the complete graph using Kruskal’s algorithm is
shown in Figure 10

P

B

L
Ú

O

H

Z
Č

e1e2

e3

e4
e6

e9

e10

Figure 10: A minimal spanning tree of K8.

Exercise. Let (G,w) be the weighted graph represented in Figure 11, where
each edge is represented with its weight. Find a minimal spanning tree of G.

10



a b c

d e f

1 1

1

2

2 2

2

33

4

Figure 11: A weighted graph.

11


	Directed graphs
	Branching
	Graph Traversal Algorithms (GTS)
	Tree-Search Algorithms: BFS vs DFS
	Tree-Search Algorithms: ordered edges
	Weighted graphs
	Minimal spanning trees

