
Elementary Introduction to Graph Theory
(01EIG 2025/2026)

Lecture 5

Francesco Dolce
dolcefra@fit.cvut.cz

October 31, 2025
updated: October 30, 2025

PDF available at the address: dolcefra.pages.fit/ens/2526/EIG-lecture-05.pdf

Solution of Exercise in previous Lecture. Let us order the edges of G
according to their weights: e1 < e2 < · · · < e10 (this order is not unique). The
label ad weight of each vertex is shown on the left of Figure 1. The minimal
spanning tree obtained using Kruskal’s algorithm is shown on the right of the
same figure.

a b c

d e f

1, e1 1, e2

1, e3
2, e4

2, e5 2, e6

2, e7

3, e83, e9
4, e10

a b c

d e f

1, e1 1, e2

1, e3
2, e4

2, e7

Figure 1: A weighted graph and one of its minimal spanning tree.

1

dolcefra.pages.fit/ens/2526/EIG-lecture-05.pdf

1 Time complexity, Union-Find operation
The time complexity of the algorithms seen in the previous lecture depends on
the used data structures. For instance, in Kruskal’s Algorithm, time complexity
heavily depends on the choice of data structure used in the step where the
algorithm has to test whether by addition of an edge we create a cycle in Gi.

To test whether we have a cycle is quite simple: it is enough to remem-
ber for each vertex v the component the vertex belong to: a new edge {x, y}
does create a cycle if and only if x and y already belong to the same component.

A naive implementation could be to use an array to store the label of its
component for each vertex.

The operation find (u) which finds the label of the component containing
the vertex v has time complexity O(1). This seems to be perfect.

However, there is another operation we need to implement: the union (·)
operation. Suppose we are trying to add an edge e = {x, y}. If x and y are in
the same component, we skip e. If x and y are in different component – i.e., if
find (x) 6= find (y) – then we add e to the graph. This operation merges the
components containing x and y into a single component.

In our naive implementation we have to go through the whole array used to
store the labels of components and to perform the merging.

For example, if x is in component A and y is in component B, we must scan
the entire array and replace all instances of B with A.

This operation has time complexity O(n), where n = #V .
The total time complexity of Kruskal’s Algorithm with naive implementa-

tion is thus O(m · n), where m = #E and n = #V , since we have at most m
steps of the algorithm.

We can consider a more elaborate implementation of Union-Find scheme.

• We represent individual components by trees.

• The root of a tree is the label of the component, or a representative of the
component.

• find (a): find out the root of the tree representing the component con-
taining the vertex a. The complexity is proportional to the length of the
tree, i.e., O(lnn).

• union (a, b): we need to merge two components. We merge the trees
representing both components so that the height of the resulting tree is
as small as possible. To achieve this goal we connect the trees so that
the root of the smaller tree is a child of the root of the longer tree. In
this way the height increases at most by 1. The complexity is O(1) – if
we remember the length of trees and we ran find (·) before union (·) – or
O(lnn).

• The total time complexity is O(m · lnn), where m = #E and n = #V .

2

Example 1 Let G be a graph having two components A and X as in the left
of Figure 2. One can check that find (b) = A and find (z) = B. Two possible
spanning trees of the components are shown in center of the same figure (we
select a as representative of A and x as representative of X). The union of the
two components containing b and z is shown on the right of the figure.

A

a b c

d
e

X

x y

z
t

TA(a)
a

e

d b

c

TX(x) x

z y

t

union (b, z)

a

e

d b

c

x

z y

t

Figure 2: Union-Find scheme using trees.

We discussed the Union-Find scheme to demonstrate how algorithmic ef-
ficiency can depend on the choice of data structure. This scheme, also called
disjoint-set data structure is a very general data structure that has different
applications.

In practice, a faster version of the Union-Find scheme is usually used:
tree representation with path compression. This version achieves near constant
amortized time complexity for each operation. More precisely, for a sequence of
m Union-Find applications on a set with n nodes, the total time required is
O(m · α(n)), where α(n) is the inverse Ackermann function.

2 Euler tours
Let G = (V,E) be a (non necessarily simple) graph of order n and size m. A
walk (v0

e1→ v1
e2→ · · · em→ vm) is called an Eulerian walk if for every 1 ≤ i, j ≤ m

with i 6= j we have ei 6= ej . Thus, an Eulerian walk is a trail that traverses
every edge, i.e., every edge in E is used exactly once.

An Eulerian closed walk is called an Euler tour. A graph is called Eulerian
if it admits an Euler tour.

Example 2 Let G be the simple graph in Figure 3. An Eulerian walk in the
graph is given by the path (e5, e1, e2, e3, e4, e8, e7, e6). There is no Euler tour in
G, so the graph is not Eulerian.

3

One can also check that the graph K in the same figure is not Eulerian and
does not contain any Eulerian walks neither.

G

a

b c

d e

e1 e2
e3

e4
e5 e6

e7

e8

K

A

B C

D

f1

f2

f3

f4

f5

f6 f7

Figure 3: Two non-Eulerian graphs.

A necessary condition for having an Eulerian walk or an Euler tour in a
graph is connectedness. This condition is not sufficient, though, as shown in
Example 2.

Theorem 1 (Euler (1736)) A connected graph is Eulerian if and only if it is
even.

Proof.

(⇒) Every vertex appearing k times in an Euler tour must have degree 2k.

(⇐) Let G be a connected even graph. We construct an Euler tour in the
following way.

0) • i← 1.
• Let us choose a random starting vertex vi and a colour ci.

1) Walk, as long as possible, along the edges (at random) of G. When
leaving a vertex choose an edge with no colour. While traversing an
edge, colour it using ci.

2) If there is no way how to continue, we have returned to the starting
vertex vi and, moreover, all edges incident with vi have already been
coloured.

a) If there are no colourless edges go to Step 3) (Reconstruction).
b) If there are some colourless edges left:

• i← i+ 1.
• Choose a new colour ci that has not been used so far.
• Choose a new starting vertex vi such that there are some

colourless as well as some coloured edges incident with it (it
is possible to find such a vertex vi due to the assumption
that G is connected).
• Go to Step 1).

4

3) (Reconstruction) All edges of G have been coloured, i.e., the
set E is partitioned by a set of disjoint closed walks {Wi}i. We
have to join these walks into one Euler tour.
i) Start at v1, follow the edges of the first closed walk.
ii) If we meet a starting vertex vk of a closed walk Wk which

has not yet been processed (i.e., joined into the Euler tour),
we "transfer" to Wk, circle the whole closed walk Wk before
returning back to the edges of the previous walk.

By applying rule ii) in Theorem 1, the walks can "nest" several times and
they can be proessed in an order different to the order in which they have been
created.

Example 3 Let H be the graph in Figure 4.

(Step 0) We start by choosing the vertex b and the colour red.

(Step 1) We consider the closed walk Wr = (b
e1→ d

e2→ c
e3→ a

e4→ b
e5→ e

e6→ c
e7→ b).

(Step 2) We choose the vertex d and the colour green.

(Step 1) We consider the closed walk Wg = (d
e8→ h

e9→ g
e10→ d).

(Step 2) We choose the vertex g and the colour blue.

(Step 1) We consider the closed walk Wb = (g
e11→ f

e12→ e
e13→ g).

(Step 2) All edges are coloured.

(Step 3) The Euler tour is (e1, e8, e9, e11, e12, e13, e10, e2, e3, e4, e5, e6, e7).

H a

b

c

d

e f

g

h

e1

e2

e3

e4

e5

e6

e7

e8 e9

e10

e11

e12

e13

Figure 4: Finding an Eulerian tour in a graph.

The proof of Theorem 1 gives an algorithm for finding Euler tours in an
Eulerian graph. There is, however, a more efficient algorithm based on Tarry’s
traversal algorithm with complexity O(m+ n), where m and n are respectively
the size and the order of the graph.

5

• Choose a starting vertex v0.

• Traverse G using as long as possible the two rules:

(R1) no edge can be used twice in the same direction;
(R2) the order in which we choose an edge when leaving a vertex u is:

a) an edge which has not yet been used,
b) an edge used to arrive to u with the exception of the edge of first

arrival,
c) the edge of first arrival to u.

During the traversal we record the edge of first arrival for every vertex
v (except at the beginning for v0), and add the edges in a sequence
called return sequence, according to the order in which they are used
for the second time.

• When there is no way to proceed in the traversal using rules (R1) and
(R2): we have returned to v0, every edge has been traversed exactly twice
(once in every direction); and one can prove that the return sequence
corresponds to an Euler tour.

Example 4 Let H be the graph in Example 3. Let us show an application of
the algorithm described above on H, starting from the vertex b (see Figure 5).

Using rules (R1) and (R2) we can find a closed walk

(b
e1→ d

e2→ c
e3→ a

e4→ b
e5→ e

e6→ c
e7→ b

e7→ c
e6→ e

e12→ f
e11→ g

e13→ e
e13→ g

e9→ h
e8→ d

e10→ g
e10→ d

e8→ h
e9→ g

e11→ f
e12→ e

e5→ b
e4→ a

e3→ c
e2→ d

e1→ b),

where we colour in blue the first arrival to a vertex, and in red the return
sequence.

Thus, an Euler tour (closed Eulerian walk) over H is given by

(e7, e6, e13, e10, e8, e9, e11, e12, e5, e4, e3, e2, e1).

H a

b

c

d

e f

g

h vertex first arrival
a e3
b e4
c e2
d e1
e e5
f e12
g e11
h e9

e1

e2

e3

e4

e5

e6

e7

e8 e9
e10

e11

e12

e13

Figure 5: Finding an Eulerian tour in a graph.

6

Remember that the number of vertices with odd degrees in a graph is even.
Therefore, in particular, it cannot be 1.

Theorem 2 A connected graph has an Eulerian trail if and only if the number
of vertices with odd degree is at most 2 (i.e., either 0 or 2).

Example 5 The graphs G and K in Example 2 are not Eulerian. Indeed they
are connected but not even, since, e.g., dG(e) = 3 and dK(A) = 5.

The graph G has an Eulerian walk, since only d and e have odd degrees.
The graph K does not have an Eulerian path since it has 4 vertices of odd

degree.

3 Hamilton cycles
A dual problem of the one of finding an Euler tour in a graph is the one of
finding a cycle visiting every vertex exactly once.

We call Hamilton path and Hamilton cycle respectively a spanning path and
a spanning cycle in a graph G.

Thus, every Hamilton path (resp., Hamilton cycle) in G = (V,E) has length
#V − 1.

A graph containing a Hamilton path is called traceable. A graph containing
a Hamilton cycle is called Hamiltonian. Clearly, every Hamiltonian graph is
also traceable.

Example 6 The G graph in Example 2 is Hamiltonian. A Hamilton path and
a Hamilton cycle of the graph are shown in Figure 6.

a

b c

d e

a

b c

d e

Figure 6: A Hamilton path (on the left) and a Hamilton cycle (on the right).

There is a major difference in comparison to the problem of the existence of
Euler tours. To determine whether or not a given graph has a Hamilton cycle is
much harder. No good characterisation is known or even expected to exist (the
problem is a NP-complete problem).

Path exchanges. A natural way of looking for a Hamilton path is by ex-
tending a path as much as possible. Let suppose that we found a path P =
(v1, . . . , vk) in a graph G and let v ∈ NG (vk) \ {vk} (we want to avoid loops).

7

• If v is not in P , i.e., if v 6= vi for all 1 ≤ i ≤ k, then we can extend the
longer path to P ′ = P + {(vk, v)}.

• If v is in the path but v 6= vk−1, i.e., v = vi for some 1 ≤ i ≤ k − 2, then
we can obtain a path of the same length by exchanging {vi, vi+1} with
{vk, vi}, i.e., considering the path P ′′ = (P \ {vi, vi+1}) + {(vk, vi)} (see
Figure 7).

v1

vi

vi+1

vk

−→
v1

vi

vi+1

vk

Figure 7: A path exchange.

Cycle exchange. In a similar way, let us suppose that we have a cycle C =
(v1, . . . , vk) having two vertices vi, vj non consecutive in C, i.e., with |i− j| > 1
and such that both {vi, vj} and {vi+1, vj+1} are edges of the graph. Then we
can obtain a new cycle

C ′ = (C \ {{vi, vi+1}, {vj , vj+1}}) + {{vi, vj}, {vi+1, vj+1}}

having the same length as C (see Figure 8).

vi vi+1

vjvj+1

−→

vi vi+1

vjvj+1

Figure 8: A path exchange.

There are several known sufficient conditions for the existence of a Hamilton
cycle in a graph.

Every complete graph of order at least 3 is Hamiltonian, since a Hamilton
cycle can be obtained by selecting all vertices one by one in an arbitrary order.

Example 7 The complete graph K5 over set of vertices {a, b, c, d, e} has, e.g.,
the Hamilton cycle: (b, c, a, e, d) (see Figure 9).

8

a
b

c

d e

Figure 9: A Hamilton cycle in K5.

When we have fewer edges, finding a Hamilton cycle is harder. Dirac proved
what is the minimum degree that a graph must have to guarantee the existence
of a Hamilton cycle.

Theorem 3 (Dirac (1952)) Every simple graph G of order n ≥ 3 such that
δ(G) ≥ n

2 is Hamiltonian.

Dirac’s Theorem has the best possible bound on δ(G) to ensure the existence
of a Hamilton cycle. We cannot, e.g., replace n

2 with bn2 c.

Example 8 Let n be an odd number and G be the union of two complete
graphs Kdn2 e meeting in one vertex w (see Figure 10, where n = 7). Then
δ(G) = bn2 c but G cannot have a Hamilton cycle as it would have to go through
w twice.

u1

u2

u3

w

v1

v2

v3

Figure 10: A closed walk visiting all vertices passing through w twice.

We can find other sufficient conditions.

Theorem 4 (Ore (1960)) Let G = (V,E) be a simple graph and let u, v ∈ V
such that dG(u)+dG(v) ≥ #V . Then G is Hamiltonian if and only if G+{u, v}
is Hamiltonian.

Proof.

(⇒) If G has a Hamilton cycle, then clearly the same cycle is also in G+{u, v}.

(⇐) If G + {u, v} has a Hamilton cycle C, then we can find a Hamilton cycle
C ′ by using a cycle exchange (Exercise).

The closure of a (simple) graph G = (V,E) is the graph obtained from G by
recursively adding edges {u, v} if {u, v} is not an edge in the graph and the sum

9

of the two degrees is at least #V , until all vertices of such form are adjacent.
One can prove that the order in which the edges are added does not change the
final result (why?).

Example 9 Let G be the graph of Example 2. The closure of G is the complete
graph K5 (see Figure 11).

a

b c

d e

−→

a

b c

d e

−→

a

b c

d e

Figure 11: Closure of a graph.

A consequence of Theorem 4 is the following.

Corollary 1 A simple graph is Hamiltonian if and only if its closure is Hamil-
tonian.

There exist other sufficient condition for a graph to have a Hamilton cycle.
Most of them requires the graph to have "enough" edges.

Theorem 5 (Pósa (1962)) Let G = (V,E) be a simple graph of order n re-
alised by a graphic sequence (di)

n
i=1 with d1 ≤ d2 ≤ . . . ≤ dn. If for every k < n

2
we have dk > k, then G is Hamiltonian.

Example 10 The Hamiltonian graph G of Example 2 is realised by the graphic
sequence (di)

5
i=1 = (2, 3, 3, 4, 4). For k < 5

2 , i.e., for k = 1, 2 we have d1 = 2 > 1
and d2 = 3 > 2.

Theorem 6 (Chvátal (1972)) Let G = (V,E) be a simple graph of order
n ≥ 3 realised by the graphic sequence (di)

n
i=1 with d1 ≤ d2 ≤ . . . ≤ dn. If for

every k < n
2 either dk > k or dn−k ≥ n− k, then H is Hamiltonian.

Example 11 Let G be the graph shown in Figure 12. This graph has order 7
and it is realised by the graphic sequence (di)

7
i=1 = (2, 3, 3, 5, 5, 5, 5). One has

d3 = 3 ≤ 3 but d4 = 5 ≥ 4. Moreover, d1 = 2 > 1 and d2 = 3 > 2. So G satisfies
Chvátal’s condition but not Pósa’s condition. A Hamilton cycle is shown in red
in the same figure.

10

G

v1
v2

v3

v4

v5
v6

v7

Figure 12: A Hamilton cycle in a graph.

Exercise. Let us consider the two graphs in Figure 13 (the one on the right
is called Petersen graph).

1. Do the graphs have Eulerian trails?

2. Do the graphs have Eulerian tours?

3. Do the graphs have Hamilton paths?

4. Do they have Hamilton cycles?

5. Do they satisfy Dirac/Pósa/Chvátal conditions?

v1
v2

v3

v4

v5
v6

v7

p6

p7

p8 p9

p10
p1

p2

p3 p4

p5

Figure 13: Two graphs (on the right the Petersen graph).

The Travelling Salesperson Problem (TSP) is a classical NP-hard problem:
given a weighted graph (G,w) find a minimum-weight Hamilton cycle in G.

Exercise.[Trick-or-Treat Spooky Problem (TSP)] It’s Halloween Night
and you decide to go around in your neighbourhood to collect as many candies
as you can. The distance between the houses are represented in Table 1 and
Figure 14.

11

Find the optimal route that allows you to leave and return to your home
(H) collecting treats at every door, without having to knock at the same door
twice.

H b c d e
H – 3 6 7 4
b 3 – 2 5 6
c 6 2 – 3 5
d 7 5 3 – 2
e 4 6 5 2 –

Table 1: Distance between houses in the neigbourhood.

H

b
c

d
e

3
6

7

4

2

5
6 35

2

Figure 14: A plan of the neighbourhood.

12

	Time complexity, Union-Find operation
	Euler tours
	Hamilton cycles

