NIE-MPI, Mathematics for Informatics - Homework no. 1

Instructions:

- You should try to solve all the exercises. Even if you do not do all the exercises, you can get all the points.
- Presentation is taken into account; correct results themselves are not enough. The reasoning on how the result was found should be clearly visible.
- Comment your calculations in a reasonable way: the reader should understand what you do and why. The solution should be "possible to read", not "needed to decrypt".
- Do not answer unasked questions. It is important to know what is needed to solve the problem and what is not needed.
- If you use a result from another source than the lectures and tutorials, cite your source properly (do not forget to cite used software if applicable).
- The homework should be given by hand or sent by email at dolcefra@fit.cvut.cz before Wednesday November 12th, 2025.

Exercise 1. (3 points) Find a generator and all subgroups of \mathbb{Z}_{14}^+ . How many distinct generators are there? Say if \mathbb{Z}_{14}^+ contains a subgroup isomorphic to the following groups:

$$\mathbb{Z}_3^+, \qquad \mathbb{Z}_3^{\times}, \qquad \mathbb{Z}_7^+, \qquad \mathbb{Z}_7^{\times}.$$

If yes, find an isomorphism. If not explain why such an isomorphism can not exist.

Exercise 2. (3 points) Let f and g be two permutations over 9 elements, where

$$f = (945628371)$$
 and $g = (897654321)$.

- (a) Find $f \circ g$ and $g \circ f$.
- (b) Find $\langle f \rangle$ and $\langle g \rangle$, i.e., the smallest subgroups of S_9 (group of all permutations of 9 elements) which contain respectively the permutation f and the permutation g.
- (c) Find $f^{86} \circ q^{84}$.

Exercise 3. (2 points) Let us consider the field $GF(3^2)$ with multiplication modulo $x^2 + 1$. Find

- (a) all y such that 11(y + 01) = 21,
- (b) all y such that $y^2 = 20$,
- (c) all y such that $y^{82} = 20$.