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Why mathematics?

Why mathematics?
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Why mathematics?

Why should we learn mathematics?

If someone can take up this position
(painlessly), what do you say to yourself?

Good! I’d like to be agile as she is . . .

OR

Hmm, I didn’t need such a daredevil
position in my life, I am going to train
sitting on a chair instead, that’s what I
do . . .
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Why mathematics?

Understanding
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Why mathematics?

15 Majors that Will Make You Rich (measured by money)
1. Petroleum Engineering ($155,000 – after some time)
2. Physics ($101,800)
3. Applied Mathematics ($98,600 “Jobs in this field can be found in nearly

every sector.”)
4. Computer Science ($97,900)
5. Biomedical Engineering ($97,800)
6. Statistics ($93,800)
7. Civil Engineering ($90,200)
8. Mathematics ($89,900)
9. Environmental Engineering ($88,600)
10. Software Engineering ($87,800)
11. Finance ($87,300)
12. Construction Management ($85,200)
13. Biochemistry ($84,700)
14. Geology ($83,300)
15. Management Information Systems ($82,200)

source: http://likes.com/misc/15-majors-that-will-make-you-rich
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Why mathematics?

Famous names . . .

George Stibitz (Ph.D. in mathematical physics)
He was a Bell Labs researcher known for his work in the 1930s and 1940s
on the realization of Boolean logic digital circuits using electromechanical
relays as the switching element.
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Why mathematics?

Famous names . . .

Marian Rejewski, Alan Turing, . . . (mathematicians)
Breaking of German codes during WWII.
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Why mathematics?

Famous names . . .
Claude Shannon, (founder of information theory, mathematician)

Shannon is famous for having founded information theory with one land-
mark paper published in 1948. But he is also credited with founding both
digital computer and digital circuit design theory in 1937, when, as a 21-
year-old master’s student at MIT, he wrote a thesis demonstrating that
electrical application of Boolean algebra could construct and resolve any
logical, numerical relationship.
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Why mathematics?

Famous names . . .

Dennis Ritchie, (computer scientist, creator of C programming language)
Ritchie graduated from Harvard University with degrees in physics and
applied mathematics.
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Why mathematics?

Famous names . . .
Linus Torvalds (developer of the Linux kernel)

His parents were both journalists. However, he was highly influenced by his
maternal grandfather to pursue his career in computers. Since childhood,
Linus was brilliant in mathematics. In 1988 he began studing computer
science at the University of Helsinki. Linus is from a minority group in
Finland and his first language is not Finnish but Swedish. For this reason,
his pronunciation of Linux in Swedish were not understood or often taken
as an error.
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Why mathematics?

Famous names . . .
Bill Gates (founder of Microsoft)

In his sophomore year, Gates devised an algorithm for pancake sorting as
a solution to one of a series of unsolved problems presented in a combina-
torics class by Harry Lewis, one of his professors. Gates’ solution held the
record as the fastest version for over thirty years; its successor is faster
by only 2%. His solution was later formalized in a published paper in
collaboration with Harvard computer scientist Christos Papadimitriou.
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Why mathematics?

Famous names . . .

Larry Page and Sergey Brin (founders of Google)
Larry was in search of a dissertation theme for his PhD in computer science
and considered exploring the mathematical properties of the World Wide
Web, understanding its link structure as a huge graph.
After graduation at the University of Maryland, Sergey moved to Stanford
University to acquire a Ph.D in computer science.
The company was founded while they were both attending Stanford Uni-
versity.
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Short overview of included topics

What about us?

What will we be talking about in this course?
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Short overview of included topics

General algebra

Notions from general algebra are one of the basic mathematical tools.

· 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 1 3 5 7 9 11
3 3 6 9 12 2 5 8 11 1 4 7 10
4 4 8 12 3 7 11 2 6 10 1 5 9
5 5 10 2 7 12 4 9 1 6 11 3 8
6 6 12 5 11 4 10 3 9 2 8 1 7
7 7 1 8 2 9 3 10 4 11 5 12 6
8 8 3 11 6 1 9 4 12 7 2 10 5
9 9 5 1 10 6 2 11 7 3 12 8 4
10 10 7 4 1 11 8 5 2 12 9 6 3
11 11 9 7 5 3 1 12 10 8 6 4 2
12 12 11 10 9 8 7 6 5 4 3 2 1

Cayley table of the group Z×13

Besides a general introduction, we will focus on finite groups and fields, which
form the basis for cryptography, hash functions, etc.
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Short overview of included topics

Multivariate functions and optimization

Many problems can be formulated as optimization problems: we
maximize/minimize some functions that determines gain/cost/time/distance
. . .
If the function is given analytically, we know how to find the optimum.

sin(x · y)
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Short overview of included topics

Fuzzy Logic

Describe systems by properties which are not evaluated by values beyond just
true or false.

x temperature

µ

0

1 cold tepid hot
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Short overview of included topics

Numerical mathematics

Continuous mathematics using the computer, stability of numerical algorithms . . .
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Short overview of included topics

Shall we start?
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Groups

Outline

Introduction and motivation
Hierarchy of sets with one binary operation

Introduction
Definitions and elementary properties
Cayley table
Cayley graph
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Introduction and motivation

Searching for hidden similarities. . .

Let us consider this objects:
the set Z of integers with the usual sum;
the set of matrices Rn,n with the operation of matrix multiplication;
the set of relations on a set A with the operation of relation composition;
the set {0, 1, 2, 3} with the multiplication (mod 4) ;
the set of finite automata with the operation of composition;
the set of all colors with the operation “mixing”;
. . .

What do they have in common?
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Introduction and motivation

Still the same structure!

All presented objects have the same structure. Indeed, they consist of two
ingredients:

A (finite or infinite) set of objects.
A binary operation mapping two objects onto (exactly) one object (from the
same set of objects).

Generally, we speak about a pair of: a set and a binary operation on it.

We will (mostly) use one of the following notations: (M, ·) (multiplicative
notation), (M,+) (additive notation), or (M, ◦) (general notation), where

M 6= ∅ is a non-empty set, and
for binary operation we have · : M ×M → M (resp. + : M ×M → M, resp.
◦ : M ×M → M).
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Introduction and motivation

What is going on in algebra?

The pair of “a set and a binary operation on it” could represent very different
structures. We shall classify them by their properties.

We are interested in properties of the binary operation:
1 Is it associative?
2 It is commutative?
3 Are there some neutral elements for the binary operation?

Why are we doing this?
If we prove some statement for a general structure (M, ·), where · is an
associative operation, this statement is proved for all particular structures
with an associative binary operation!
A proof of this statement is reduced to a proof of associativity of the
operation!
We can understand a general structure as a parent object, from which
particular structures inherit all its properties (see below).
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Introduction and motivation

Example of “inheritance” (1/4)

On the set of non-zero real numbers we prove the following (trivial) theorem:

Theorem
For all b, c ∈ R \ {0}, the equation bx = c has solution x = b−1c.

Proof.

bx = c [multiplication on the left by the inverse element b−1]
b−1(bx) = b−1c [moving brackets due to associativity]
(b−1b)x = b−1c [for arbitrary b we have b−1b = 1]

1x = b−1c [for arbitrary x we have 1x = x ]
x = b−1c

What was fundamental for the proof: associativity, existence of (left) inverse
element, existence of the neutral element.
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Introduction and motivation

Example of “inheritance” (2/4)

Let us consider a set M of all matrices Rn,n with the operation of matrix
multiplication.

Is the matrix multiplication associative?
Yes. For ∀A,B,C ∈ M we have A(BC) = (AB)C .
Is there a neutral element?
Yes. The identity matrix In has the property InA = A valid for all A ∈ M.
Is there an inverse matrix for all A ∈ M?
No! We have to restrict ourselves to the set of regular matrices Mreg.
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Introduction and motivation

Example of “inheritance” (3/4)

We have everything needed to prove the theorem for matrices.

Theorem
For all B,C ∈ Mreg, the equation BX = C has solution X = B−1C.

Proof.

BX = C

[multiplication on the left by the inverse element B−1]
B−1(BX ) = B−1C [moving brackets due to associativity]
(B−1B)X = B−1C [for arbitrary B we have B−1B = In]

InX = B−1C [for arbitrary C we have InX = X ]
X = B−1C

What was fundamental for the proof: associativity, existence of (left) inverse
element, existence of the neutral element.
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Introduction and motivation

Example of “inheritance” (4/4)
Suppose that we are given a pair (M, ◦) where the associativity law holds, for each
element b ∈ M there exists an inverse element, denoted by b−1, and there exists a
neutral element e. We will call such pair a group.

We have a general theorem.

Theorem
For arbitrary elements b, c of a group (M, ◦), the equation b ◦ x = c has solution
x = b−1 ◦ c.

Proof.

b ◦ x = c [multiplication on the left by the inverse element b−1]
b−1 ◦ (b ◦ x) = b−1 ◦ c [moving brackets due to associativity]
(b−1 ◦ b) ◦ x = b−1 ◦ c [for arbitrary b we have b−1 ◦ b = e]

e ◦ x = b−1 ◦ c [for arbitrary x we have e ◦ x = x ]
x = b−1 ◦ c
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Hierarchy of sets with one binary operation Introduction

Sets with one binary operation
We call an arbitrary pair “a set and a binary operation” a groupoid. Adding
another requirements we get further notions.

grupoid

semigroup

monoid

group

Abelian group

associativity

neutral element

inverse element

commutativity
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Hierarchy of sets with one binary operation Introduction

Examples

For the pair (R \ {0}, ·), the associative and commutative laws hold, the
neutral element is 1 and the inverse element for b is b−1 = 1/b.
It is an Abelian group.

For the pair (Z,+) associative and commutative laws hold, the neutral
element is 0 and the inverse element for b is b−1 = −b.
It is an Abelian group.

For the pair (Mreg, ·) associativity law holds, the neutral element and the
inverse exist, but the commutative law is not valid!
It is a group, but not Abelian.
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Hierarchy of sets with one binary operation Introduction

Mathematical analogy to Object-oriented programming

We can consider the groupoid, monoid, etc., as mathematical (abstract) objects,
for which a nonempty set and a binary operation with given properties are defined.

For this abstract classes we can prove various statements (for example the
theorem on solving linear equation for groups).

If for some particular pair (M, ◦) we prove that it is a groupoid, monoid, etc., it
means that it “inherits” all this statements and we don’t need to prove them
separately!

This analogy could be employed in real programming.
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Hierarchy of sets with one binary operation Definitions and elementary properties

Groupoid, semigroup, monoid, group

Definition
An ordered pair (M, ◦), where M is an arbitrary non-empty set and ◦ is a
binary operation on M, is called a groupoid.

A groupoid (M, ◦) such that ◦ is associative is called a semigroup.
A semigroup (M, ◦) such that there exists a neutral element e satisfying

∀ a ∈ M holds e ◦ a = a ◦ e = a

is called a monoid.
A monoid (M, ◦) such that for each a ∈ M there exists an inverse element
a−1 ∈ M satisfying

a−1 ◦ a = a ◦ a−1 = e

is called a group.
Moreover, if ◦ is commutative, we say that a group (M, ◦) is a commutative
(or Abelian) group.
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Hierarchy of sets with one binary operation Definitions and elementary properties

Set closed under the binary operation. What does it mean?

In the definition we require the binary operation ◦ to be a “binary operation on
M”.
This means that the result of a binary operation applied on two elements from M
again belongs to M – we say that the set M is closed under ◦.

Example
The pair (Z−, ·) of negative integers with the usual multiplication is not a
groupoid, because it is not closed under the operation: (−1) · (−1) = 1 /∈ Z−.

Whether the set is/is not closed under the binary operation is not always obvious.

Example
Let us consider the couple (Mtriang, ·) of lower triangular matrixes with the usual
matrix multiplication. Is Mtriang closed under the operation ·?

=
?
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Hierarchy of sets with one binary operation Definitions and elementary properties

Manual for classification of sets with binary operation

If we have a given pair “a set and a binary operation” and we want to find out
whether it is a groupoid, semigroup, monoid, (Abelian) group, we can proceed this
way:

1. Is the set closed under the operation? If yes, it is a groupoid; if not, END.

2. Does the associativity law hold? If yes, it is a semigroup; if not, END.
3. Is there a neutral element? If yes, it is a monoid; if not, END.
4. Is there an inverse to each element? If yes, it is a group; if not, END.
5. Does the commutativity law hold? If yes, it is an Abelian group; if not,

END.

Mostly “proofs” in these individual steps are very easy or obvious. Sometimes,
they only seem obvious.
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Hierarchy of sets with one binary operation Definitions and elementary properties

Groupoid, semigroup, monoid, group – examples (1/4)

Example
Let us consider the groupoid (Q, ◦), where the binary operation ◦ is defined as the
arithmetic mean:

a ◦ b := a + b
2 .

Is this structure a semigroup / monoid / group?

In a semigroup, the associative law must hold. Let us claim that for the operation
◦ the law does not hold, and let us prove it by a counterexample:

(2 ◦ −2) ◦ 4 = 0 ◦ 4 = 2 but 2 ◦ (−2 ◦ 4) = 2 ◦ 1 = 3
2 .

So, the associative law does not hold, and the structure is not a semigroup. It
follows that Q with this operation is neither a monoid nor a group.
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Hierarchy of sets with one binary operation Definitions and elementary properties

Groupoid, semigroup, monoid, group – examples (2/4)

Example
Let us consider a groupoid (R+, ◦), where the binary operation ◦ is defined as
follows:

a ◦ b := a · b
a + b .

Is (R+, ◦) a semigroup?
Is (R+, ◦) a monoid?
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Hierarchy of sets with one binary operation Definitions and elementary properties

Groupoid, semigroup, monoid, group – examples (3/4)

Example
Let us consider a groupoid (R, ·), where the binary operation is the usual
multiplication of numbers.

Is it a semigroup?
Is it a monoid?
Is it a group?
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Hierarchy of sets with one binary operation Definitions and elementary properties

Groupoid, semigroup, monoid, group – examples (4/4)

From the definition it follows that each group is a monoid, each monoid is a
semigroup and each semigroup is a groupoid. Written in symbols we get:

groupoids ⊃ semigroups ⊃ monoids ⊃ groups .

From the previous three examples we can be even more specific:

groupoids ) semigroups ) monoids ) groups ,

because we have found a groupoid that is not a semigroup, a semigroup that is
not a monoid, and a monoid that is not a group.
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Hierarchy of sets with one binary operation Definitions and elementary properties

Uniqueness of neutral element

Theorem
Given a monoid, there exists exactly one neutral element.

Proof.
Let (M, ◦) be a monoid and e some neutral element (by definition we know that
at least one exists!).
We prove by contradiction that e is the only neutral element.
By contradiction, assume that in the monoid there exists another neutral element
e′ different from e.
Using the property of the neutral element, it holds that

e′ = e′ ◦ e = e.

We get a contradiction with the assumption that e′ 6= e.
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Hierarchy of sets with one binary operation Definitions and elementary properties

Uniqueness of the inverse element

Theorem
Given a group, each element has exactly one inverse element.

Proof.
Let (G , ◦) be a group, a an arbitrary element of the group and a−1 one of its
inverse elements (from the definition of a group we know that there exists at least
one!).
We prove by contradiction that a−1 is the only one.
Assume that there exists another inverse element a different from a−1. Hence it
holds that

a = a ◦ e = a ◦
(
a ◦ a−1

)
= (a ◦ a) ◦ a−1 = e ◦ a−1 = a−1

where e is the unique neutral element.
Thus we get a contradiction with the assumption that a 6= a−1.
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Hierarchy of sets with one binary operation Cayley table

Cayley tables for finite groups

If the set M from the pair (M, ◦) has a finite number of elements, its structure
(with the given operation ◦) could be completely represented by the Cayley table.
Its construction is obvious from the following example.

Example
Let us consider (Z4,+4), i.e., the set of numbers {0, 1, 2, 3} with addition
modulo 4.

Since the set has 4 elements, the Cayley table has 4 rows and 4
columns:

+4 0 1 2 3
0

0 1 2 3

1

1 2 3 0

2

2 3 0 1

3

3 0 1 2

So, in the cell in row m and column n we write the result of
m +4 n = m + n (mod 4).
For example the cell in row 2 and column 3 is filled with 2 + 3 (mod 4) = 1.
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Hierarchy of sets with one binary operation Cayley table

What can be easily read from a Cayley table

Cayley table offers all information about a given set and operation.
Some properties are very easy to read from the table; others with some difficulty:

The set M is closed under the operation ◦ if all cells of the table contain
elements from the set M only.
The associativity law is difficult to read.
The neutral element e is the one for which the corresponding row and column
are just a copy of the first row and the first column of the table.
The inverse element to the element a is the one corresponding to the row and
column where the neutral element e is placed.
. . .
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Hierarchy of sets with one binary operation Cayley table

Cayley table and latin square (1/4)

Question: Is it possible to recognize whether a table is a Cayley table of a group?
Answer: Almost.

Theorem
The Cayley table of each group forms a latin square.

A latin square for a set M of n elements is a matrix n × n such that each row and
column contains all elements of the set M.

We prove the theorem by proving another one from which the statement of the
original theorem follows directly.

Unfortunately, not each Cayley table forming a latin square is a Cayley table of a
group. Later we present a counterexample.
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Hierarchy of sets with one binary operation Cayley table

Cayley table and latin square (2/4)

Theorem
In each group, we can divide uniquely.
In other words: in each group (G , ◦), for arbitrary a, b ∈ G the equations

a ◦ x = b and y ◦ a = b

have only one solution.

Proof.
Since we are in a group, each element has only one inverse.
The only solutions of the equations are x = a−1 ◦ b and y = b ◦ a−1.

It is possible to prove that a group is a semigroup with a “unique division”, i.e.,
the unique division guarantees the existence of a neutral element and inverse.
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Hierarchy of sets with one binary operation Cayley table

Cayley table and latin square (3/4)

Now we prove the theorem saying that the Cayley table of group is a latin square.

Proof.
Proof by contradiction.
Let us suppose that the table of some group (G , ◦) is not a latin square.
Hence, in some row or column there is one element, denote it as b, repeated
twice. WLOGa, assume that it happens in row n and columns m1 and m2.

◦ · · · m1 · · · m2 · · ·
...

...
...

n · · · b · · · b · · ·
...

...
...

It follows that the equation n ◦ x = b has two different solutions, namely m1 and
m2, which is a contradiction with the previous theorem!

aWithout Loss Of Generality
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Hierarchy of sets with one binary operation Cayley table

Cayley table and latin square (4/4)

We have shown that the fact that a Cayley table is a latin square is a necessary
condition for the given set and operation to be a group.

The following example says it is not a sufficient condition.

Example
Let us consider a set M = {a, b, c} with operation given by the Cayley table:

◦ a b c
a b a c
b c b a
c a c b

This table creates a latin square; in spite of it, it is not the table of a group
(Why?!).
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Hierarchy of sets with one binary operation Cayley graph

Cayley graph of a group
A finite Abelian group G = (M, ◦) may be visualised by a Cayley graph with

set of vertices V being the elements of G , i.e., V = M,
set of directed edges E the set of (ordered) pairs (a, b) such that b = a ◦ c
for some c ∈ M (or, as we can see, for some c ∈ N with N a subset of M).

0

1

2

3

If the group in question is not Abelian, we need to depict edges (a, b) for
b = c ◦ a for some c ∈ M.
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