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Optimization

@ Examples of single- and multivariate optimization
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Optimization

@ Examples of single- and multivariate optimization

@ Reminder of univariate optimization
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Optimization

@ Examples of single- and multivariate optimization
@ Reminder of univariate optimization

@ Multivariate optimization:

Partial derivative

Gradient

Tangent plane

Hessian (matrix)

Minimum, maximum, saddle point

Francesco Dolce (CTU in Prague NIE-MPI- Lecture 5



Duration of a text processing program (1 of 6)

Problem

Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine the exact
time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text.
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Duration of a text processing program (1 of 6)

Problem

Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine the exact
time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text.

Mathematically: Denote t(k) the “average” number of seconds needed to
process a text of length k. We know that

t(k) =~ ak for some o € R.
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Duration of a text processing program (1 of 6)

Problem

Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine the exact
time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text.

Mathematically: Denote t(k) the “average” number of seconds needed to
process a text of length k. We know that

t(k) =~ ak for some o € R.

Problem: The proportionality constant « is unknown. How would you reasonably
estimate its value?
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Optimization

Sketch of a solution:

@ Run the program for several, say n, texts of various lengths and measure the
actual running times. This gives us n couples of measurements

(kla tl)a (k2v t2)7 ey (km tn)-
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Optimization

Sketch of a solution:

@ Run the program for several, say n, texts of various lengths and measure the
actual running times. This gives us n couples of measurements
(kl, tl), (kz, tz), e (k,,, 1.',,).

@ For a given «, we can measure the approximation error t(k) ~ ck by this
function:
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Optimization

Sketch of a solution:

@ Run the program for several, say n, texts of various lengths and measure the
actual running times. This gives us n couples of measurements

(klv tl)a (k2v t2)’ EERE) (km tn)'
@ For a given «, we can measure the approximation error t(k) ~ ck by this
function:

e(a) = (t1 — aky)> 4 (tr — ako)® + - + (t, — aky)? = i(t,- — ak;)?.
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Duration of a text processing program (2 of 6)

Sketch of a solution:

@ Run the program for several, say n, texts of various lengths and measure the
actual running times. This gives us n couples of measurements
(kl, tl), (kz, tg), R (k,,, t,,).

@ For a given «, we can measure the approximation error t(k) ~ ak by this
function:

n

e(a) = (tl — ak1)2 + (l’2 — O/k2)2 + -+ (tn - Oékn)2 = Z(t,' — (.Yk,')2.

i=1

@ In order to find the best approximating proportionality constant «, we find
the value of a for which the error e(«) is minimal:

an optimal value of « is a minimum point of the function e(«).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2025 4/25



Optimization

How to find a minimum point of e(«):
@ Find the first derivative €'(a):

Francesco Dolce (CTU NIE-MPI- Lecture 5



Optimization

How to find a minimum point of e(«):
@ Find the first derivative €'(a):

e'(a) = (Z(t,' — ak,-)2> = Z —2/(,'(1',' — ak,-) .

i=1
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How to find a minimum point of e(«):
@ Find the first derivative €'(a):

e'(a) = Z(t,' — ak,-)2 = Z —2/(,'(1',' — ak;) .

@ Find the critical points, i.e., the points ag where €’(ayg) is zero or does not
exist:

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5



How to find a minimum point of e(«):
@ Find the first derivative €'(a):

e'(a) = (Z(t,' — ak;)2> = Z —2/(,'(1',' — ak;) .

@ Find the critical points, i.e., the points ag where €’(ayg) is zero or does not
exist:

n n n I"I k’.t’.
e’(ao) =0& Z —2k,'(t,'—aok,') =0< Z kit = ag Z k,2 < o = %
i=1 i=1 i=1 i=1"
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Duration of a text processing program (3 of 6)

How to find a minimum point of e(«):
@ Find the first derivative €'():

e/(a) = (Z(t,' — O[k,')2> = Z —2/(,'(1',' — Olk,') .

i=1

@ Find the critical points, i.e., the points agy where e'(ao) is zero or does not
exist:
n n n Zn k't'
j— iti
e/(Oéo) =0& Z —2k;(t,'—04()k,') =0& Z kit = g Z k,2 & o = ﬁ
i=1 i=1 i=1

i=1"

@ The critical points are our candidates for the points of (local) minimal or
maximal values of the function e. To be sure that the value of o we found is
a minimum we need the second derivative:

(o) = (i —2ki(t; —ak,-)) = ZH:ZI‘?'

i=1

...continues ...
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We know that if €”(ag) > 0 (resp. €”(ag) < 0), then the critical point ag is a
local strict minimum (resp. strict maximum) point.
If &’(ap) =0, then « is neither of these two cases (maybe an inflexion point?).
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Duration of a text processing program (4 of 6)

We know that if €”’(ag) > 0 (resp. €”(ap) < 0), then the critical point g is a
local strict minimum (resp. strict maximum) point.
If €”’(cv) = 0, then « is neither of these two cases (maybe an inflexion point?).

Solution: based on our measurements (ki, t1), (ko, t2), ..., (kn, tn), we get the
best approximation t(k) & ak for

Doy kiti
S kP

O = Qg =

Indeed, this ag is the unique (why unique?) global (why global?) minimum point
of the approximation error function e(«) since the second derivative

n
e’ (ap) = Z2k,-2 is positive.
i1
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Duration of a text processing program (5 of 6)

Problem (slight modification)

Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine precisely
the time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text and to the frequency of
the processor.
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Duration of a text processing program (5 of 6)

Problem (slight modification)

Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine precisely
the time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text and to the frequency of
the processor.

Mathematically: Denote by t(k, ) the “average” number of seconds needed to
process a text of length k, and the frequency of the processor by f. We know that

t(k, ) ~ ak + Bf for some a, 3 € R.
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Duration of a text processing program (5 of 6)

Problem (slight modification)

Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine precisely
the time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text and to the frequency of
the processor.

Mathematically: Denote by t(k, ) the “average” number of seconds needed to
process a text of length k, and the frequency of the processor by f. We know that

t(k, ) ~ ak + Bf for some a, 3 € R.

Problem: The constants « and 3 are unknown. How would you reasonably
estimate their values?

Francesco Dolce (CTU in Prague) Winter 2025 7/25



Sketch of solution:

@ Run the program for several, say n, texts of various lengths on computers
with different frequencies and measure the actual running times. This gives
us n triplets of measurements (ki, t1, f1), (ka, t2, f2), . . ., (Kny tn, fn).
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Optimization

Sketch of solution:

@ Run the program for several, say n, texts of various lengths on computers
with different frequencies and measure the actual running times. This gives
us n triplets of measurements (ki, t1, f1), (ka, t2, f2), . . ., (Kny tn, fn).

@ For a given « and 3, we can measure the approximation error
t(k,f) =~ ak + Sf by this two-variable function:
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Duration of a text processing program (6 of 6)

Sketch of solution:

@ Run the program for several, say n, texts of various lengths on computers
with different frequencies and measure the actual running times. This gives
us n triplets of measurements (ki, t1, f1), (ka, t2, f2), . . ., (Kny tn, fn).

@ For a given o and 3, we can measure the approximation error
t(k,f) =~ ak + Sf by this two-variable function:
e(a, B) = (ty — aky — BA)? + (to — aky — BHR)? + -+ + (t, — ak, — BF,)? =

= (t: — ak — Bf)>.
i=1
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Duration of a text processing program (6 of 6)

Sketch of solution:

@ Run the program for several, say n, texts of various lengths on computers
with different frequencies and measure the actual running times. This gives
us n triplets of measurements (ki, t1, f1), (ka, t2, f2), . . ., (Kny tn, fn).

@ For a given o and 3, we can measure the approximation error
t(k,f) =~ ak + Sf by this two-variable function:
e(a, B) = (ty — aky — BA)? + (to — aky — BHR)? + -+ + (t, — ak, — BF,)? =

= (t: — ak — Bf)>.
i=1

@ In order to find the best approximating constants « and (3, we find values of
a and [ for which the error e(«, 3) is minimal:
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Duration of a text processing program (6 of 6)

Sketch of solution:

2

Run the program for several, say n, texts of various lengths on computers
with different frequencies and measure the actual running times. This gives
us n triplets of measurements (ki, t1, f1), (ka, t2, f2), . . ., (Kny tn, fn).

For a given a and 3, we can measure the approximation error
t(k,f) =~ ak + Sf by this two-variable function:

e(a, B) = (ty — aky — BA)? + (to — aky — BHR)? + -+ + (t, — ak, — BF,)? =
n
= (t: — ak — Bf)>.
i=1
In order to find the best approximating constants « and /3, we find values of

a and 3 for which the error e(«, 3) is minimal: an optimal value of « and /3
is the “two-dimensional” minimum point of e(«, 3).
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Comments

Why “optimization”?

A typical situation in physics, engineering, economy, chemistry, etc. is that you
have a function that measures your profit, your loss, the energy of something, etc.
The value of such function is given by one or more inputs and the relation
between inputs and the resulting value is usually stated as a mathematical formula
since all these sciences uses mathematical models to understand and quantify
their subject of interest.

An example of such function is our function e(a, ) that measures the
approximation error.
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Comments

Why “optimization”?

A typical situation in physics, engineering, economy, chemistry, etc. is that you
have a function that measures your profit, your loss, the energy of something, etc.
The value of such function is given by one or more inputs and the relation
between inputs and the resulting value is usually stated as a mathematical formula
since all these sciences uses mathematical models to understand and quantify
their subject of interest.

An example of such function is our function e(a, ) that measures the
approximation error.

Typically, we want to maximize or minimize such functions (maximize the profit,

the energy, minimize the loss, the error) which leads to the problem of finding
optimal values of the inputs. Therefore the name “optimization".
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Optimization

There is another very important usage of the derivative.
Derivatives measure the rate of change of a function. This helps us to describe
the behaviour of a dynamical systems like a ball on a spring:

k m
0' VVVVYV ‘ %
x(t)
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Comments

There is another very important usage of the derivative.
Derivatives measure the rate of change of a function. This helps us to describe
the behaviour of a dynamical systems like a ball on a spring:

k m

0 VVVVVO X
x(t)

The position of the ball at time ¢ is a function x(t) satisfying the differential
equation

x"(t) +w?x(t) = 0.
The solution of this equation is

x(t) = xo cos(wt) + % sin(wt), t € R,
w

where xp = x(0) and v, are the position and the speed of the ball at time t = 0.
This model is known as harmonic oscillator.
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How do we differentiate?

Find the first derivative of f(x), where
@ f(x)=x>+4x*+6,

@ f(x) =sin(x%),

@ f(x)=e€"sinx.
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How do we differentiate?

Find the first derivative of f(x), where
@ f(x)=x>+4x*+6,

@ f(x) =sin(x%),

@ f(x)=e€"sinx.

Solutions:
@ f'(x) =3x*+8x,
@ f'(x) =3x?cos(x?),

@ f'(x) = e sinx+ e cosx.
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Univariate optimization
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Univariate optimization
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Univariate optimization

¥
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Univariate optimization

f(a)

Nb-—-»_ 10
g
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Univariate optimization

y/\
y=f(a)+tana - (x — a)

f(2) -

fa)f--------—- Lo

[N R
¥
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y=f(a)+tana - (x — a)

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5



Univariate optimization

y=f(a)+tana - (x — a)
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@ The tangent line to the graph of a function f(x) at a point X is a straight
line that “just touches” the curve at that point.
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ate optimization

@ The tangent line to the graph of a function f(x) at a point X is a straight
line that “just touches” the curve at that point.

@ Any straight line has equation y = ax + b, where a is the slope of the line.
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Univariate optimization

@ The tangent line to the graph of a function f(x) at a point X is a straight
line that “just touches” the curve at that point.

@ Any straight line has equation y = ax + b, where a is the slope of the line.

@ The slope of the tangent line to f(x) at the point xo equals the first
derivative evaluated at xo: f'(xo).
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Univariate optimization

@ The tangent line to the graph of a function f(x) at a point X is a straight
line that “just touches” the curve at that point.

@ Any straight line has equation y = ax + b, where a is the slope of the line.

@ The slope of the tangent line to f(x) at the point xo equals the first
derivative evaluated at xo: f'(xo).

@ The tangent line at the point xg satisfies the equation

y = f(x0)(x —x0) + f(x0)-
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Univariate optimization

With this geometrical explanation it is easy to see that the following statements
are true:

o If f'(x0) is positive, then f(x) is increasing at xp.
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Univariate optimization

With this geometrical explanation it is easy to see that the following statements
are true:

o If f'(x0) is positive, then f(x) is increasing at xp.
o If f'(x0) is negative, then f(x) is decreasing at xo.
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Univariate optimization

With this geometrical explanation it is easy to see that the following statements
are true:

o If f'(x0) is positive, then f(x) is increasing at xp.
o If f'(x0) is negative, then f(x) is decreasing at xo.

e If xg is a local minimum/maximum point of f(x), then f'(x) = 0 or f'(xo)
does not exists. Such points are called critical points.
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Derivative and optimization

With this geometrical explanation it is easy to see that the following statements
are true:

o If f'(x0) is positive, then f(x) is increasing at xp.
o If f'(x0) is negative, then f(x) is decreasing at xo.

e If xp is a local minimum/maximum point of f(x), then f'(x9) = 0 or f'(xo)
does not exists. Such points are called critical points.

Find all critical points of

3
f(x):?+2xz+3x—|—6.
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Univariate optimization

What does it mean that the second derivative f”'(x) is positive?
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What does it mean that the second derivative f”'(x) is positive?

@ The second derivative is a derivative of the first derivative; therefore the fact
that f”(x) is positive implies that f'(x) is increasing (at the point x).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5



ate optimization

What does it mean that the second derivative f”/(x) is positive?

@ The second derivative is a derivative of the first derivative; therefore the fact
that f”(x) is positive implies that f'(x) is increasing (at the point x).

e If f'(x) is increasing, then the function f(x) is more and more increasing (if
f'(x) > 0) or less and less decreasing (if f'(x) < 0).
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Univariate optimization

What does it mean that the second derivative f”/(x) is positive?

@ The second derivative is a derivative of the first derivative; therefore the fact
that f”(x) is positive implies that f'(x) is increasing (at the point x).

e If f'(x) is increasing, then the function f(x) is more and more increasing (if
f'(x) > 0) or less and less decreasing (if f'(x) < 0).

o An illustrative example of function with positive second derivative is
f(x) = x2.
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Second derivative as a criterion for extremal values

Again, if we understand the geometrical meaning of the second derivative, we can
easily see that the following statements are true:

Let xo be a critical point of a function f(x) such that f'(xp) = 0 and " (xo)
exists.

e If f"(xo) > 0, then the function is convex at xo and xp is a point of a (strict)
minimum.
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Second derivative as a criterion for extremal values

Again, if we understand the geometrical meaning of the second derivative, we can
easily see that the following statements are true:

Theorem

Let xo be a critical point of a function f(x) such that f'(xp) = 0 and " (xo)
exists.

e If f"(xo) > 0, then the function is convex at xo and xp is a point of a (strict)
minimum.

e If f"(xg) < 0, then the function is concave at xo and xg is a point of a
(strict) maximum.
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Second derivative as a criterion for extremal values

Again, if we understand the geometrical meaning of the second derivative, we can
easily see that the following statements are true:

Let xo be a critical point of a function f(x) such that f'(xp) = 0 and " (xo)
exists.

e If f"(xo) > 0, then the function is convex at xo and xp is a point of a (strict)
minimum.

e If f"(xg) < 0, then the function is concave at xo and xg is a point of a
(strict) maximum.

Question: what can happen if f”(xp) = 0?
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Univariate optimization

Given a function f(x), we want to find its extremal values.
@ Find the first derivative f'(x).
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Univariate opti

Given a function f(x), we want to find its extremal values.
@ Find the first derivative f'(x).

@ Find the critical points: solve the equation f'(x) = 0 and find the points
where the derivative does not exist.
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Univariate optimizatio

Given a function f(x), we want to find its extremal values.
@ Find the first derivative f'(x).

@ Find the critical points: solve the equation f'(x) = 0 and find the points
where the derivative does not exist.

@ Find the second derivative ”'(x).
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Universal cookbook of univariate optimization

Given a function f(x), we want to find its extremal values.
@ Find the first derivative f'(x).

@ Find the critical points: solve the equation f'(x) = 0 and find the points
where the derivative does not exist.

@ Find the second derivative f”(x).

Q

If possible, for all critical points xq evaluate f”/(xp) and decide whether this
point is a point of minimum or maximum or whether it is an inflexion point.
(Other critical points have to be treated by hand.)
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Universal cookbook of univariate optimization

Given a function f(x), we want to find its extremal values.
@ Find the first derivative f'(x).

@ Find the critical points: solve the equation f'(x) = 0 and find the points
where the derivative does not exist.

@ Find the second derivative f”(x).

Q

If possible, for all critical points xq evaluate f”/(xp) and decide whether this
point is a point of minimum or maximum or whether it is an inflexion point.
(Other critical points have to be treated by hand.)

The goal of this and the next lecture is to understand what happens when we
have more than 1 variable. We shall build a similar cookbook for such functions.
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Multivariate optimization

For a univariate function f(x), its graph is the set of points (x, f(x)) which can
be depicted in Cartesian coordinate system (typically with x- and y-axis).
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Multivariate optimization

For a univariate function f(x), its graph is the set of points (x, f(x)) which can
be depicted in Cartesian coordinate system (typically with x- and y-axis).

What if the function depends on more variables? For instance: f(x,y).

Graph of a two-variable function sin(x - y): the set of points (x, y,sin(x - y)).
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Multivariate optimization

@ To depict a graph of a two-variable function we need a third axis (typically
z-axis) and a 3-dimensional figure. Such graph is in general some surface.

@ It is impossible to (directly) depict graphs of functions of more than 2
variables since we cannot make 4 or more dimensional figures.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5



Graph of multivariate functions (2 of 2)

@ To depict a graph of a two-variable function we need a third axis (typically
z-axis) and a 3-dimensional figure. Such graph is in general some surface.

@ It is impossible to (directly) depict graphs of functions of more than 2
variables since we cannot make 4 or more dimensional figures.

How does the graph of f(x,y) = x*> — y? look like?
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Graph of multivariate functions (2 of 2)

@ To depict a graph of a two-variable function we need a third axis (typically
z-axis) and a 3-dimensional figure. Such graph is in general some surface.

@ It is impossible to (directly) depict graphs of functions of more than 2
variables since we cannot make 4 or more dimensional figures.

How does the graph of f(x,y) = x*> — y? look like?
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Multivariate opti

Given the function f(x,y) = x*> 4+ xy + y>.

o If we fix the value of the variable y to 3, we obtain a univariate function
f(x) = x* + 3x + 9 having its derivative equal to 2x + 3.
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Multivariate optimization

Given the function f(x,y) = x*> 4+ xy + y>.
o If we fix the value of the variable y to 3, we obtain a univariate function
f(x) = x* + 3x + 9 having its derivative equal to 2x + 3.
@ We can fix the value of y not only to a specific number: we just treat y as
a constant. Then we get univariate function f(x) = x> + xy + y? and its
derivative is 2x + y.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5



Partial derivative — introduction

Given the function f(x,y) = x* + xy + y°.

o If we fix the value of the variable y to 3, we obtain a univariate function
f(x) = x* + 3x + 9 having its derivative equal to 2x + 3.

@ We can fix the value of y not only to a specific number: we just treat y as
a constant. Then we get univariate function f(x) = x> + xy + y? and its
derivative is 2x + y.

@ This derivative is called partial derivative of (x,y) with respect to x and
denoted by

orf
oY) =2x+y.
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Partial derivative — introduction

Given the function f(x,y) = x* + xy + y°.

o If we fix the value of the variable y to 3, we obtain a univariate function
f(x) = x* + 3x + 9 having its derivative equal to 2x + 3.

@ We can fix the value of y not only to a specific number: we just treat y as
a constant. Then we get univariate function f(x) = x> + xy + y? and its
derivative is 2x + y.

@ This derivative is called partial derivative of (x,y) with respect to x and
denoted by

orf
oY) =2x+y.

@ In the same way we define the partial derivative of f(x, y) with respect to y:

%(X,y) =x+2y.

@ In general 7f( ) and 7](( ) are two-variate functions
X X WO-vari u | .
g x Y 9}/ Y
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The derivative of a (single variate) function f(x) is the following limit (if it
exists):

f(x+9)— f(x).

/ T
f(X)_gino 5
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Partial derivative — definition

The derivative of a (single variate) function f(x) is the following limit (if it
exists):
. f(x+0)—f(x)
! —_—
f'(x) = glmo s

Partial derivatives are defined similarly:

Definition

The partial derivative of f(xi, xa, ..., X,) with respect to x; at the point
(x1,X2, ..., Xn) is defined by (if the limit below exists)

orf
(X17X27 sy Xi—1, Xiy Xig 1, - - - 7Xn) =
8X,'
= [l f(XlaX27 sy Xi—1, Xi + 67Xl'+17 cao 7XI1) — f(X17X27 coo 7Xn)
5—0 0
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Partial derivative — definition

The derivative of a (single variate) function f(x) is the following limit (if it
exists):
. f(x+0)—f(x)
! —_—
f'(x) = glmo s

Partial derivatives are defined similarly:

Definition

The partial derivative of f(xi, xa, ..., X,) with respect to x; at the point
(x1,X2, ..., Xn) is defined by (if the limit below exists)

orf
(X17X27 LR 7Xi717Xi7Xi+1a L 7Xn) -
8X,'
= [l f(XlaX27 sy Xi—1, Xi + (57Xl'+17 cao 1XI1) — f(X17X27 coo 7Xn)
50 ) '

Since the definition is similar, even the geometrical meaning is analogous.
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The partial derivatives of f(x, y) can be in short denoted by

of of
fx(x,y)Ia—X(X’y) and @(X,y)za(x,y)-

The number £ (x, y) for given values of x and y is again the slope of a tangent
line, but a surface has infinitely many tangent lines in all possible directions at any
point, so which one is this one?

It is the only tangent line which is parallel to the x-axis.

’ 2
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Second partial derivatives

For a function f(x1,x2, . .., X,) we define second partial derivatives
0*f o (of
fox (X1, X0, - ooy Xn) = ——— (X1, X0, .- oy Xpn) = — | =—(x1,%0,..., X
xjx,( 1, X2, ) n) 8)96x,( 1, X2, ) n) (9XJ <8X,'( Ly 2922y ) n)) 5
in particular, for i = j we have
0*f a [ of
fox: = —p = — .
XIX,(X17X27 7Xn) axlz (X17X2, aXn) 8X,‘ (8X,‘ (X13X2a aXn)>
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Partial derivatives — exercises

Find partial derivatives with respect to all variables
@ f(x,y)=xy+ € cosy,

@ f(x,y)= x2y3 + x3y4 _ exyzy

@ f(x,y,z)=sin(xy/z).

Example

Find all second partial derivatives of the functions
@ f(x,y)=x>+xy*>+3x%,

@ f(x,y,z) =%+ ycosx,

@ f(x,y,z)=zcos(xy)+ xsin(yz).
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Equality of mixed partial derivatives

The fact that the mixed partial derivatives are equal is not a coincidence:

If a function f(x,y) has continuous second partial derivatives, then the mixed
second derivatives are equal, i.e.,

0*f 0°f
Oydx  OxOy
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Equality of mixed partial derivatives

The fact that the mixed partial derivatives are equal is not a coincidence:

Theorem

If a function f(x,y) has continuous second partial derivatives, then the mixed
second derivatives are equal, i.e.,

0*f 0°f

dydx  OxOy '

This theorem is not true in general, a counterexample is the function

0 at point (0,0)
Fxy) = v (x* = y?)
x24y?

otherwise.
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