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Optimization Introduction

Outline

Examples of single- and multivariate optimization

Reminder of univariate optimization

Multivariate optimization:

Partial derivative
Gradient
Tangent plane
Hessian (matrix)
Minimum, maximum, saddle point
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Optimization Examples

Duration of a text processing program (1 of 6)

Problem
Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine the exact
time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text.

Mathematically: Denote t(k) the “average” number of seconds needed to
process a text of length k. We know that

t(k) ≈ αk for some α ∈ R.

Problem: The proportionality constant α is unknown. How would you reasonably
estimate its value?
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Optimization Examples

Duration of a text processing program (2 of 6)

Sketch of a solution:
1. Run the program for several, say n, texts of various lengths and measure the

actual running times. This gives us n couples of measurements
(k1, t1), (k2, t2), . . . , (kn, tn).

2. For a given α, we can measure the approximation error t(k) ≈ αk by this
function:

e(α) = (t1 − αk1)2 + (t2 − αk2)2 + · · ·+ (tn − αkn)2 =
n∑

i=1
(ti − αki)2.

3. In order to find the best approximating proportionality constant α, we find
the value of α for which the error e(α) is minimal:

an optimal value of α is a minimum point of the function e(α).
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Optimization Examples

Duration of a text processing program (3 of 6)
How to find a minimum point of e(α):

1. Find the first derivative e′(α):

e′(α) =
( n∑

i=1
(ti − αki)2

)′
=

n∑
i=1
−2ki(ti − αki) .

2. Find the critical points, i.e., the points α0 where e′(α0) is zero or does not
exist:

e′(α0) = 0⇔
n∑

i=1
−2ki(ti−α0ki) = 0⇔

n∑
i=1

ki ti = α0

n∑
i=1

k2
i ⇔ α0 =

∑n
i=1 ki ti∑n
i=1 k2

i

3. The critical points are our candidates for the points of (local) minimal or
maximal values of the function e. To be sure that the value of α we found is
a minimum we need the second derivative:

e′′(α) =
( n∑

i=1
−2ki(ti − αki)

)′
=

n∑
i=1

2k2
i .

. . . continues . . .
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Optimization Examples

Duration of a text processing program (4 of 6)

We know that if e′′(α0) > 0 (resp. e′′(α0) < 0), then the critical point α0 is a
local strict minimum (resp. strict maximum) point.
If e′′(α0) = 0, then α is neither of these two cases (maybe an inflexion point?).

Solution: based on our measurements (k1, t1), (k2, t2), . . . , (kn, tn), we get the
best approximation t(k) ≈ αk for

α = α0 =
∑n

i=1 ki ti∑n
i=1 k2

i
.

Indeed, this α0 is the unique (why unique?) global (why global?) minimum point
of the approximation error function e(α) since the second derivative

e′′(α0) =
n∑

i=1
2k2

i is positive.
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Optimization Examples

Duration of a text processing program (5 of 6)

Problem (slight modification)
Imagine the following situation: You have created a program that processes a text
input by a user. You know, from theoretical analysis of the source code and
algorithms used within the program, that it is impossible to determine precisely
the time needed to process a text of length k. However, you know that it is
approximately proportional to the length of the text and to the frequency of
the processor.

Mathematically: Denote by t(k, f ) the “average” number of seconds needed to
process a text of length k, and the frequency of the processor by f . We know that

t(k, f ) ≈ αk + βf for some α, β ∈ R.

Problem: The constants α and β are unknown. How would you reasonably
estimate their values?
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Optimization Examples

Duration of a text processing program (6 of 6)

Sketch of solution:
1. Run the program for several, say n, texts of various lengths on computers

with different frequencies and measure the actual running times. This gives
us n triplets of measurements (k1, t1, f1), (k2, t2, f2), . . . , (kn, tn, fn).

2. For a given α and β, we can measure the approximation error
t(k, f ) ≈ αk + βf by this two-variable function:

e(α, β) = (t1 − αk1 − βf1)2 + (t2 − αk2 − βf2)2 + · · ·+ (tn − αkn − βfn)2 =

=
n∑

i=1
(ti − αki − βfi)2.

3. In order to find the best approximating constants α and β, we find values of
α and β for which the error e(α, β) is minimal: an optimal value of α and β
is the “two-dimensional” minimum point of e(α, β).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2025 8 / 25



Optimization Examples

Duration of a text processing program (6 of 6)

Sketch of solution:
1. Run the program for several, say n, texts of various lengths on computers

with different frequencies and measure the actual running times. This gives
us n triplets of measurements (k1, t1, f1), (k2, t2, f2), . . . , (kn, tn, fn).

2. For a given α and β, we can measure the approximation error
t(k, f ) ≈ αk + βf by this two-variable function:

e(α, β) = (t1 − αk1 − βf1)2 + (t2 − αk2 − βf2)2 + · · ·+ (tn − αkn − βfn)2 =

=
n∑

i=1
(ti − αki − βfi)2.

3. In order to find the best approximating constants α and β, we find values of
α and β for which the error e(α, β) is minimal: an optimal value of α and β
is the “two-dimensional” minimum point of e(α, β).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2025 8 / 25



Optimization Examples

Duration of a text processing program (6 of 6)

Sketch of solution:
1. Run the program for several, say n, texts of various lengths on computers

with different frequencies and measure the actual running times. This gives
us n triplets of measurements (k1, t1, f1), (k2, t2, f2), . . . , (kn, tn, fn).

2. For a given α and β, we can measure the approximation error
t(k, f ) ≈ αk + βf by this two-variable function:

e(α, β) = (t1 − αk1 − βf1)2 + (t2 − αk2 − βf2)2 + · · ·+ (tn − αkn − βfn)2 =

=
n∑

i=1
(ti − αki − βfi)2.

3. In order to find the best approximating constants α and β, we find values of
α and β for which the error e(α, β) is minimal: an optimal value of α and β
is the “two-dimensional” minimum point of e(α, β).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2025 8 / 25



Optimization Examples

Duration of a text processing program (6 of 6)

Sketch of solution:
1. Run the program for several, say n, texts of various lengths on computers

with different frequencies and measure the actual running times. This gives
us n triplets of measurements (k1, t1, f1), (k2, t2, f2), . . . , (kn, tn, fn).

2. For a given α and β, we can measure the approximation error
t(k, f ) ≈ αk + βf by this two-variable function:

e(α, β) = (t1 − αk1 − βf1)2 + (t2 − αk2 − βf2)2 + · · ·+ (tn − αkn − βfn)2 =

=
n∑

i=1
(ti − αki − βfi)2.

3. In order to find the best approximating constants α and β, we find values of
α and β for which the error e(α, β) is minimal:

an optimal value of α and β
is the “two-dimensional” minimum point of e(α, β).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2025 8 / 25



Optimization Examples

Duration of a text processing program (6 of 6)

Sketch of solution:
1. Run the program for several, say n, texts of various lengths on computers

with different frequencies and measure the actual running times. This gives
us n triplets of measurements (k1, t1, f1), (k2, t2, f2), . . . , (kn, tn, fn).

2. For a given α and β, we can measure the approximation error
t(k, f ) ≈ αk + βf by this two-variable function:

e(α, β) = (t1 − αk1 − βf1)2 + (t2 − αk2 − βf2)2 + · · ·+ (tn − αkn − βfn)2 =

=
n∑

i=1
(ti − αki − βfi)2.

3. In order to find the best approximating constants α and β, we find values of
α and β for which the error e(α, β) is minimal: an optimal value of α and β
is the “two-dimensional” minimum point of e(α, β).

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 5 Winter 2025 8 / 25



Optimization Comments

Comments

Why “optimization”?

A typical situation in physics, engineering, economy, chemistry, etc. is that you
have a function that measures your profit, your loss, the energy of something, etc.
The value of such function is given by one or more inputs and the relation
between inputs and the resulting value is usually stated as a mathematical formula
since all these sciences uses mathematical models to understand and quantify
their subject of interest.
An example of such function is our function e(α, β) that measures the
approximation error.

Typically, we want to maximize or minimize such functions (maximize the profit,
the energy, minimize the loss, the error) which leads to the problem of finding
optimal values of the inputs. Therefore the name “optimization”.
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Optimization Comments

Comments

There is another very important usage of the derivative.
Derivatives measure the rate of change of a function. This helps us to describe
the behaviour of a dynamical systems like a ball on a spring:

x0
x(t)

mk

The position of the ball at time t is a function x(t) satisfying the differential
equation

x ′′(t) + ω2x(t) = 0 .

The solution of this equation is

x(t) = x0 cos(ωt) + v0
ω

sin(ωt), t ∈ R,

where x0 = x(0) and v0 are the position and the speed of the ball at time t = 0.
This model is known as harmonic oscillator.
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Univariate optimization Derivative

How do we differentiate?

Example
Find the first derivative of f (x), where

(a) f (x) = x3 + 4x2 + 6,
(b) f (x) = sin(x3),
(c) f (x) = ex sin x.

Solutions:
(a) f ′(x) = 3x2 + 8x ,
(b) f ′(x) = 3x2 cos(x3),
(c) f ′(x) = ex sin x + ex cos x .
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Univariate optimization Derivative

Geometrical meaning of derivative: tangent line (1 of 2)

x

y

a

f (a)

z

f (z)

z − a

f (z)− f (a)

α

tanα = f (z)− f (a)
z − a

y = f (a) + tanα · (x − a)

x

y

a

f (a)

z

f (z)

z − a

f (z)− f (a)
α

tanα = f (z)− f (a)
z − a

y = f (a) + tanα · (x − a)

x

y

a

f (a)

z

f (z)

z − a

f (z)− f (a)
α

tanα = f (z)− f (a)
z − a

y = f (a) + tanα · (x − a)
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Univariate optimization Derivative

Geometrical meaning of derivative: tangent line (2 of 2)

The tangent line to the graph of a function f (x) at a point x0 is a straight
line that “just touches” the curve at that point.

Any straight line has equation y = ax + b, where a is the slope of the line.

The slope of the tangent line to f (x) at the point x0 equals the first
derivative evaluated at x0: f ′(x0).

The tangent line at the point x0 satisfies the equation

y = f ′(x0)(x − x0) + f (x0).
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Univariate optimization Derivative

Derivative and optimization

With this geometrical explanation it is easy to see that the following statements
are true:

If f ′(x0) is positive, then f (x) is increasing at x0.

If f ′(x0) is negative, then f (x) is decreasing at x0.
If x0 is a local minimum/maximum point of f (x), then f ′(x0) = 0 or f ′(x0)
does not exists. Such points are called critical points.

Example
Find all critical points of

f (x) = x3

3 + 2x2 + 3x + 6 .
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Univariate optimization Derivative

Second derivative

What does it mean that the second derivative f ′′(x) is positive?

The second derivative is a derivative of the first derivative; therefore the fact
that f ′′(x) is positive implies that f ′(x) is increasing (at the point x).

If f ′(x) is increasing, then the function f (x) is more and more increasing (if
f ′(x) > 0) or less and less decreasing (if f ′(x) < 0).

An illustrative example of function with positive second derivative is
f (x) = x2.
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Univariate optimization Derivative

Second derivative as a criterion for extremal values

Again, if we understand the geometrical meaning of the second derivative, we can
easily see that the following statements are true:

Theorem
Let x0 be a critical point of a function f (x) such that f ′(x0) = 0 and f ′′(x0)
exists.

If f ′′(x0) > 0, then the function is convex at x0 and x0 is a point of a (strict)
minimum.

If f ′′(x0) < 0, then the function is concave at x0 and x0 is a point of a
(strict) maximum.

Question: what can happen if f ′′(x0) = 0?
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Univariate optimization Derivative

Universal cookbook of univariate optimization

Given a function f (x), we want to find its extremal values.
1. Find the first derivative f ′(x).

2. Find the critical points: solve the equation f ′(x) = 0 and find the points
where the derivative does not exist.

3. Find the second derivative f ′′(x).
4. If possible, for all critical points x0 evaluate f ′′(x0) and decide whether this

point is a point of minimum or maximum or whether it is an inflexion point.
(Other critical points have to be treated by hand.)

The goal of this and the next lecture is to understand what happens when we
have more than 1 variable. We shall build a similar cookbook for such functions.
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Multivariate optimization

Graph of multivariate functions (1 of 2)

For a univariate function f (x), its graph is the set of points (x , f (x)) which can
be depicted in Cartesian coordinate system (typically with x - and y -axis).

What if the function depends on more variables? For instance: f (x , y).

Graph of a two-variable function sin(x · y): the set of points (x , y , sin(x · y)).
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Multivariate optimization

Graph of multivariate functions (2 of 2)

To depict a graph of a two-variable function we need a third axis (typically
z-axis) and a 3-dimensional figure. Such graph is in general some surface.
It is impossible to (directly) depict graphs of functions of more than 2
variables since we cannot make 4 or more dimensional figures.

Example
How does the graph of f (x , y) = x2 − y2 look like?
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Multivariate optimization

Partial derivative – introduction
Given the function f (x , y) = x2 + xy + y2.

If we fix the value of the variable y to 3, we obtain a univariate function
f (x) = x2 + 3x + 9 having its derivative equal to 2x + 3.

We can fix the value of y not only to a specific number: we just treat y as
a constant. Then we get univariate function f (x) = x2 + xy + y2 and its
derivative is 2x + y .
This derivative is called partial derivative of (x , y) with respect to x and
denoted by

∂f
∂x (x , y) = 2x + y .

In the same way we define the partial derivative of f (x , y) with respect to y :

∂f
∂y (x , y) = x + 2y .

In general ∂f
∂x (x , y) and ∂f

∂y (x , y) are two-variate functions.
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Multivariate optimization

Partial derivative – definition

The derivative of a (single variate) function f (x) is the following limit (if it
exists):

f ′(x) = lim
δ→0

f (x + δ)− f (x)
δ

.

Partial derivatives are defined similarly:

Definition
The partial derivative of f (x1, x2, . . . , xn) with respect to xi at the point
(x1, x2, . . . , xn) is defined by (if the limit below exists)

∂f
∂xi

(x1, x2, . . . , xi−1, xi , xi+1, . . . , xn) =

= lim
δ→0

f (x1, x2, . . . , xi−1, xi + δ, xi+1, . . . , xn)− f (x1, x2, . . . , xn)
δ

.

Since the definition is similar, even the geometrical meaning is analogous.
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Multivariate optimization

Partial derivative – definition
The partial derivatives of f (x , y) can be in short denoted by

fx (x , y) = ∂f
∂x (x , y) and fy (x , y) = ∂f

∂y (x , y) .

The number fx (x , y) for given values of x and y is again the slope of a tangent
line, but a surface has infinitely many tangent lines in all possible directions at any
point, so which one is this one?
It is the only tangent line which is parallel to the x -axis.
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Multivariate optimization

Second partial derivatives

Definition
For a function f (x1, x2, . . . , xn) we define second partial derivatives

fxj xi (x1, x2, . . . , xn) = ∂2f
∂xj∂xi

(x1, x2, . . . , xn) = ∂

∂xj

(
∂f
∂xi

(x1, x2, . . . , xn)
)
,

in particular, for i = j we have

fxi xi (x1, x2, . . . , xn) = ∂2f
∂x2

i
(x1, x2, . . . , xn) = ∂

∂xi

(
∂f
∂xi

(x1, x2, . . . , xn)
)
.
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Multivariate optimization

Partial derivatives – exercises

Example
Find partial derivatives with respect to all variables

(a) f (x , y) = xy + ex cos y,
(b) f (x , y) = x2y3 + x3y4 − exy2

,
(c) f (x , y , z) = sin(xy/z).

Example
Find all second partial derivatives of the functions

(a) f (x , y) = x2 + xy2 + 3x3y,
(b) f (x , y , z) = exz + y cos x,
(c) f (x , y , z) = z cos(xy) + x sin(yz).
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Multivariate optimization

Equality of mixed partial derivatives
The fact that the mixed partial derivatives are equal is not a coincidence:

Theorem
If a function f (x , y) has continuous second partial derivatives, then the mixed
second derivatives are equal, i.e.,

∂2f
∂y∂x = ∂2f

∂x∂y .

This theorem is not true in general, a counterexample is the function

f (x , y) =

0 at point (0, 0)
xy(x2 − y2)
x2 + y2 otherwise.
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