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What shall we do today?

Multivariate optimization:

Gradient
Tangent plane
Critical points on two or more variables
Hessian (matrix)
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Gradient

Gradient of a function
The gradient of a function f (x1, x2, . . . , xn) at the (n-dimensional) point b ∈ Rn is
the n-dimensional vector function ∇f (b) defined by

∇f (b) =
(

∂f
∂x1

(b), ∂f
∂x2

(b), . . . ,
∂f
∂xn

(b)
)

.

Example
Find the gradient of the function f (x , y) = x2 + xy + y2 at the point (1, 1).

Geometrical meaning: the gradient points is the direction of the greatest rate of
increase of the function. Its magnitude equals the rate of increase.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 3 / 14



Gradient

Gradient of a function
The gradient of a function f (x1, x2, . . . , xn) at the (n-dimensional) point b ∈ Rn is
the n-dimensional vector function ∇f (b) defined by

∇f (b) =
(

∂f
∂x1

(b), ∂f
∂x2

(b), . . . ,
∂f
∂xn

(b)
)

.

Example
Find the gradient of the function f (x , y) = x2 + xy + y2 at the point (1, 1).

Geometrical meaning: the gradient points is the direction of the greatest rate of
increase of the function. Its magnitude equals the rate of increase.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 3 / 14



Gradient

Gradient of a function
The gradient of a function f (x1, x2, . . . , xn) at the (n-dimensional) point b ∈ Rn is
the n-dimensional vector function ∇f (b) defined by

∇f (b) =
(

∂f
∂x1

(b), ∂f
∂x2

(b), . . . ,
∂f
∂xn

(b)
)

.

Example
Find the gradient of the function f (x , y) = x2 + xy + y2 at the point (1, 1).

Geometrical meaning: the gradient points is the direction of the greatest rate of
increase of the function. Its magnitude equals the rate of increase.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 3 / 14



Gradient

Gradient and the directional derivative
We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x -axis.

Example
If we are on the graph of the fonction f (x , y) = x2 + xy + y2 at the point (1, 1)
and we start moving in the direction parallel to the x-axis, i.e., in the direction of
the vector (1, 0), we will go “uphill” under the angle arctan 3 since

∂f
∂x (1, 1) = 2 + 1 = 3.

What will be the slope if we move in the direction of a general vector ~v?

Theorem
Given a function f (x) : Rn → R, a point a ∈ Rn and a unit vector ~v ∈ Rn, the
derivative in the direction of the vector ~v is the dot product of the gradient and ~v,
i.e, ∇f (a1, a2, . . . , an) · ~v.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 4 / 14



Gradient

Gradient and the directional derivative
We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x -axis.

Example
If we are on the graph of the fonction f (x , y) = x2 + xy + y2 at the point (1, 1)
and we start moving in the direction parallel to the x-axis, i.e., in the direction of
the vector (1, 0), we will go “uphill” under the angle arctan 3 since

∂f
∂x (1, 1) = 2 + 1 = 3.

What will be the slope if we move in the direction of a general vector ~v?

Theorem
Given a function f (x) : Rn → R, a point a ∈ Rn and a unit vector ~v ∈ Rn, the
derivative in the direction of the vector ~v is the dot product of the gradient and ~v,
i.e, ∇f (a1, a2, . . . , an) · ~v.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 4 / 14



Gradient

Gradient and the directional derivative
We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x -axis.

Example
If we are on the graph of the fonction f (x , y) = x2 + xy + y2 at the point (1, 1)
and we start moving in the direction parallel to the x-axis, i.e., in the direction of
the vector (1, 0), we will go “uphill” under the angle arctan 3 since

∂f
∂x (1, 1) = 2 + 1 = 3.

What will be the slope if we move in the direction of a general vector ~v?

Theorem
Given a function f (x) : Rn → R, a point a ∈ Rn and a unit vector ~v ∈ Rn, the
derivative in the direction of the vector ~v is the dot product of the gradient and ~v,
i.e, ∇f (a1, a2, . . . , an) · ~v.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 4 / 14



Gradient

Gradient and the directional derivative
We saw that the partial derivative with respect to x at the point a is equal to the
slope of tangent line at this point in direction parallel to the x -axis.

Example
If we are on the graph of the fonction f (x , y) = x2 + xy + y2 at the point (1, 1)
and we start moving in the direction parallel to the x-axis, i.e., in the direction of
the vector (1, 0), we will go “uphill” under the angle arctan 3 since

∂f
∂x (1, 1) = 2 + 1 = 3.

What will be the slope if we move in the direction of a general vector ~v?

Theorem
Given a function f (x) : Rn → R, a point a ∈ Rn and a unit vector ~v ∈ Rn, the
derivative in the direction of the vector ~v is the dot product of the gradient and ~v,
i.e, ∇f (a1, a2, . . . , an) · ~v.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 4 / 14



Tangent plane

Tangent plane

The tangent plane to a function f (x , y) at the point (x0, y0) is a 2-dimensional
plane that “touches” the graph of the function at (x0, y0).

Its equation is

z = ∂f
∂x (x0, y0) · (x − x0) + ∂f

∂y (x0, y0) · (y − y0) + f (x0, y0).

Example
Find the tangent plane to f (x , y) = x2 + xy + y2 at (1, 1).
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Critical points

Critical points – two variables

In the one dimensional case the critical points are those points where the
tangent line is parallel to the x -axis, i.e., points where f ′(x) = 0, or where
the derivative does not exist.

The critical points of a two variable function are those points where the
tangent plane is parallel to the plane given by the x -axis and the y -axis or
where the gradient does not exist.

The first class of these points can be found as a solution of

∇f (x , y) = (0, 0)

which leads to the system of two equations for two variables
∂f
∂x (x , y) = 0
∂f
∂y (x , y) = 0

.
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Critical points

Critical points – more variables

For an n-variable function f (x1, x2, . . . , xn) the situation is analogous:
The critical points of f (x1, x2, . . . , xn) are points satisfying the equation

∇f (x1, x2, . . . , xn) = 0

i.e., points satisfying the system of n equations for n variables

∂f
∂x1

(x1, x2, . . . , xn) = 0
∂f
∂x2

(x1, x2, . . . , xn) = 0
...

∂f
∂xn

(x1, x2, . . . , xn) = 0

,

or where the gradient does not exist.

(Instead of a tangent plane, we have a tangent hyperplane.)

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 7 / 14



Critical points

Critical points – more variables

For an n-variable function f (x1, x2, . . . , xn) the situation is analogous:
The critical points of f (x1, x2, . . . , xn) are points satisfying the equation

∇f (x1, x2, . . . , xn) = 0

i.e., points satisfying the system of n equations for n variables

∂f
∂x1

(x1, x2, . . . , xn) = 0
∂f
∂x2

(x1, x2, . . . , xn) = 0
...

∂f
∂xn

(x1, x2, . . . , xn) = 0

,

or where the gradient does not exist.
(Instead of a tangent plane, we have a tangent hyperplane.)

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 6 Winter 2025 7 / 14



Critical points

Critical points – example

Example
Find all critical points of

f (x1, x2, x3) = x1x3 + x2
1 − x2 + x2x3 + x2

2 + 3x2
3 ,

We get
∇f (x1, x2, x3) = (x3 + 2x1, −1 + x3 + 2x2, x1 + x2 + 6x3)

which always exists. Thus the critical points are the solution of the system x3 + 2x1 = 0
−1 + x3 + 2x2 = 0
x1 + x2 + 6x3 = 0

,

which, using the standard procedure for a system of linear equations, gives us the

only solution
(

1
20 ,

11
20 ,
−1
10

)
.
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Hessian

Type of a critical point (1 of 4)

In the one dimensional case, we can use the second derivative to decide the type
of the critical point.

Theorem
Let x0 be a critical point of a function f (x) such that f ′(x0) = 0 and f ′′(x0) exists.

If f ′′(x0) > 0, then the function is convex at x0, and x0 is a point of a
minimum.
If f ′′(x0) < 0, then the function is concave at x0, and x0 is a point of a
maximum.
If f ′′(x0) = 0, then x0 may be a minimum, maximum, inflection point, . . .

Do we have something similar for more variables? What is the second derivative?
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Hessian

Type of a critical point (2 of 4)

The analogue of the second derivative is the following.

Definition
For a function f (x1, x2, . . . , xn) we define the Hessian matrix as

∇2f (x1, x2, . . . , xn) =


∂2f
∂x2

1
(x1, . . . , xn) · · · ∂2f

∂x1∂xn
(x1, . . . , xn)

...
. . .

...
∂2f

∂xn∂x1
(x1, . . . , xn) · · · ∂2f

∂x2
n

(x1, . . . , xn)


assuming that all the derivatives exist.
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Hessian

Type of a critical point (3 of 4)

We would like to construct rules like “If f ′′(x0) > 0, then the critical point x0 is
the point of minimum”.
But to say that the matrix is “positive” is problematic . . . Let us use a different
notion.

Definition
A matrix A ∈ Rn,n is

(i) positively definite if for all non-zero vectors a ∈ Rn it holds that aAaT > 0;
(ii) positively semidefinite if for all vectors a ∈ Rn it holds that aAaT ≥ 0 and the

equality is true for at least one non-zero vector b ∈ Rn;
(iii) negatively definite if for all non-zero vectors a ∈ Rn it holds that aAaT < 0;
(iv) negatively semidefinite if for all vectors a ∈ Rn it holds that aAaT ≤ 0 and the

equality is true for at least one non-zero vector b ∈ Rn;
(v) indefinite otherwise.
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Hessian

Type of a critical point (4 of 4)

Theorem
If f : Rn → R has all second partial derivative continuous at a critical point
b ∈ Rn, then

(i) if ∇2f (b) is positively definite, then b is a point of local minimum;
(ii) if ∇2f (b) is negatively definite, then b is a point of local maximum;
(iii) if ∇2f (b) is indefinite, then b is a saddle point.
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Hessian

Sylvester’s criterion on definiteness

For an n × n dimensional symmetric matrix A we define the principal minors:
M1 is the upper left 1-by-1 corner of A,
M2 is the upper left 2-by-2 corner of A,
. . .
Mn is the upper left n-by-n corner of A.

Theorem
Let A ∈ Rn,n be a symmetric matrix.

A is positively definite if and only if the determinants of all principal minors
are positive.
A is negatively definite if and only if the determinant of Mi is negative for
odd i and positive for even i.
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Hessian

Example

Example
Find all minima and maxima of the function

f (x , y) = 3x4 − 4x3 − 12x2 + 18
12(1 + 4y2) .

Solution: The critical points are (−1, 0), (0, 0) and (2, 0); they are a saddle
point, a point of maximum and a point of minimum, respectively.
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