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Outline

Constrained optimization
Reminder: integration of functions of 1 variable
2-variate function integration
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Constrained optimization

Motivation
Find the maximum and minimum points when walking along the black line:
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Constrained optimization

The problem

Let f : Rn → R.
Find (local) maxima and minima of f subject to

g1(x1, x2, . . . , xn) = 0
g2(x1, x2, . . . , xn) = 0

...
gp(x1, x2, . . . , xn) = 0.

Set G = {(x1, x2, . . . , xn) ∈ Rn | gi (x1, x2, . . . , xn) = 0, i = 1, 2, . . . , p}.
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Constrained optimization

Assumptions

1 The functions f and gi , with i = 1, 2, . . . , p, have continuous second partial
derivatives.

2 The gradients ∇g1(x),∇g2(x), . . . ,∇gp(x) form a linearly independent set
for all x ∈ G.

Example
Are the gradients of the following functions linearly independent?

g1(x , y) = 2x + xy2, g2(x , y) = 4x + 2xy2,
g3(x , y) = 2xy2 + 4y2, g4(x , y) = 2x + 3xy2 + 4y2.
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Constrained optimization

Running example
f (x , y) = x + y , G = {(x , y) ∈ R2 : x2 + y2 = 2}
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Constrained optimization

Necessary condition

Theorem

Assume f has a local extremum in x∗ = (x∗1 , . . . , x∗n ) ∈ G subject to G.
Then there exist numbers µ∗1 , . . . , µ∗p such that the Lagrangian function L given by

L(x1, . . . , xn, µ1, . . . , µp) = f (x1, . . . , xn) +
p∑

i=1
µigi (x1, . . . , xn)

has zero partial derivatives with respect to x1, . . . , xn at the point x∗.

In other words, the following system is true:
∂f
∂x1

(x∗) + µ∗1
∂g1
∂x1

(x∗) + · · ·+ µ∗p
∂gp
∂x1

(x∗) = 0
...

∂f
∂xn

(x∗) + µ∗1
∂g1
∂xn

(x∗) + · · ·+ µ∗p
∂gp
∂xn

(x∗) = 0
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Constrained optimization

Sufficient condition

Theorem
Let x∗ = (x∗1 , . . . , x∗n ) ∈ Rn and µ∗ = (µ∗1 , . . . , µ∗p) ∈ Rp such that

(i) the Lagrangian function L(x1, . . . , xn, µ1, . . . , µp) has zero partial derivatives
with respect to x1, . . . , xn at the point (x∗, µ∗) ∈ Rn+p;

(ii) the Lagrangian function L(x1, . . . , xn, µ1, . . . , µp) has zero partial derivatives
with respect to µ1, . . . , µp at the point (x∗, µ∗) ∈ Rn+p;

(iii) for all non-zero y ∈ Rn satisfying y · ∇gi (x∗) = 0 for i = 1, 2, . . . , p we have

y
(
∇2f (x∗) +

p∑
i=1

µ∗i ∇2gi (x∗)
)

yT > 0.

Thus, the function f has a strict local minimum at x∗ (subject to G).

If we replace in (iii) the condition “> 0” by “< 0”, we obtain a sufficient
condition of a strict local maximum.
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Constrained optimization

Example

Example
Find maxima and minima of f (x , y) = x + y subject to x2 + y2 = 2.
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Integration of functions of 1 variable

Integration of functions of 1 variable

Let f : R→ R and a < b.

Recall what does
ˆ b

a
f (x) dx mean, if it exists.

What is its geometrical meaning?
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Integration of functions of 1 variable

Definition

Let ∆ = (xi )n
i=0 define a partition of [a, b] : a = x0 < x1 < . . . < xn = b.

Set F∆,i = max
x∈[xi−1,xi ]

f (x) and f∆,i = min
x∈[xi−1,xi ]

f (x).

The upper Darboux sum of f with respect to the partition ∆ is

Sf ,∆ =
n∑

i=1
F∆,i · (xi − xi−1)

and the lower Darboux sum of f with respect to the partition ∆ is

sf ,∆ =
n∑

i=1
f∆,i · (xi − xi−1).
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Integration of functions of 1 variable

Definition. . .

The upper Darboux integral (of f over [a, b]) is

Df = inf{Sf ,∆ : ∆ is a partition of [a, b]}

and the lower Darboux integral (of f over [a, b]) is

df = sup{sf ,∆ : ∆ is a partition of [a, b]}.

If Df = df , we call this value the Darboux integral of f over [a, b], and denote it
ˆ b

a
f (x) dx = Df = df .

We say that f is (Darboux-)integrable over [a, b].

This is equivalent to the Riemann integral and to Riemann integrability.
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Integration of functions of 1 variable

A few properties

If f is continuous on [a, b], then it is integrable on [a, b].

Let f be integrable on [a, b] and on [b, c] (with a < b < c).

We have that f is integrable on [a, c] and
ˆ c

a
f (x) dx =

ˆ b

a
f (x) dx +

ˆ c

b
f (x) dx .
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Integration of functions of 1 variable

Primitive function

Let F (x) be a real function which is continuous on [a, b] and differentiable on
(a, b).

Let f (x) be a real function which is continuous on (a, b) and such that

∀x ∈ (a, b), F ′(x) = f (x).

Such function F is called a primitive function of f on (a, b).

Example
Find a primitive function on (0, 1) of the function f (x) = 2x + x2.
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Integration of functions of 1 variable

Newton’s formula

Let f be integrable on [a, b] and F (x) be (one of) its primitive function on (a, b).
We have ˆ b

a
f (x) dx = [F (x)]ba = F (b)− F (a).

Example

Calculate
ˆ 1

0
(2x + x2) dx.
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Integration of functions of 1 variable

Substitution

Let α, β ∈ R such that α < β.

Let ϕ be a real function differentiable on (α, β) such that ϕ and ϕ′ are both
continuous on [α, β].

Let f be continuous on [ϕ(α), ϕ(β)] (or if ϕ(α) ≤ ϕ(β), otherwise continuous on
[ϕ(β), ϕ(α)]).

If f (ϕ(t)) ϕ′(t) is integrable on [α, β], then
ˆ β

α

f (ϕ(t))ϕ′(t) dt =
ˆ ϕ(β)

ϕ(α)
f (x) dx .

Example

Calculate
ˆ 2

1

2 ln(t)2

t dt.
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Integration of functions of 1 variable

Integration by parts

Let f and g be differentiable on (a, b) and let f , g , f ′, g ′ be continuous on [a, b].
We have ˆ b

a
f ′(x)g(x) dx = [f (x)g(x)]ba −

ˆ b

a
f (x)g ′(x) dx .

Example

Calculate
ˆ 2

1
10x ln x dx.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 7 Winter 2025 17 / 26



Integration of functions of 1 variable

Integration by parts

Let f and g be differentiable on (a, b) and let f , g , f ′, g ′ be continuous on [a, b].
We have ˆ b

a
f ′(x)g(x) dx = [f (x)g(x)]ba −

ˆ b

a
f (x)g ′(x) dx .

Example

Calculate
ˆ 2

1
10x ln x dx.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 7 Winter 2025 17 / 26



2-variate function integration

2-variate function

Suppose we have a function f : D → R, where D = [a, b]× [c, d ].

Imagine that this function represents (part of) a surface of some object.
What is the volume of this object?
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2-variate function integration

x

y

z
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2-variate function integration

Definition

Let ∆x = (xi )n
i=0 define a partition of [a, b] and ∆y = (yj)m

j=0 a partition of [c, d ].

Then, ∆ = ∆x ×∆y defines a partitions of D = [a, b]× [c, d ] into rectangles.

Set
F∆,i,j = max {f (x , y) : (x , y) ∈ [xi−1, xi ]× [yj−1, yj ]} and
f∆,i,j = min{f (x , y) : (x , y) ∈ [xi−1, xi ]× [yj−1, yj ]}.

The upper Darboux sum of f with respect to the partition ∆ is

Sf ,∆ =
n∑

i=1

m∑
j=1

F∆,i,j · (xi − xi−1) · (yj − yj−1)

while the lower Darboux sum of f with respect to the partition ∆ is

sf ,∆ =
n∑

i=1

m∑
j=1

f∆,i,j · (xi − xi−1) · (yj − yj−1).
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2-variate function integration

Definition. . .

The upper Darboux integral (of f over D) is

Df = inf {Sf ,∆ : ∆ is a (rectangular) partition of D}

and the lower Darboux integral (of f over D is

df = sup{sf ,∆ : ∆ is a (rectangular) partition of D}.

If Df = df , we call this value the (double) Darboux integral of f over D, and
denote it ¨

D
f (x , y) dx dy = Df = df .

We say that f is (Darboux-)integrable over D.
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2-variate function integration

How to calculate a double integral?

The following statement can be derived from the definition.

Theorem
If f is integrable over D = [a, b]× [c, d ] and one of the integrals

ˆ b

a

(ˆ d

c
f (x , y) dy

)
dx or

ˆ d

c

(ˆ b

a
f (x , y) dx

)
dy

exists, then it is equal to ¨
D

f (x , y) dx dy .

Example
Calculate the double integral over D = [0, 2]× [−1, 2] of the function
f (x , y) = x2y + 1.
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2-variate function integration

And if D is not a rectangle?

The definition is very similar: we approximate D using smaller and smaller
rectangular areas...
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2-variate function integration

Special types of domain D (1/2)

We will consider the following two types of the domain D.
(type 1) x ∈ [a, b] and y is bounded by continuous functions ϕ1(x) and
ϕ2(x);
(type 2) y ∈ [c, d ] and x is bounded by continuous functions ψ1(y) and
ψ2(y).

x

y

a b

D

y = ϕ2(x)

y = ϕ1(x)

(type 1)

x

y

x = ψ2(y)

x = ψ1(y)

(type 2)

c

d

D
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2-variate function integration

Special types of domain D (2/2)

Double integrals over such D are calculated as follows.

Theorem
If the integral on the right side exists, then we have (for such a domain D):

if D is of type 1, then
¨

D
f (x , y)dxdy =

ˆ b

a

(ˆ ϕ2(x)

ϕ1(x)
f (x , y)dy

)
dx ;

if D is of type 2, then
¨

D
f (x , y)dxdy =

ˆ d

c

(ˆ ψ2(y)

ψ1(y)
f (x , y)dx

)
dy .
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2-variate function integration

Example

Example
Let D be the region given by the triangle with vertices (0, 1), (0, 2) and (3, 0).
Calculate ¨

D

x + y
2 dxdy .

x

y

0

2

1

3

y = −2
3x + 2

y = −x
3 + 1

ˆ 3

0

ˆ 2− 2
3 x

1− x
3

x + y
2 dydx = · · · = 3

2
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