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Numerical mathematics

Numerical mathematics is devoted to methods that seek an approximate but
sufficiently accurate solution of problems in various fields. A simplified
mathematical model of the problem is used; its partial tasks consist of various
mathematical problems.
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Numerical mathematics

Numerical mathematics is devoted to methods that seek an approximate but
sufficiently accurate solution of problems in various fields. A simplified
mathematical model of the problem is used; its partial tasks consist of various
mathematical problems.

The following mathematical problems are often involved:
solution of systems of linear equations,

solution of differential equations,

calculation of integrals,

evaluations of function values,

estimation of errors in calculations,

© 060060606

Typically, a computer calculation is involved.
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@ Error in the Patriot missile defense system (February 25th, 1991)

(0.1)10 = (0.000110011001100110011001100110011...),
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Numerical mathema

@ Error in the Patriot missile defense system (February 25th, 1991)

(0.1)10 = (0.000110011001100110011001100110011...),

@ Explosion of the Ariane 5 rocket (June 4th, 1996)
conversion from a 64-bit floating point number to a 16-bit signed integer
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Numerical mathematics

@ Error in the Patriot missile defense system (February 25th, 1991)

(0.1)10 = (0.000110011001100110011001100110011...),

@ Explosion of the Ariane 5 rocket (June 4th, 1996)
conversion from a 64-bit floating point number to a 16-bit signed integer

This does not mean that approximation methods do not work. In the vast
majority of cases they work well, but it is important to know how reliable they are.
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Category of errors

We will use different approximations to design the algorithm. We will therefore
make various kind of mistakes, which can be divided according to their origin:

@ errors in the model: the mathematical model to solve the problem is
somehow simplified.

errors in the data: data often come from measurements that do not have
absolute accuracy.

o

@ errors in the algorithm: we don’t have to have an algorithm that finds the
exact solution in a finite number of steps.

Qo

rounding errors: errors occur during the calculation itself (e.g., during
arithmetic operations).

Apart from data errors, we will give examples of all other kinds of errors. We start
with rounding errors, which are given by the fact that the algorithm need a
computer to do the hard work.
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Computer arithmetics

To store a number in computer we usually use the binary number system.

(6)10 = (110),  (0.1)10 = (0.000110011001100110011001100110011...),
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Computer arithmetics

To store a number in computer we usually use the binary number system.

(6)10 = (110),  (0.1)30 = (0.000110011001100110011001100110011...),

For non-integers, one can use the scientific notation. In the binary base a
number x is represented as
x=xm-2°

m - mantissa/significand having a fixed number of digits / fixed length; these
digits are also called significant digits.

e - exponent having a fixed number of digits / fixed length.
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Computer arithmetics

A number x is represented by its sign s and by the numbers e and m.
The standard IEEE-754 defines the following lengths of e and m and their
interpretation.
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IEEE-754

A number x is represented by its sign s and by the numbers e and m.
The standard IEEE-754 defines the following lengths of e and m and their

interpretation.

precision length of m | d = length of e b

binary32 / single precision 23 8 127

binary64 / double precision 52 11 1023

binary128 / quadruple precision 112 15 16383

o ife=29—1and m#0, then x = NaN (Not a Number)

eife=29—1and m=0and s =0, then x = +Inf

eife=29—1and m=20and s =1, then x = —Inf

0 if 0 <e<?2?—1,then x = (~1)°- (1.m); - 2°°” (so-called normalized
numbers)

o ife=0and m#0, then x = (—1)°- (0.m), - 27 %! (so-called
subnormal /unnormalized numbers)

e ife=0and m=0and s =0, then x=0

o ife=0and m=0ands=1, then x=—-0
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Computer arithmetics

The numbers that can be represented as floating point numbers (with selected
finite lengths of m and e) are called machine numbers.
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Computer arithmetics

The numbers that can be represented as floating point numbers (with selected
finite lengths of m and e) are called machine numbers.

Example: take m of length 2 bits, e of length 3 bits, and b = 3.

We obtain the following set of numbers (we consider only positive elements)

11315371537 _537_.5_7
222 L2222 23 456,7,8,10,12,14
{ 1472’4’2727372’ ’5767 78’ 07 7}

Subnormal numbers are in brown.

1357
16161616
011315371 5 3

N o1
NI~
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Representation with floating point
Machine numbers (1/3)

The numbers that can be represented as floating point numbers (with selected
finite lengths of m and e) are called machine numbers.

Example: take m of length 2 bits, e of length 3 bits, and b = 3.

We obtain the following set of numbers (we consider only positive elements)

11315371537 _537_5_17
{07167871674716787167278a478717472a4a272737274a5767778710712714}
Subnormal numbers are in brown.

1357

16161616

011315371 5 3 r 3 5 3 1 4
8482848 4 2 4 2 2

The set of all machine numbers with a given precision has little in common with
the set of real numbers. It resembles more to a finite subset of integers.
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Computer arithmetics

Denote the set of machine numbers by F.

The set F has the largest and the smallest positive elements as follows:

precision max. no. min. pos. normalized | min. pos. subnormal

Single (2 _ 2—25) i 2127 2—120 2—126—25 — 2—14'9
~ 3.4-10% ~12-10738 ~14-107%

dOUble (2 o 2—52) . 21025 2—1022 2—1022—52 — 2—1074
~1.8-10%% ~ 22107308 ~4.9-10%*

Francesco Dolce (CTU in Prague)

NIE-MPI- Lecture 9




Computer arithmetics

F is characterized by the machine epsilon ¢, which is the difference between 1.0
and the smallest number in F larger than 1.

For single precision we have er = 2723, for double 272,
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Representation with floating point
Machine numbers (3/3)

F is characterized by the machine epsilon g, which is the difference between 1.0
and the smallest number in F larger than 1.

For single precision we have er = 2723, for double 27°2.

Proposition

E€F

The distance between any two neighboring normalized numbers in F is at least >

and at most ef.
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Computer arithmetics

Let fl : R — F be the mapping which assigns to any x € R the closest machine
number.

The “closest” is given by the method chosen: rounding (“ties to even”), chopping
(rounding towards 0),. ..
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Representation of real numbers (1/3)

Let fl : R — F be the mapping which assigns to any x € R the closest machine
number.

The “closest” is given by the method chosen: rounding (“ties to even”), chopping
(rounding towards 0),. ..

When trying to represent a number which is out of the representable range, an
overflow or underflow is returned.

Definition

Let a number o« be an approximate value of a number a.

o The absolute error is the value |o — a|.
o — 4|

Kl

@ For a # 0, the relative error is
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Computer arithmetics

In single precision, suppose that a number x € R lies in the normalized range, i.e.,

x=q-2° wherel<g<?2 and —126</<127.
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Computer arithmetics

In single precision, suppose that a number x € R lies in the normalized range, i.e.,

x=q-2° wherel<g<?2 and —126</<127.

What is the error due to the rounding or chopping when the closest machine
number is chosen?
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Computer arithmetics

In single precision, suppose that a number x € R lies in the normalized range, i.e.,

x=q-2" wherel<g<2 and —126</<127.

What is the error due to the rounding or chopping when the closest machine
number is chosen?

Let's round towards 0, i.e., chop off bits which do not fit into the significand (for
positive numbers).

If x = (1.byiby---bopbyzbog---)y - 2" then fl(x) = (1.biby - - - bp3) - 2°.
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Representation of real numbers (2/3)

In single precision, suppose that a number x € R lies in the normalized range, i.e.,

x=q-2" wherel<g<2 and —126</<127.

What is the error due to the rounding or chopping when the closest machine
number is chosen?

Let's round towards 0, i.e., chop off bits which do not fit into the significand (for
positive numbers).

If x = (1.biby---bobybyg---)2-2°  then fI(x) = (1.biby---by)- 2"

The absolute error and the absolute errors are respectively:

. —234¢
|x — fl(x))| < 2 <923

—23+4¢
Ix — fl(x)| <2 and M S g S
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Computer arithmetics

The threshold of relative error is called the unit roundoff error and is denoted by
u. Thus, in the single precision with chopping we have u = 2723

Attention, this number is sometimes called machine epsilon.
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Computer arithmetics

The threshold of relative error is called the unit roundoff error and is denoted by
u. Thus, in the single precision with chopping we have u = 2723

Attention, this number is sometimes called machine epsilon.

If we use mathematical rounding, we obtain u = 272
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Representation of real numbers (3/3)

The threshold of relative error is called the unit roundoff error and is denoted by
u. Thus, in the single precision with chopping we have u = 2723

Attention, this number is sometimes called machine epsilon.

If we use mathematical rounding, we obtain u = 2724

Proposition

Let x € R be greater than the smallest normalized number of F and smaller than
the greatest normalized number of F. We have

fl(x) = x(1+0), where |0| < u,
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(@1 AT CEIE  Arithmetic operations

Arithmetic operations - error

Proposition

Let x,y € F and ® be the operation of addition, multiplication or division. If
there is no overflow or underflow, then we have

filx®y)=(x0y)(1+70), where 0] <u,
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(@1 AT CEIE  Arithmetic operations

Arithmetic operations - error

Proposition

Let x,y € F and ® be the operation of addition, multiplication or division. If
there is no overflow or underflow, then we have

filx®y)=(x0y)(1+70), where 0] <u,

In general: If we operate with more numbers, it is better to start with the smallest
ones.
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Computer arithmetics

Let  : R? — R be a mapping given by

F(x,y) = 333.75y° + x2 (11x2%2 — y® — 121y* — 2) + 5.5)% + %
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Arithmetic operations - a demonstration

Let  : R? — R be a mapping given by

F(x,y) = 333.75y5 + x2 (11x3y2 — 5 — 121y* — 2) + 5.5y% + %

Let us evaluate f(77617,33096):

SageMath (precision 23 bits) 1.17260
SageMath (precision 24 bits) | —6.33825-10">°
)
)

(
(
SageMath (precision 53 bits —1.18059162071741 - 107t
SageMath (precision 54 bits 1.18059162071741 - 10%*

(

(

(

SageMath (precision 100 bits) 1.1726039400531786318588349045
SageMath (precision 121 bits) 1.17260394005317863185883490452018371
SageMath (precision 122 bits) | —0.827396059946821368141165095479816292
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Arithmetic operations - a demonstration

Let  : R? — R be a mapping given by

F(x,y) = 333.75y5 + x2 (11x3y2 — 5 — 121y* — 2) + 5.5y% + %

Let us evaluate f(77617,33096):

SageMath (precision 23 bits) 1.17260
SageMath (precision 24 bits) | —6.33825-10">°
)
)

(
(
SageMath (precision 53 bits —1.18059162071741 - 107t
SageMath (precision 54 bits 1.18059162071741 - 10%*

(

(

(

SageMath (precision 100 bits) 1.1726039400531786318588349045
SageMath (precision 121 bits) 1.17260394005317863185883490452018371
SageMath (precision 122 bits) | —0.827396059946821368141165095479816292

54767
Th t solution is ———— ~ —0.827396.
e exact solution is — =0

[S. M. Rump: Algorithms for verified inclusions - theory and practice, ..., 1988]
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.

We want to evaluate x — sin(x) for x = 5
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.

We want to evaluate x — sin(x) for x = 5

x < 6.6666 66667 -1072
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.

We want to evaluate x — sin(x) for x = 5

x < 6.6666 66667 -1072
sin(x) < 6.6617 29492 1072
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.

We want to evaluate x — sin(x) for x = 5
x < 6.6666 66667 1072

sin(x) < 6.6617 29492 1072

x — sin(x) < 0.0049 37175 -1072
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.

We want to evaluate x — sin(x) for x = 5
x < 6.6666 66667 1072

sin(x) < 6.6617 29492 1072

x — sin(x) < 0.0049 37175 -1072

x — sin(x) < 4.9371 75000 -107°
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.

We want to evaluate x — sin(x) for x = 5
x < 6.6666 66667 1072

sin(x) < 6.6617 29492 1072

x — sin(x) < 0.0049 37175 -1072

x — sin(x) < 4.9371 75000 -107°

The last 3 zeros are not correct significant digits.
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Computer arithmetics

Errors while doing arithmetical operations can accumulate.
Big problems can be caused by the so-called cancellation.

Let us illustrate this on an example. Imagine that our computer calculates in basis
10 and uses 10 significant digits.

We want to evaluate x — sin(x) for x = 5

X < 6.6666 66667 -107>

sin(x) < 6.6617 29492 1072

x — sin(x) < 0.0049 37175 -1072
x — sin(x) < 4.9371 75000 -107°

The last 3 zeros are not correct significant digits.

Let us calculate the relative error.
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That is a lot in comparison to

x = fI(x)]

x|

<5.1071%0,
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Loss of significant digits (2/3)

(35 —sin (%)) = #1(#1 (&) —sin ( (5)) )|

~14-1077.
|45 —sin (35) |

That is a lot in comparison to

x = fI(x)]

]

<5.1071%0,

Proposition

Let x and y be normalized machine numbers and x > y > 0.

If27P <1-— 4 < 279 for some positive integers p and q, then at most p and at
X

least q significant binary bits are lost when performing the operation x — y.

Francesco Dolce (CTU in Prague) NIE-MPI- Lecture 9 Winter 2025 16/19



Computer arithmetics

Cancellation can be avoided by using the following techniques:

@ rationalizing the problem, i.e., using rational numbers and avoiding the
subtraction in floating points arithmetics,

@ using series expansions (such as Taylor series),
@ using other identities,. . .
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Computer arithmetics

Origins of errors:
@ rounding errors and their accumulation,

@ cancellation.
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Computer arithmetics

Origins of errors:
@ rounding errors and their accumulation,

@ cancellation.

The errors on the inputs may also play an important role. Those errors are given
by the origin of the input which may be the output of another calculation or a
measurement.
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Computer arithmetics

Origins of errors:
@ rounding errors and their accumulation,

@ cancellation.

The errors on the inputs may also play an important role. Those errors are given
by the origin of the input which may be the output of another calculation or a
measurement.

A few final notes:
@ increased precision may not lead to a more precise result,
@ cancellation can be useful - it may cancel rounding errors,

o few operations with small numbers do not imply a small error.
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Computer arithmetics

One of the problems of machine numbers (IEEE-754) is in the ignorance of the
created error.
There are some alternatives:
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Computer arithmetics

One of the problems of machine numbers (IEEE-754) is in the ignorance of the
created error.
There are some alternatives:

e Exact arithmetics: Z, Q or GF(p) (it is not always possible or suitable).

o Interval arithmetics (we work with intervals instead of points). (IEEE
1788-2015).

e Unum.
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