NIE-MPI: Tutorial 7

last update: September 1, 2025, 13:16 by Francesco Dolce

7.1 Constrained optimization

Exercise 7.1. Find all the local maxima and minima of the function f(x,y) = 3x - 4y + 3 subject to

$$x^2 + y^2 = 4.$$

Exercise 7.2. Find all the local maxima and minima of the function f(x,y) = xy subject to

$$x + y = 1$$
.

Exercise 7.3. Find all the local maxima and minima of the function $f(x,y) = x^2 + y^2$ subject to

$$\frac{x}{a} + \frac{y}{b} = 1,$$

where a and b are non-zero real numbers.

Exercise 7.4. Find all the local maxima and minima of the function $f(x,y) = 2x^2 - 2y^2$ subject to

$$y + e^{-x^2} = 1.$$

7.2 2-variate function integration

Exercise 7.5. Let $f(x,y) = e^{2x+y}$ and $D = [0,1] \times [0,3]$. Evaluate

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Exercise 7.6. Let $f(x,y) = \sin(x+y)$ and $D = [0,\pi] \times [0,2\pi]$. Evaluate

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Exercise 7.7. Find the volume of the solid object delimited by the graph of

$$f(x,y) = x^2 + y^2$$

and by the planes x = 0, x = 3, y = -1 and y = 1 (the volume is positive for z > 0 and negative for z < 0).

Exercise 7.8. Let f(x, y, z) = x + 2y + 3z and $D = [0, 1] \times [-\frac{1}{2}, 0] \times [0, \frac{1}{3}]$. Evaluate

$$\iiint_D f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$

Exercise 7.9. Let $f(x, y, z) = e^{x+y+z}$ and $D = [0, 1] \times [0, 1] \times [0, 1]$. Evaluate

$$\iiint_D f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$

Integrals over non-rectangular domain

Exercise 7.10. Evaluate

$$\iint_D (x+y) \, \mathrm{d}x \, \mathrm{d}y,$$

where D is the domain delimited by the graph of $y=x^2$ for $x\in[0,\frac{1}{2}]$ and the x-axis.

Exercise 7.11. Evaluate

$$\iint_D (x+y)^2 \, \mathrm{d}x \, \mathrm{d}y$$

where D is the triangular surface with vertices (0,0),(0,1) and (2,2).

Exercise 7.12. Evaluate

$$\int_0^1 \int_x^1 xy \, \mathrm{d}y \, \mathrm{d}x.$$

Exercise 7.13. Evaluate

$$\int_0^1 \int_{1-y}^1 (x+y^2) \, \mathrm{d}x \, \mathrm{d}y \, .$$

Exercise 7.14. Evaluate

$$\iint_D (x - y) \, \mathrm{d}x \, \mathrm{d}y,$$

where D is the triangular surface with vertices (0,0),(1,0) and (2,1).