
BIE-PST – Probability and Statistics
Lecture 4: Random variables II.

Winter semester 2025/2026

Lecturer:
Francesco Dolce

Department of Applied Mathematics
Faculty of Information Technology

Czech Technical University in Prague
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4 CHARACTERISTICS OF RANDOM VARIABLES BIE-PST, WS 2025/26, Lecture 4

4 Characteristics of random variables

4.1 Expected value

One of the important characteristics of a random variable is its expected value.

Definition 4.1. The expected value (or expectation or mean value) of a discrete random
variable X with values x1, x2, ..., resp., of a continuous random variable X with density fX ,
is given as

EX =
∑
k

xk P(X = xk) (discrete)

resp., as

EX =
∞∫
−∞

xfX(x)dx, (continuous)

if the sum or the integral converges absolutely.

Note to the summation in the definition of the expected value of a discrete random variable:
Thanks to the absolute convergence it does not depend on the order of summands in both
series written above. (Generally for infinite series it does depend on the order of summands!)
In the first series we sum over all possible values xk of variable X without giving the order. It is
often more explanatory than summing over all indexes k of values xk ordered to some sequence.
Similarly in the second series, instead of

∑
k

xk P(X = xk) we write
∑

x:P(X=x)>0
xP(X = x).

We know that P(X = x) > 0 only for finite or countable many x and the order of summands
is not important.

From the definition it follows that EX can be interpreted as the x coordinate of the center
of the mass of the probability.

EX is taken as the expected value of the next experiment or as the weighted average
(mean) or the center of mass of all possible values.

fX

EX x

EX x0

fX
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BIE-PST, WS 2025/26, Lecture 4 4.1 Expected value

Example 4.2 (– tossing two coins). Suppose we throw two balanced coins. Let X denote
the number of Heads appearing. Find the expectation of X. There are four possible results,
which are equally likely: Ω = {TT, HT, TH, HH}. Therefore we can obtain 0, 1 or 2 Heads, with
probabilities of 1/4, 1/2 and 1/4, respectively.
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P(X=0)=1/4

P(X=1)=1/2

P(X=2)=1/4

The expectation is then computed as the probability-weighted average of the possible
values:

EX =
∑
k

xk P(X = xk) = 0 · 1
4 + 1 · 1

2 + 2 · 1
4 = 1

2 + 2
4 = 1.

Example 4.3 (– rolling a six-sided die). Suppose we roll a balanced six-sided die one time.
Let X denote the number of points rolled. What is the expectation of X?

k 1 2 3 4 5 6
P(X = k) 1/6 1/6 1/6 1/6 1/6 1/6

The expectation is computed as the weighted average of possible results:

EX =
6∑

k=1
k · P(X = k) = 1 · 1

6 + 2 · 1
6 + 3 · 1

6 + 4 · 1
6 + 5 · 1

6 + 6 · 1
6 = 21

6 = 3.5.
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Example 4.4 (– rolling two six-sided dice). Suppose we roll two balanced six-sided dice
and keep the larger result of the two. Let X denote the number of points rolled, meaning
X = max(roll 1, roll 2). What is the expectation of X?

k 1 2 3 4 5 6
P(X = k) 1/36 3/36 5/36 7/36 9/36 11/36

The expectation is computed as the weighted average of possible results:

EX =
6∑

k=1
k · P(X = k) = 1 · 1 + 2 · 3 + 3 · 5 + 4 · 7 + 5 · 9 + 6 · 11

36 = 161
36

.= 4.47.
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4 CHARACTERISTICS OF RANDOM VARIABLES BIE-PST, WS 2025/26, Lecture 4

Expected value of a function of a random variable
The expected value E(g(X)) of a function of a random variable can be computed without

determining the distribution of the random variable Y = g(X).

Theorem 4.5. Let X and Y = g(X) for a given function g be random variables.

i) If X has a discrete distribution, then

EY = E g(X) =
∑

all xk

g(xk) P(X = xk),

under the assumption that the sum converges absolutely.

ii) If X has a continuous distribution, then

EY = E g(X) =
∞∫
−∞

g(x)fX(x)dx,

if the integral converges absolutely.

Proof. Suppose first that X is a discrete random variable. Denote the variable Y = g(X)
and its values y1, y2, . . .. Then

E(g(X)) = EY =
∑

all yj

yj P(Y = yj) =
∑

all yj

yj P(g(X) = yj)

=
∑

all yj

yj ∑
xk:g(xk)=yj

P(X = xk)

 =
∑

all yj

∑
xk:g(xk)=yj

yj P(X = xk)

=
∑

all yj

∑
xk:g(xk)=yj

g(xk) P(X = xk) =
∑

all xk

g(xk) P(X = xk).

The proof for continuous random variables is more difficult, we achieve it with the help of the
following lemma only for function g taking non-negative values.

Lemma 4.6. If X is a non-negative random variable with the distribution function F , then

EX =
∞∫

0

[1− F (x)] dx =
∞∫

0

P(X > x) dx.

Proof . Suppose that X is a continuous random variable and the function g takes only non-

4 c© 2011–2025 - BIE-PST, WS 2025/26
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negative values. Then

E(g(X)) = EY =
∞∫

0

P(Y > y) dy =
∞∫

0

P(g(X) > y) dy

see (∗) =
∞∫

0

 ∫
{x: g(x)>y}

fX(x) dx

 dy =
∫∫

{(x,y): 0<y<g(x)}

fX(x) d(x, y)

=
∫

{x: 0<g(x)}

 g(x)∫
0

fX(x) dy

 dx (g(x) is non-negative)

=
∞∫
−∞

fX(x)

 g(x)∫
0

dy

 dx =
∞∫
−∞

g(x)fX(x) dx.

(∗) We used P(X ∈ A) =
∫
A

fX(x) dx for A = {x : g(x) > y}.

If g is a general function we decompose it to its positive and negative parts which are both
non-negative functions. Then we write E g(X) = EY = EY + − EY − = E g+(X)− E g−(X)
and use the above mentioned proof.

Properties of the expected value
For computation, the following properties of the expected value are important. Notice that

these properties hold for the expectation of both discrete and continuous random variables.
More generally, these properties of expectation do not depend on the type of random variable
– discrete, continuous or mixed.

Theorem 4.7. The expected value of a random variable X has the following properties:

i) If X ≥ 0, then E(X) ≥ 0.

ii) If a, b ∈ R, then E(aX + b) = a E(X) + b (if EX is finite).

iii) A constant random variable X = c has expectation equal to the constant E(X) = c.

Notes:

• Later we will prove that the expected value behaves as a linear operator (more precisely
a linear functional) on a space of random variables. Now we are not familiar with random
variables created as transformations of random vectors, thus we cannot handle variables
Z = aX + bY .

These formulas can be used to simplify practical computing.

Proof.

i) For a discrete non-negative random variable X it holds that xk P(X = xk) ≥ 0,∀ k.
Therefore E(X) =

∑
all xk

xk P(X = xk) ≥ 0. For a continuous non-negative random

variable X it holds that fX(x) = 0 for x < 0. Therefore E(X) =
∞∫

0

xfX(x) dx ≥ 0.

c© 2011–2025 - BIE-PST, WS 2025/26 5
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ii) For a discrete random variable X it holds that

E(aX + b) =
∑

all xk

(axk + b) P(X = xk)

= a
∑

all xk

xk P(X = xk) + b
∑

all xk

P(X = xk)

= a E(X) + b.

For a continuous random variable X the proof is similar.

iii) Consider a = 0 in ii).

4.2 Variance

Definition 4.8. The variance σ2 ≡ varX of a random variable X is defined as

varX = E(X − EX)2.

The standard deviation of a random variable X is defined as

s.d. X =
√

varX.

The following properties of the variance are useful for practical computations:

Theorem 4.9. For the variance it holds that:

i) For all a, b ∈ R and a random variable X it holds that

var(aX + b) = a2 varX.

ii) A constant random variable X = c ∈ R has zero variance (var c = 0).

Proof.

i) We just put aX + b into the definition of var:

var(aX + b) = E((aX + b)− E(aX + b))2

= E(aX + b− aEX − b)2

= E(aX − aEX)2

= E(a2(X − EX)2)
= a2 E(X − EX)2

= a2 varX.

ii) var a = E(a− E a)2 = E(a− a)2 = E(0) = 0.

6 c© 2011–2025 - BIE-PST, WS 2025/26



BIE-PST, WS 2025/26, Lecture 4 4.2 Variance

While computing the variance it is often tedious to calculate the sum of values (xi −
EX)2 P(X = xi) or the integral of (x− EX)2 fX(x) .

We can use properties of the expectation to get a more useful formula:

var(X) = E((X − EX)2) = E
(
X2 − 2X(EX) + (EX)2

)
= E(X2)− E(2X(EX)) + E((EX)2)
= E(X2)− 2(EX)(EX) + (EX)2

= E(X2)− (EX)2.

Using only EX and E(X2), which we often know or can be easily computed, we get the
formula

var(X) = E((X − EX)2) = E(X2)− (EX)2

or simply
varX = E(X − EX)2 = EX2 − (EX)2.

Notice that var(X) is always non-negative (it is the expectation of a non-negative variable
(X − EX)2). Therefore: (EX)2 ≤ E(X2).

Because the properties of the expectation are the same for discrete and continuous (even
mixed) random variables, we can infer this way without specifying the type of the random
variable.

Example 4.10 (– expectation and variance of the uniform distribution). Suppose that Romeo
arrives at the meeting point according to the uniform distribution with the density:

fR(x) =
{

1 for x ∈ [0, 1]
0 otherwise.
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What are the expectation and the variance of Romeo’s arrival?
The expectation can be computed from the definition:

ER =
∞∫
−∞

xfR(x)dx =
1∫

0

x1dx =
[1

2x
2
]1

0
= 12

2 −
02

2 = 1
2 .

The expectation of the square is computed similarly:

ER2 =
∞∫
−∞

x2fR(x)dx =
1∫

0

x21dx =
[1

3x
3
]1

0
= 13

3 −
03

3 = 1
3 .
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The variance is obtained using the computational formula:

varR = ER2 − (ER)2 = 1/3− (1/2)2 = 4/12− 3/12 = 1/12.

Example 4.11 (– expectation and variance of a non-uniform distribution). Suppose that
Juliet arrives at the meeting point according to a non-uniform distribution with the density:

fJ(y) =


4y for y ∈ [0, 1/2]
4− 4y for y ∈ [1/2, 1]
0 otherwise.
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What is the expectation and variance of Juliet’s arrival? The expectation can be computed
from the definition:

E J =
∞∫
−∞

yfJ(y)dy =
1/2∫
0

y(4y)dy +
1∫

1/2

y(4− 4y)dy = · · · = 1
2 .

The expectation of the square is computed similarly:

E J2 =
∞∫
−∞

y2fJ(y)dy =
1/2∫
0

y2(4y)dy +
1∫

1/2

y2(4− 4y)dy = · · · = 7
24 .

The variance is obtained using the computational formula:

var J = E J2 − (E J)2 = 7/24− (1/2)2 = 7/24− 6/24 = 1/24.

The expectation is the same in both cases, but Romeo’s arrivals have a twice larger variance
than Juliet’s.

Moments of random variables

Definition 4.12. For k ∈ N we define the k-th moment µk of a random variable X as

µk = E(Xk) =



∑
all xi

xki P(X = xi) discrete

∞∫
−∞

xk fX(x) dx continuous.

8 c© 2011–2025 - BIE-PST, WS 2025/26



BIE-PST, WS 2025/26, Lecture 4 4.3 Skewness and Kurtosis

Similarly, the k-th central moment σk is defined as

σk = E((X − µ1)k) =



∑
all xi

(xi − µ1)k P(X = xi) discrete

∞∫
−∞

(x− µ1)k fX(x) dx continuous.

Notation: usually we write EXk instead of E(Xk) and E(X − µ1)k instead of E((X − µ1)k).

• Moments of a given random variable X do not always exist (if the corresponding sum
or integral does not converge).

• µ1 = EX is the expected value of the variable X (often denoted as µ or µX).

• σ2 = E(X − EX)2 is the variance of the variable X denoted by var(X), varX, σ2 or
σ2
X .

• σ =
√

var(X) is the standard deviation of the variable X (possible notation σX).

Remark 4.13. Note that the variance is quadratic and therefore is measured in the units of X
squared. The standard deviation is the square root of the variance and is therefore measured
in the same units as X. This will be useful later.

4.3 Skewness and Kurtosis

Skewness
The measure of asymmetry around the mean is called skewness:

γ1 = σ3
σ3 = E((X − E(X))3)

(E(X2)− (EX)2)3/2 .

Measure of asymmetry: for a unimodal density the coefficient γ1 is negative if the left tail is
longer and positive if the right tail is longer. It tells us to which side from the expected value
is the bulk skewed:

γ1 = −1.14 γ1 = 1.26

c© 2011–2025 - BIE-PST, WS 2025/26 9
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Kurtosis
The measure of “peakedness” is called (excess) kurtosis:

γ2 = σ4
σ4 − 3 = E((X − E(X))4)

(E(X2)− (EX)2)2 − 3.

This characteristics compares the shape (“peakedness”) of the density with the normal dis-
tribution:

γ2 = 0.5

γ2 = 0

γ2 = −0.85

4.4 Moment generating function

Definition 4.14. The moment generating function of a random variable X is a function
M(s) = MX(s) defined as

M(s) = E(esX).

i.e., for a discrete or a continuous random variable X we have

M(s) =
∑
k

esk P(X = k), M(s) =
∞∫
−∞

esxfX(x)dx.

The generating function unambiguously determines the density fX of the variable X (or
the probabilities of its values). In fact the generating function is the Laplace transformation
of the density. In particular, it allows us to easily compute the moments of the variable X.

Theorem 4.15. For a random variable X with a generating function M(s) it holds that:

E(Xn) = dn

dsnM(s)
∣∣
s=0.

Example 4.16 (– Poisson random variable). P(X = k) = λke−λ

k! , k = 0, 1, . . .

M(s) =
∞∑
k=0

esk
λke−λ

k! = eλ(es−1).

We have:
d

ds
eλ(es−1) = λeseλ(es−1) =⇒ E(X) = λ,

d2

ds2 e
λ(es−1) =

(
(λes)2 + λes

)
eλ(es−1) =⇒ E(X2) = λ+ λ2.

Thus var(X) = (λ+ λ2)− (λ)2 = λ.

10 c© 2011–2025 - BIE-PST, WS 2025/26
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Example 4.17 (– Exponential random variable). fX(x) = λe−λx, x ≥ 0.

M(s) = λ

∞∫
0

esxe−λxdx =
[
λ
e(s−λ)x

s− λ

]∞
0

= λ

λ− s
.

Notice that M(s) is well defined only for s ∈ [0, λ). For s ≥ λ the integral diverges. Hence
d

ds

λ

λ− s
= λ

(λ− s)2 =⇒ E(X) = 1
λ
,

d2

ds2
λ

λ− s
= 2λ

(λ− s)3 =⇒ E(X2) = 2
λ2 and var(X) = 1

λ2 .

4.5 Quantiles

Quantile function
The distribution function gives us the probability that the random variable in question

will be less than or equal to x. Sometimes we are interested in a reverse approach – for a
given probability α, find such x, so that P(X ≤ x) = α.

Definition 4.18. LetX be a random variable with distribution function FX and let α ∈ (0, 1).
The point qα is called the α-quantile of the variable X if

qα = inf{x|FX(x) ≥ α}.
Quantiles treated as a function of α are called the quantile function and are denoted as
F−1
X (α).

The (1− α)-quantile is called the α-critical value of the variable X : cα = q1−α.
For FX strictly increasing and continuous, qα is the point for which it holds that

FX(qα) = P(X ≤ qα) = α,

thus the notation F−1
X denotes the actual inverse of FX .

Quantiles of the standard normal distribution
For some particular distributions, special notation is used, e.g., the quantiles of the Gaus-

sian distribution (see later) are denoted as uα and the critical values as zα.

fX

P(X ≤ q0.5) = 0.5

xq0.5

fX

P(X ≤ q0.75) = 0.75 P(X ≥ z0.25) = 0.25

xq0.75 = z0.25

c© 2011–2025 - BIE-PST, WS 2025/26 11



4 CHARACTERISTICS OF RANDOM VARIABLES BIE-PST, WS 2025/26, Lecture 4

Example 4.19 (– quantiles of the uniform distribution). Suppose that Romeo arrives at the
meeting point according to the uniform distribution on the interval [0, 1]. Find the 5% and
95% quantiles of his arrival. The distribution function is found by integrating the density.

We are interested in the region, where the density is positive – the interval [0, 1]:

FR(x) =
x∫

−∞

fR(t)dt =
x∫

0

1dt = [t]x0 = x.

The distribution function is monotone, thus we can easily find the quantile function as its
inverse:

FR(qα) = α ⇒ qα = α ⇒ F−1
R (α) = α.

Therefore the quantiles are:

q0.05 = 0.05 = 3 min. and q0.95 = 0.95 = 57 min.

With a 90% probability, Romeo arrives between the 3rd minute and the 57th minute.
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Example 4.20 (– quantiles of a non-uniform distribution). Suppose that Juliet arrives at
the meeting point according to the non-uniform distribution with the triangular density from
above. Find the 5% and 95% quantiles of her arrival. The distribution function is found by
integrating the density. The observed interval has to be separated into two parts, because the
function term is different. For y ∈ [0, 1/2]:

FJ (y) =

y∫
−∞

fJ (t)dt =

y∫
0

4tdt =
[
2t2]y

0
= 2y2.

For y ∈ [1/2, 1]:

FJ (y) =

1/2∫
0

4tdt +

y∫
1/2

(4− 4t)dt = 1/2 +
[
4t− 2t2]y

1/2
= 4y − 2y2 − 1 = 1− 2(y − 1)2.

The quantile function is found as the inverse of the distribution function:

FJ (q0.05) = 0.05⇔ 2q2
0.05 = 0.05⇔ q0.05 =

√
0.05/2 .= 0.16 = 9.5 min.

Similarly:

FJ (q0.95) = 0.95⇔ 1− 2(q0.95 − 1)2 = 0.95⇔ q0.95 = 1−
√

0.05/2 .= 0.84 = 50.5 min.

With a 90% probability, Juliet arrives between the 9.5th minute and the 50.5th minute.

12 c© 2011–2025 - BIE-PST, WS 2025/26
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The central interval denoting the time, between which the person arrives with a 90%
probability, is considerably shorter for Juliet than for Romeo. This is in accordance with
Juliet’s arrival having a smaller variance.

Important quantiles
Quantiles divide the population into groups according to probabilities. The important

dividing points are called:

• q0.5 – median,

• q0.25 – lower quartile,

• q0.75 – upper quartile.

This quantiles can give us an overview of the variable in question:

• The median provides a measure of location as an alternative to the expectation.

• The interquartile range q0.75 − q0.25 provides a measure of dispersion as an alternative
to the variance.

The expectation can sometimes differ from the median significantly. Especially for one-sided
heavy-tailed distributions.

Expectation vs. median

Example 4.21 (– U.S. household incomes). According to the U.S Census Bureau, the mean
yearly household income in 2014 was $75, 000. But 63.2% of population had lower incomes.
The median income was $56, 000.
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mean household income: 75,000$

63.2% of population 36.8% of population
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Theorem 4.22. Suppose that X has a distribution with a distribution function FX . Suppose
that U has a uniform distribution on the interval [0, 1], meaning that

fU (u) =
{

1 for u ∈ (0, 1)
0 elsewhere.

Then the random variable F−1
X (U) has the same distribution as X.

Proof. For a continuous FX :

P(F−1
X (U) ≤ x) = P(U ≤ FX(x)) =

FX(x)∫
0

1 · du = FX(x).

This way, we can generate values from any distribution by generating values from the
uniform distribution U(0, 1) and finding the corresponding quantiles.

Generating uniform random numbers
Truly random numbers can be generated by measuring physical phenomena, such as using
oscillators or thermal devices. Computer algorithms can only produce pseudo-random num-

bers, which try to appear as truly random. There are many ways to generate pseudo-random
numbers. Congruent generators (fast and easy to implement):

• select large integers a, b and m;

• choose a starting value X0;

• generate a sequence Xn+1 = (aXn + b) mod m;

• divide all results by m.

More sophisticated generators (used in R, Matlab, etc):

• Mersenne Twister

• Wichmann-Hill

• many others (see literature).

Generating dice rolls
When rolling a six-sided dice, we easily find out that F−1

X (U) = d6 ·Ue. We generated 100
random dice rolls and counted the percentage of each outcome:

14 c© 2011–2025 - BIE-PST, WS 2025/26
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Frequencies of 100 generated dice rolls
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