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6 Random vectors

Sometimes we can measure several random variables at once from one result of an experiment.
The individual variables can have different distributions and the values of the variables can

be strongly mutually interconnected. It is appropriate to describe their distribution together
as the so called joint distribution.

Definition 6.1. Consider two random variables X and Y defined on the same probability
space (Ω,F ,P). We define their joint distribution function FX,Y (x, y) as

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

For n random variables X1, X2, . . . , Xn
denote= X we define the joint distribution function as

FX(x) = P(X1 ≤ x1 ∩ . . . ∩Xn ≤ xn).

We use the notation x = (x1, . . . , xn) and X = (X1, . . . , Xn).

The couple (X,Y ) or, n-tuple (X1, . . . , Xn), is called a random vector.

Example 6.2. Let X and Y be random variables with a joint discrete distribution given by
the following probabilities:

x
P(X = x ∩ Y = y) 0.5 1 2

y
1 0.4 0.15 0.05
2 0.3 0.06 0.04

Compute the joint distribution function FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y):

y

x0 0.5 1 2

1

2

0 0 0 0

0

0

0.4 0.55 0.6

0.7 0.91 1

The joint distribution function has analogous properties as the distribution function of
one variable.

Theorem 6.3. The joint distribution function FX,Y of random variables X and Y has
following properties:

i) if x1 < x2 and y1 < y2 then FX,Y (x1, y1) ≤ FX,Y (x2, y2).

ii) ∀ y ∈ R, lim
x→−∞

FX,Y (x, y) = 0 and ∀x ∈ R, lim
y→−∞

FX,Y (x, y) = 0.

iii) ∀ y ∈ R, lim
x→+∞

FX,Y (x, y) = FY (y) and ∀x ∈ R, lim
y→+∞

FX,Y (x, y) = FX(x).

Proof. Analogously as for the distribution function of one random variable.
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BIE-PST, WS 2025/26, Lecture 6 6.1 Vectors of discrete random variables

6.1 Vectors of discrete random variables

A distribution of random variables X and Y on the same probability space is described by
the joint distribution function

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

If the variables X and Y are discrete, it is often useful to describe the distribution by the

joint probabilities of their values.

Definition 6.4. The joint probabilities of values of two discrete random variables X and Y
is

P(X = x ∩ Y = y) = P({X = x} ∩ {Y = y}).

Taken as a function of x and y, the probabilities are called the joint probability mass function.

The joint distribution function of two discrete random variables X and Y is

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y) =
∑

{i: xi≤x}

∑
{j: yj≤y}

P(X = xi ∩ Y = yj)

From this it follows that FX,Y (x, y) has a stepwise structure.

The normalization condition follows from the properties of the joint distribution function:∑
i

∑
j

P(X = xi ∩ Y = yj) =
∑

i

P
(
{X = xi} ∩

⋃
j{Y = yj}

)
=
∑

i

P ({X = xi} ∩ {Y ∈ R}) =
∑

i

P (X = xi)

= P
(⋃

j{X = xi}
)

= P ({X ∈ R}) = P(Ω) = 1.

Example 6.5.
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Marginal distribution
Sometimes we have the joint distribution of variables X and Y , but we are not interested

in the values of Y . From the joint distribution function FX,Y we would then want to obtain
only the distribution function FX of the variable X.

The distribution obtained this way is called the marginal distribution of random variable
X.

Theorem 6.6. Let P(X = x ∩ Y = y) be the joint probabilities of values of two discrete
variables X and Y . The marginal distribution (or marginal probabilities) of a X is given by

P(X = x) =
∑

j

P(X = x ∩ Y = yj).

Proof. The events {Y = yj} for j = 1, 2, . . . create a countable partition of Ω. From this
follows:

P(X = x) = P({X = x} ∩ {Y ∈ R}) = P({X = x} ∩ (
⋃

j{Y = yj})) =

= P
(⋃

j

({X = x} ∩ {Y = yj})
)

=
∑

j

P({X = x} ∩ {Y = yj}).

Example 6.7. Let X and Y be two random variables with the following joint distribution:

x
P(X = x ∩ Y = y) 0.5 1 2 P(Y = y)

y
2 0.3 0.06 0.04 0.4
1 0.4 0.15 0.05 0.6

P(X = x) 0.7 0.21 0.09

Find the marginal distribution of X and Y separately (find the marginal probabilities P(X = x)
and P(Y = y).)

P(Y = y) =


0.6 for y = 1
0.4 for y = 2
0 elsewhere

P(X = x) =


0.7 for x = 0.5
0.21 for x = 1
0.09 for x = 2
0 elsewhere

6.2 Independence of discrete random variables

Similarly as with random events, we want to be able to determine, whether the knowledge of
one variable changes in some way the distribution of an other one.

4 c© 2011–2025 - BIE-PST, WS 2025/26
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Definition 6.8. Random variables X and Y are called independent if for all x, y ∈ R the
events {X ≤ x} and {Y ≤ y} are independent. Equivalently, if it holds that for all x, y ∈ R

P(X ≤ x ∩ Y ≤ y) = P(X ≤ x) · P(Y ≤ y).

Random variables X1, . . . , Xn are called independent if for all x ∈ Rn it holds that

P(X ≤ x) =
n∏

i=1
P(Xi ≤ xi).

Random variables forming a countable collection X1, X2, . . . are called independent if all
finite n-tuples Xi1 , . . . , Xin are independent.

For discrete random variables we can verify the independence by means of the probabilities
of values:

Theorem 6.9. Discrete random variables X and Y are independent if for all x, y ∈ R the
events {X = x} and {Y = y} are independent. Equivalently, if it holds that for all x, y ∈ R

P(X = x ∩ Y = y) = P(X = x) · P(Y = y).

Random variables X1, . . . , Xn are independent if for all x ∈ Rn it holds that

P(X = x) =
n∏

i=1
P(Xi = xi).

Proof. If the condition regarding equalities holds, it must hold also for all inequalities, be-
cause they can be rewritten as sums of probabilities of disjoint events.

If the condition regarding inequalities hold, it must hold also for all equalities, because
the difference of probabilities of inequalities yields probabilities of equalities.

Example 6.10 (– continuation). Random variables X and Y have the following joint and
marginal distributions:

x
P(X = x ∩ Y = y) 0.5 1 2 P(Y = y)

y
2 0.3 0.06 0.04 0.4
1 0.4 0.15 0.05 0.6

P(X = x) 0.7 0.21 0.09
Are X and Y independent?

No, they are not independent because, e.g., for x = 0.5 and y = 2 it holds that

0.3 = P(X = 0.5 ∩ Y = 2) 6= P(X = 0.5) · P(Y = 2) = 0.7 · 0.4 = 0.28.

6.3 Vectors of continuous random variables

The distribution of random variables X and Y on the same probability space is described by
the joint distribution function

FX,Y (x, y) = P(X ≤ x ∩ Y ≤ y).

If the variables X and Y are continuous, it is often useful to describe the distribution by the
joint probability density.

c© 2011–2025 - BIE-PST, WS 2025/26 5



6 RANDOM VECTORS BIE-PST, WS 2025/26, Lecture 6

Definition 6.11. Two random variables X and Y have a joint (absolutely) continuous distri-
bution if there exists a non-negative function fX,Y : R2 → [0,+∞) such that for all x, y ∈ R
it holds

FX,Y (x, y) =
y∫

−∞

x∫
−∞

fX,Y (u, v) du dv.

The function fX,Y is called the joint probability density of the random variables X,Y or of
the random vector (X,Y ).

Similarly as in the one-dimensional case it holds that:

• Where the derivative exists:

fX,Y (x, y) = ∂2FX,Y

∂x∂y
(x, y).

• The joint distribution function is continuous.

• Normalization condition:
+∞∫
−∞

+∞∫
−∞

fX,Y (x, y) dx dy = 1

• For all x, y ∈ R and all Borel sets A,B on R

P(X = x ∩ Y ∈ B) = P(X ∈ A ∩ Y = y) = P(X = x ∩ Y = y) = 0.

• P({a < X ≤ b} ∩ {c < Y ≤ d}) =
d∫

c

b∫
a

fX,Y (x, y) dx dy.

• For all B Borel subset of R2 (meaning that {X ∈ B} is an event)

P
(
(X,Y ) ∈ B

)
=
∫∫
B

fX,Y (x, y) dx dy.

Example 6.12.
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Marginal distribution
For computing the marginal distribution of two variables X and Y from the joint density

we can use a formula analogous to the discrete case:

Theorem 6.13. Let X and Y be two random variables having a joint continuous distribution
with joint density fX,Y . Then X and Y are both continuous too, and the marginal densities
fX , fY are given by

fX(x) =
+∞∫
−∞

fX,Y (x, y) dy, fY (y) =
+∞∫
−∞

fX,Y (x, y) dx.

Proof. We know that:

FX(x) = P(X ≤ x) = P(X ≤ x ∩ Y ∈ R) =
x∫

−∞

 +∞∫
−∞

fX,Y (u, v) dv

du .

The statement of the theorem is obtained by differentiating with respect to x, or by comparing
this formula to the definition of the distribution function of a continuous random variable.
The second part is analogous.

6.4 Independence of continuous random variables

The independence of continuous random variables can be determined by means of densities.

Theorem 6.14. Two continuous random variables X and Y are called independent if and
only if for all x, y ∈ R the following equality holds

fX,Y (x, y) = fX(x) · fY (y).

Random variables X1, . . . , Xn are called independent if for all x ∈ Rn

fX(x) =
n∏

i=1
fXi(xi).

Proof. Two random variables X and Y are independent if

FX,Y (x, y) = FX(x) · FY (y).

Taking the derivatives of both sides with respect to both x and y yields one implication.
Integrating both sides of the equality for densities yields the other direction.

Remark 6.15. While verifying the independence of X and Y we can use the following.
Consequence: If it is possible to decompose fX,Y to

fX,Y (x, y) = g(x) · h(y), ∀x, y ∈ R,

where g(x) and h(y) are non-negative functions, then the variables X and Y are independent.
Note that the function g(x) does not need to be the density fX(x), and the function h(y)
to be the density fY (y); they can differ from densities by a multiplicative constant. Thus
in case we find fX,Y (x, y) = g(x) · h(y), we know that the random variables X and Y are
independent and that their densities are respectively fX(x) = k · g(x) and fY (y) = 1

k
h(y),

where the constant k must be computed from the normalization condition.

c© 2011–2025 - BIE-PST, WS 2025/26 7
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X Do the proof yourself by inserting into the formula for marginal densities.
The statement of the consequence can be formulated for independence of a general random

vector X1, . . . , Xn too.

Example 6.16. Let X and Y random variables having the joint probability density

fX,Y (x, y) = ye−2x for x ∈ [0,+∞) and y ∈ [0, 2].

Are the variables X and Y independent?
Marginal densities:

fX(x) =
2∫

0

ye−2x dy = e−2x

2∫
0

y dy = e−2x

[
y2

2

]2

0
= e−2x

(4
2 − 0

)
= 2e−2x.

fY (y) =
+∞∫
0

ye−2x dx = y

+∞∫
0

e−2x dx = y

[
e−2x

−2

]+∞

0
= y

(
0− 1
−2

)
= y

2 .

Independence:

ye−2x = fX,Y (x, y) = fX(x) · fY (y) = 2e−2x · y2 = ye−2x.

Yes, they are independent!

6.5 Conditional distribution

6.5.1 Discrete conditional distribution

Now we will study the distribution of a random variable X under the assumption that we
know the value of the variable Y = y.

Suppose that we have a partial information about the result of an experiment and we are
interested in the change in our prediction.

It is reasonable to introduce the conditional distribution by means of the conditional
probability under the condition of the event {Y = y}.

Definition 6.17. Let P(Y = y) > 0. Then, the conditional distribution function FX|Y (·|y)
of the variable X given Y = y is defined as

FX|Y (x|y) = P(X ≤ x|Y = y).

The conditional probabilities of values of X given (under the condition of) Y = y are given,
analogously, by

P(X = x|Y = y).

Illustration of conditional probabilities P(X = x|Y = y)

8 c© 2011–2025 - BIE-PST, WS 2025/26
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P(X=x|Y=3)

P(X=x|Y=2)

P(X=x|Y=1)

P(X=x∩Y=y)

y

y = 3

y = 2

y = 1

x

x = 1

x = 2

x = 3

 

From the definition it follows that:

P(X = x|Y = y) = P(X = x ∩ Y = y)
P(Y = y) .

Definition 6.18. Let P(Y = y) > 0. The expectation of the variable X with conditional
probabilities P(X = x|Y = y) is called the conditional expectation of X given Y = y and is
denoted as E(X|Y = y).

Thus it holds that:

E(X|Y = y) =
∑

i

xi P(X = xi|Y = y) =
∑

i

xi
P(X = xi ∩ Y = y)

P(Y = y) .

6.5.2 Continuous conditional distribution

When observing two continuous random variables X and Y , it is not possible to use an event
{Y = y} as a condition, because P(Y = y) = 0.

The conditional distribution can be obtained using a limit approach: Let fX,Y be joint
density of X,Y and it holds fY (y) > 0. Then for ∆y << 1

P(X ≤ x | y ≤ Y ≤ y + ∆y) = P(X ≤ x ∩ y ≤ Y ≤ y + ∆y)
P(y ≤ Y ≤ y + ∆y) =

=
∫ x
−∞

∫ y+∆y
y fX,Y (u, v) dv du∫ y+∆y

y fY (v) dv
≈
∫ x
−∞ fX,Y (u, y)∆y du

fY (y)∆y =

=
x∫

−∞

fX,Y (u, y)
fY (y) du.

c© 2011–2025 - BIE-PST, WS 2025/26 9
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After taking a limit ∆y → 0 we intuitively obtain the result as

P(X ≤ x|Y = y) =
x∫

−∞

fX,Y (u, y)
fY (y) du.

the previous inference lead us to the following formal definition:
Definition 6.19. The conditional distribution function of a variable X given (under the
condition of) Y = y is defined as

FX|Y (x|y) =
x∫

−∞

fX,Y (u, y)
fY (y) du,

for all y such that fY (y) > 0. We use the notation P(X ≤ x|Y = y) = FX|Y (x|y), too.
The conditional density is defined accordingly:

Definition 6.20. The conditional probability density of X given (under the condition of)
Y = y is given as

fX|Y (x|y) = fX,Y (x, y)
fY (y) ,

for all y such that fY (y) > 0.
Analogously as in the discrete case we define the conditional expectation for continuous

random variables:

Definition 6.21. Let fY (y) > 0. The expectation of variable X with density fX|Y (x|y) is
called the conditional expectation of X given Y = y and is denoted as E(X|Y = y).

We compute the conditional expectation for a given value y as follows:

E(X|Y = y) =
∞∫
−∞

xfX|Y (x|y) dx =
∞∫
−∞

x
fX,Y (x, y)
fY (y) dx = g(y),

where g is a function which arises from the integration.

6.6 Bayes’ Theorem

Bayes’ Theorem
Theorem 6.22. Let Y be continuous random variable. If X is continuous random variable
too then it holds:

fX|Y (x|y) =
fX(x) fY |X(y|x)
∞∫
−∞

fX(t) fY |X(y|t) dt

.

If X is discrete random variable than we have:

P(X = n|Y = y) =
P(X = x) fY |X(y|x)∑

k

P(X = k) fY |X(y, k)
.

10 c© 2011–2025 - BIE-PST, WS 2025/26
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