BIE-PST – Probability and Statistics

Lecture 7: Random vectors II. Winter semester 2025/2026

Lecturer: Francesco Dolce

Department of Applied Mathematics Faculty of Information Technology Czech Technical University in Prague

© 2011–2025 - Rudolf B. Blažek, Francesco Dolce, Roman Kotecký, Jitka Hrabáková, Petr Novák, Daniel Vašata

Table of contents

7	Random vectors		
	7.1	Functions of random vectors	2
	7.2	Covariance and correlation	3
	7.3	Sums of random variables – convolution	6

7 Random vectors

7.1 Functions of random vectors

Similar formulas as for a function of one random variable also hold for the functions of random vectors. Let

$$Z = h(X_1, \dots, X_n) = h(\boldsymbol{X}).$$

• When variables X_1, \ldots, X_n have a *joint discrete* distribution with probabilities $P(\mathbf{X} = \mathbf{x})$, the following relation holds for the distribution function of Z:

$$F_Z(z) = P(Z \le z) = \sum_{\{\boldsymbol{x} \in \mathbb{R}^n : h(\boldsymbol{x}) \le z\}} P(\boldsymbol{X} = \boldsymbol{x}).$$

• When variables X_1, \ldots, X_n have a *joint continuous* distribution with density $f_{\mathbf{X}}(\mathbf{x})$, the distribution function of Z is then

$$F_Z(z) = P(Z \le z) = \int \cdots \int_{\{x \in \mathbb{R}^n : h(x) \le z\}} f_X(x) dx_1 \dots dx_n.$$

Expected value of the function of a random vector

The expected value Eh(X,Y) of a real function h of random variables X and Y can be computed without determining the distribution of the variable h(X,Y).

• For X and Y discrete random variables it holds that

$$E h(X,Y) = \sum_{i,j} h(x_i, y_j) P(X = x_i \cap Y = y_j),$$

if the sum converges absolutely.

• For X and Y continuous random variables it holds that

$$\operatorname{E} h(X,Y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y) f_{X,Y}(x,y) \, \mathrm{d}x \, \mathrm{d}y,$$

if the integral converges absolutely.

Now we can prove the linearity of the expectation.

Theorem 7.1 (– linearity of expectation). For all $a, b \in \mathbb{R}$ and all random variables X and Y it holds that

$$E(aX + bY) = a E X + b E Y.$$

Consequence:

• E(aX + b) = a E X + b. This statement was proven before separately.

Proof. From the theory concerning the marginal distributions of discrete random variables X and Y we have:

$$\begin{split} \mathbf{E}(aX+bY) &= \sum_{i,j} (ax_i + by_j) \, \mathbf{P}(X=x_i \cap Y=y_j) \\ &= \sum_{i,j} ax_i \, \mathbf{P}(X=x_i \cap Y=y_j) + \sum_{i,j} by_j \, \mathbf{P}(X=x_i \cap Y=y_j) \\ &= a \sum_i x_i \sum_j \mathbf{P}(X=x_i \cap Y=y_j) + b \sum_j y_j \sum_i \mathbf{P}(X=x_i \cap Y=y_j) \\ &= a \sum_i x_i \, \mathbf{P}(X=x_i) + b \sum_j y_j \, \mathbf{P}(Y=y_j) \quad = \quad a \, \mathbf{E} \, X + b \, \mathbf{E} \, Y. \end{split}$$

For continuous X and Y the proof is analogous:

$$E(aX + bY) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (ax + by) f_{X,Y}(x, y) \, dx \, dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ax f_{X,Y}(x, y) \, dx \, dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} by f_{X,Y}(x, y) \, dx \, dy$$

$$= a \int_{-\infty}^{\infty} x \left(\int_{-\infty}^{\infty} f_{X,Y}(x, y) \, dy \right) dx + b \int_{-\infty}^{\infty} y \left(\int_{-\infty}^{\infty} bf_{X,Y}(x, y) \, dx \right) dy$$

$$= a \int_{-\infty}^{\infty} x f_X(x) \, dx + b \int_{-\infty}^{\infty} y f_Y(y) \, dy$$

$$= a E X + b E Y.$$

7.2 Covariance and correlation

Mutual linear dependence of two random variables X and Y can be described in the following way:

Definition 7.2. Let X and Y be random variables with finite second moments. Then we define the *covariance* of the random variables X and Y as

$$cov(X, Y) = E[(X - EX)(Y - EY)].$$

If X and Y have positive variances then we define the *correlation coefficient* (or *coefficient of correlation*) as

$$\rho(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{\operatorname{var} X} \sqrt{\operatorname{var} Y}}.$$

Definition 7.3. Two random variables X and Y are called non-correlated if cov(X,Y) = 0.

Theorem 7.4. For the covariance and the correlation coefficient the following properties hold:

- $i) \cos(X, Y) = EXY EXEY,$
- ii) X and Y are non-correlated if and only if EXY = EXEY,
- *iii*) $\rho(X,Y) \in [-1,1],$
- iv) $\rho(aX+b,cY+d)=\rho(X,Y)$ for all a,c>0 and $b,d\in\mathbb{R}$,
- v) $\rho(X,Y) = \pm 1$, if $a,b \in \mathbb{R}$, a > 0 such that $Y = \pm aX + b$.

Proof.

i)
$$cov(X, Y) = E((X - EX)(Y - EY)) = E(XY - X EY - Y EX + EX EY)$$

 $= EXY - E(X EY) - E(Y EX) + E(EX EY)$
 $= EXY - EX EY - EY EX + EX EY$
 $= EXY - EX EY$

- ii) Obvious from above. If cov(X,Y)=0, it means that EXY-EXEY=0, after manipulation we obtain EXY=EXEY, which means that the random variables X and Y are non-correlated. Conversely, if X and Y are non-correlated (i.e., EXY=EXEY), then EXY-EXEY=0 which means that cov(X,Y)=0.
- iii) From the Schwarz inequality (see bibliography).
- iv) Follows straightforwardly by inserting into the definition. Firstly we prepare the quantities cov(aX + b, cY + d), var(aX + b) and var(cY + d):

$$cov(aX + b, cY + d) = E[(aX + b - E(aX + b))(cY + d - E(cY + d))]$$

$$= E[a(X - EX)c(Y - EY)] = ac cov(X, Y),$$

$$var(aX + b) = E(aX + b - E(aX + b))^{2} = E(a(X - EX))^{2} = a^{2} var(X),$$

$$var(cY + d) = c^{2} var(Y).$$

Inserting them to the definition formula we have

$$\varrho(aX+b,cY+d) = \frac{\operatorname{cov}(aX+b,cY+d)}{\sqrt{\operatorname{var}(aX+b)}\sqrt{\operatorname{var}(cY+d)}} = \frac{ac\operatorname{cov}(X,Y)}{\sqrt{a^2\operatorname{var}(X)}\sqrt{c^2\operatorname{var}(Y)}} = \varrho(X,Y).$$

v) Follows from the proof of the Schwarz inequality (see bibliography).

Let us study the expectation of the product XY of two random variables X and Y.

Definition 7.5. Alternative definition: Two random variables X and Y are called non-correlated if

$$E XY = E X E Y$$
.

Lemma 7.6. If X and Y are independent then they are non-correlated.

Proof. Let X, Y be continuous variables. Independence means that $f_{X,Y}(x,y) = f_X(x) f_Y(y)$. Thus we have

$$EXY = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_{X,Y}(x,y) \, dx \, dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy f_X(x) f_Y(y) \, dx \, dy$$
$$= \left(\int_{-\infty}^{+\infty} x f_X(x) \, dx\right) \left(\int_{-\infty}^{+\infty} y f_Y(y) \, dy\right) = EX EY.$$

It is now possible to obtain the following properties of the variance of sums of two random variables. We recall two formerly mentioned properties of variance and add a theorem about variance of sum of random variables.

Theorem 7.7. i) For X and Y with finite second moments:

$$var(X \pm Y) = var X + var Y \pm 2 cov(X, Y).$$

ii) For non-correlated (independent) random variables it holds that

$$var(X \pm Y) = var X + var Y.$$

Proof.

i) Given two random variables X and Y we have:

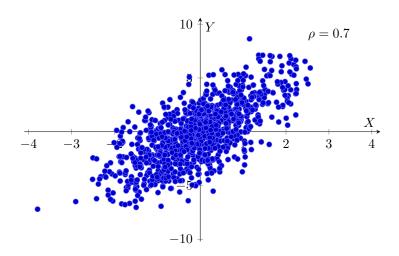
$$var(X \pm Y) = E(X \pm Y)^{2} - (E(X \pm Y))^{2} = E(X^{2} \pm 2XY + Y^{2}) - (EX \pm EY)^{2}$$

$$= EX^{2} \pm 2EXY + EY^{2} - (EX)^{2} \mp 2EXEY - (EY)^{2}$$

$$= varX + varY \pm (2EXY - 2EXEY) = varX + varY \pm 2cov(X, Y).$$

ii) For non-correlated (independent) random variables the covariance is zero.

Correlation – sample of 1000 values



7.3 Sums of random variables – convolution

An important case of a function of multiple random variables is their sum

$$Z = h(X) = h(X_1, \dots, X_n) = X_1 + \dots + X_n.$$

Consider for simplicity a sum of two random variables:

• If X and Y are discrete and independent, then for Z = X + Y it holds that

$$P(Z = z) = \sum_{x} P(X = x) \cdot P(Y = z - x)$$
 (discrete convolution).

• If X and Y are continuous and independent, then for Z = X + Y it holds that

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$
 (convolution of \mathbf{f}_X and \mathbf{f}_Y).

The expression for the sum of discrete independent X and Y is obtained easily:

$$P(Z = z) = P(X + Y = z)$$

$$= \sum_{\{(x_k, y_j): x_k + y_j = z\}} P(X = x_k \cap Y = y_j)$$

$$= \sum_{\text{all } x_k} P(X = x_k) P(Y = z - x_k).$$

For continuous independent X and Y we have:

$$F_{Z}(z) = P(X + Y \le z) = \iint_{\{(x,y): x+y \le z\}} f_{X,Y}(x,y) d(x,y)$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z-x} f_{X,Y}(x,y) dy \right) dx$$

$$y = u-x \int_{-\infty}^{\infty} \left(\int_{-\infty}^{z} f_{X,Y}(x,u-x) du \right) dx$$

$$= \int_{-\infty}^{z} \left(\int_{-\infty}^{\infty} f_{X,Y}(x,u-x) dx \right) du$$

$$= \int_{-\infty}^{z} \left(\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx \right) dy$$

$$= \int_{-\infty}^{z} \left(\int_{-\infty}^{\infty} f_{X,Y}(x,y) dx \right) dy$$

The density f_Z is any non-negative function, for which $F_Z(z) = \int_{-\infty}^z f_Z(u) du$. The expression under the first integral $f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$ is thus the density

Example 7.8. Consider two independent random variables X and Y with the Poisson distribution with parameters λ_1 and λ_2 , respectively. Find the distribution of the variable Z = X + Y.

$$P(X = j) = \frac{\lambda_1^j}{j} e^{-\lambda_1}$$
 $P(Y = \ell) = \frac{\lambda_2^{\ell}}{\ell} e^{-\lambda_2}, \quad j, \ell = 0, 1, ...$

From what we have seen before we know that for k = 0, 1, ...:

$$P(Z = k) = \sum_{\{(j,\ell) \in \mathbb{N}_0^2 : j+\ell=k\}} P(X = j) P(Y = \ell) = \sum_{i=0}^k P(X = j) P(Y = k - j)$$

$$= \sum_{j=0}^k \frac{\lambda_1^j}{j!} e^{-\lambda_1} \frac{\lambda_2^{k-j}}{(k-j)!} e^{-\lambda_2} = e^{-(\lambda_1 + \lambda_2)} \frac{1}{k!} \sum_{j=0}^k \frac{k!}{j!(k-j)!} \lambda_1^j \lambda_2^{k-j}$$

$$= \frac{(\lambda_1 + \lambda_2)^k}{k!} e^{-(\lambda_1 + \lambda_2)}. \qquad \sim \text{Poisson}(\lambda_1 + \lambda_2).$$

Example 7.9 (– sum of two normal distributions). Suppose that X and Y are independent, both having the normal distribution $N(\mu, 1)$. We want to obtain the distribution of Z = X + Y.

The densities of X and Y correspond to the normal distribution with variance $\sigma^2 = 1$:

$$f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2}}, \qquad f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-\mu)^2}{2}} \qquad x, y \in \mathbb{R}.$$

The density of the sum is obtained using convolution:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) \, \mathrm{d}x = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(z - x - \mu)^2}{2}} \, \mathrm{d}x$$
$$= \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{1}{2} \left((x - \mu)^2 + (z - x - \mu)^2 \right)} \, \mathrm{d}x.$$

The expressions in the exponent can be rewritten as:

$$(x-\mu)^2 + (z-x-\mu)^2 = x^2 - 2\mu x + \mu^2 + z^2 + x^2 + \mu^2 - 2zx - 2\mu z + 2\mu x$$
$$= 2\left(x - \frac{z}{2}\right)^2 + \frac{1}{2}\left(z - 2\mu\right)^2.$$

The expression under the integral can then be split into two multiplicative parts, with one of them not depending on x and the other one having an integral of 1:

$$f_Z(z) = \int_{-\infty}^{\infty} \frac{1}{2\pi} e^{-\frac{2(x-z/2)^2}{2}} e^{-\frac{(z-2\mu)^2}{2\cdot 2}} dx$$

$$= \frac{1}{\sqrt{2\pi 2}} e^{-\frac{(z-2\mu)^2}{2\cdot 2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi (1/2)}} e^{-\frac{(x-z/2)^2}{2\cdot (1/2)}} dx$$

$$= \frac{1}{\sqrt{2\pi 2}} e^{-\frac{(z-2\mu)^2}{2\cdot 2}}.$$

The sum Z = X + Y has therefore the normal distribution $N(2\mu, 2)$. In general, it can be proven that the sum of n independent normals $N(\mu, \sigma^2)$ has the distribution $N(n\mu, n\sigma^2)$.

The moment generating function can be used to compute moments of random variables. Taking a sum of independent random variables corresponds to taking a product of their generating functions: For Z = X + Y we have

$$M_Z(s) = E(e^{sZ}) = E(e^{s(X+Y)}) = E(e^{sX}e^{sY})$$

= $E(e^{sX}) E(e^{sY}) = M_Y(s)M_Y(s)$.

Generally for a vector of independent random variables X_1, \ldots, X_n it holds that:

$$Z = X_1 + \cdots + X_n \implies M_Z(s) = M_{X_1}(s) \cdots M_{X_n}(s).$$

Example 7.10. Let X_1, \ldots, X_n be independent Bernoulli random variables with parameter p.

Then
$$M_{X_i}(s) = (1-p)e^{0s} + pe^{1s} = 1 - p + pe^s$$
, $i = 1, ..., n$.

The random variable $Z = X_1 + \cdots + X_n$ is binomial with parameters n and p. Its generating function is $M_Z(s) = (1 - p + pe^s)^n$.

Example 7.11. Let X and Y be independent Poisson random variables with parameters λ_1 and λ_2 respectively. Let Z = X + Y.

Then

$$M_Z(s) = M_X(s)M_Y(s) = e^{\lambda_1(e^s - 1)}e^{\lambda_2(e^s - 1)} = e^{(\lambda_1 + \lambda_2)(e^s - 1)}.$$

Z is again a Poisson random variable, this time with the parameter $\lambda_1 + \lambda_2$:

$$P(Z = k) = \frac{(\lambda_1 + \lambda_2)^k}{k!} e^{-(\lambda_1 + \lambda_2)}.$$

Compare with the difficulty of a direct computation of the convolution.