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8 Limit theorems

8.1 Motivation

So far we have studied individual random variables and vectors.

Now we concentrate on the behavior of sequences of random variables, which arise from
repeated experiments.

In particular, we are interested in the (arithmetic) mean

X̄n = 1
n

n∑
i=1

Xi,

and the sum

Sn =
n∑
i=1

Xi,

where X1, . . . , Xn are independent random variables with an identical distribution.
Notation: i.i.d. – independent and identically distributed.

Limit theorems describe the behavior of X̄n or Sn in limit for n→∞.

8.2 Basic inequalities

First, we obtain inequalities concerning tail probabilities:

Theorem 8.1 (– Markov’s inequality). Let X be a random variable with a finite expectation.
Then it holds that

P(|X| ≥ a) ≤ E |X|
a

for all a > 0.

Proof. Denote the event A = {|X| ≥ a}. Then it holds that |X| ≥ a1A, where 1A is the
indicator of the event A.

By taking expectation on both sides of the inequality we have

E |X| ≥ aE(1A) = aP(A) = aP(|X| ≥ a).

After dividing by a we obtain the inequality.

Example 8.2 (– waiting for a bus). Suppose that the time T which we spend waiting for
a bus is exponentialy distributed with the expectation of 3 minutes. Find an upper bound for
the probability that we need to wait for more than 10 minutes. Compare the estimate with
the exact probability.

Because the waiting time T is non-negative and therefore T = |T |, using the Markov’s
inequality we obtain that

P(T ≥ 10) = P(|T | ≥ 10) ≤ E |T |
10 = 3

10 = 0.3.
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The expectation of the exponentially distributed waiting time is ET = 1/λ = 3, thus the
parameter λ is equal to 1/3. The exact probability is then

P(T ≥ 10) =
∞∫

10

λe−λt dt =
[
−e−λt

]∞
10

= e−
1
3 ·10 .= 0.036.

We see that the Markov’s inequality provides a fast way to obtain an upper bound of the tail
probability.

The Chebyshev’s inequality follows from the Markov’s inequality:

Theorem 8.3 (– Chebyshev’s inequality). Let X be a random variable with a finite ex-
pectation and a finite variance. Then it holds that

P(|X − EX| ≥ ε) ≤ varX
ε2 for all ε > 0.

Proof. Can be obtained directly, similarly to Markov’s inequality (for (X − EX)2), or by
inserting (X−EX)2 instead of X and ε2 instead of a into the Markov’s inequality. We obtain

P(|(X − EX)2| ≥ ε2) ≤ E |(X − EX)2|
ε2 .

Since |(X − EX)2| = (X − EX)2 = |X − EX|2 and a quadratic function is increasing for
positive arguments, it holds that

(X − EX)2 ≥ ε2 ⇔ |X − EX| ≥ ε.

Finally we obtain

P(|X − EX| ≥ ε) ≤ varX
ε2 .

Example 8.4 (– waiting for a bus). Suppose that the time T which we spend waiting for
a bus is exponentially distributed with the expectation of 3 minutes.

Find an upper bound for the probability that we need to wait for more than 10 minutes
using the Chebyshev’s inequality. Compare the estimate with the exact probability and with
the bound obtained from the Markov’s inequality.

Because T ∼ Exp(λ) with λ = 1/3, we get ET = 1/λ = 3 and varT = 1/λ2 = 9. Using
the Chebyshev’s inequality we obtain

P(T ≥ 10) = P(T − ET ≥ 10− 3) ≤ P(|T − ET | ≥ 7) ≤ varT
72 = 9

49
.= 0.184.

The Markov’s inequality provided a bound of P(T ≥ 10) ≤ 0.3, so the Chebyshev’s inequality
provides a somewhat closer approximation of the exact probability P(T ≥ 10) = 0.036.
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Example 8.5 (– waiting for a bus and a tram). Suppose that during our way home, we
need to wait for the bus and then for the tram. The time T1 spent waiting for the bus is
exponentially distributed with the expectation of 3 minutes, time T2 spent waiting for the tram
is exponentially distributed with the expectation of 2 minutes. The times are independent.

Find an upper bound for the probability that the total time we spend waiting, T = T1 +T2
will be more than 15 minutes. Use the Markov’s and Chebyshev’s inequalities and compare
the estimate with the exact probability.

First we find the expectations and variances of T1, T2 and T .

T1 ∼ Exp(λ), ET1 = 1/λ = 3, λ = 1/3, varT1 = 1/λ2 = 9.

T2 ∼ Exp(µ), ET2 = 1/µ = 2, µ = 1/2, varT2 = 1/µ2 = 4.

Using the linearity of the expectation and independence of the waiting times we get:

ET = E(T1 + T2) linearity= ET1 + ET2 = 3 + 2 = 5.

varT = var(T1 + T2) independence= varT1 + varT2 = 9 + 4 = 13.

Using the Markov’s inequality we obtain

P(T ≥ 15) = P(|T | ≥ 15) ≤ E |T |
15 = 5

15
.= 0.333.

Using the Chebyshev’s inequality we obtain

P(T ≥ 15) = P(T − ET ≥ 15− 5) ≤ P(|T − ET | ≥ 10) ≤ varT
102 = 13

100 = 0.13.

The distribution of the sum is considerably more difficult to obtain than when dealing with
just one variable. Using convolution we get:

P(T ≥ 15) =
∞∫

15

t∫
0

λe−λuµe−µ·(t−u) dudt = · · · = µe−λ·15 − λe−µ·15

µ− λ
.= 0.019.

The upper bounds obtained using the inequalities seem somewhat imprecise, but they are
easy to compute, using only expectations and variances.

8.3 Laws of large numbers

8.3.1 Weak law of large numbers

First we compute the expected value and variance of the mean

X̄n = 1
n

n∑
i=1

Xi,

where X1, . . . , Xn are i.i.d. random variables with EXi = µ and varXi = σ2.
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• Expected value

E X̄n = E 1
n

n∑
i=1

Xi = 1
n

E
n∑
i=1

Xi = 1
n

n∑
i=1

EXi = nµ

n
= µ.

• Variance

var X̄n = var 1
n

n∑
i=1

Xi = 1
n2 var

n∑
i=1

Xi = 1
n2

n∑
i=1

varXi = nσ2

n2 = σ2

n
.

We used the linearity of the expectation in the first part and the behavior of the variance
of a sum of independent random variables in the second part.

By inserting X̄n into the Chebyshev’s inequality we obtain the weak law of large numbers:

Theorem 8.6 (– weak law of large numbers). Let X1, X2, . . . be i.i.d. random variables with
finite expectation EXi = µ and finite variance σ2. Then X̄n converges to µ in probability

X̄n
P−→ µ for n→∞.

This means that for all ε > 0 it holds that lim
n→∞

P(|X̄n − µ| ≥ ε) = 0.

Proof. We use the Chebyshev’s inequality for the arithmetic mean X̄n:

0 ≤ P(|X̄n − E X̄n| ≥ ε) = P(|X̄n − µ| ≥ ε) ≤
var X̄n

ε2 = σ2

nε2 → 0 for n→∞.

The statement follows from the sandwich theorem.

8.3.2 Strong law of large numbers

Theorem 8.7 (– strong law of large numbers (SLLN)). Let X1, X2, . . . be i.i.d. random
variables with expected value EXi = µ (not necessarily finite). Then X̄n converges to µ
almost surely (with probability 1)

X̄n
a.s.−−→ µ for n→∞.

It means that the set where Xn(ω) converges as a numerical sequence has probability 1:

P({ω ∈ Ω: X̄n(ω)→ µ for n→∞}) = 1.

Proof. Considerably more difficult, see bibliography.

In what sense is this law of large numbers “stronger”?

• It is enough to consider the existence of the expected value. Moreover, it can be infinite
and the variance as well.

• Convergence almost surely implies convergence in probability.

c© 2011–2025 - BIE-PST, WS 2025/26 5



8 LIMIT THEOREMS BIE-PST, WS 2025/26, Lecture 8

0 20 40 60 80 100 120 140

0.4

0.6

0.8

1

n

X̄n

Arithmetic mean of the indicator of Heads as a result of a coin toss

0 50 100 150 200 250 300 350 400 450 500
−4

−2

0

2

4

6

n

X̄n

Arithmetic mean of values from the Cauchy distribution with non-defined expectation

Recall that for the arithmetic mean X̄n of i.i.d. random variables with EXi = µ and
varXi = σ2 we have

E X̄n = µ, var X̄n = σ2

n
.

Let us now find the characteristics of the sum:

Sn =
n∑
i=1

Xi.

• Expected value

ESn = E
n∑
i=1

Xi
linearity=

n∑
i=1

EXi =
n∑
i=1

µ = nµ.

• Variance
varSn = var

n∑
i=1

Xi
independence=

n∑
i=1

varXi =
n∑
i=1

σ2 = nσ2.

We can alternatively obtain this properties if we realize that Sn = n · X̄n and apply the
expectation and variance.
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8.4 Central limit theorem

Laws of large numbers deal with convergence of the mean to the expected value. For large
n, the mean represents a reasonable approximation of the expected value. In other words, the
expectation is the ideal average of an infinite number of repeated experiments.

However, what is the distribution of the mean or the sum as a random variable?
Central limit theorem (CLT) says that under particular circumstances the distribution of

the mean or a sum can be approximated by the normal distribution.
Distribution of one die roll (simulation).
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For understanding the statement of central limit theorem we need to define the convergence
in distribution.
Definition 8.8. Let X1, X2, . . . be a sequence of random variables with distribution functions
FX1 , FX2 , . . . and X be a random variable with a distribution function FX .

We say that variables Xi converge to X in distribution,

Xn
D−→ X or Xn

L−→ X for n→∞,

if
lim
n→∞

FXn(x) = FX(x)

in all continuity points of the distribution function FX .
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When X has a continuous distribution, for large n we can consider:

• P(Xn ≤ x) = FXn(x) ≈ FX(x) = P(X ≤ x),

• P(Xn > x) = 1− FXn(x) ≈ 1− FX(x) = P(X > x),

• P(a < Xn ≤ b) = FXn(b)− FXn(a) ≈ FX(b)− FX(a) = P(a < X ≤ b).

Theorem 8.9 (– Central limit theorem (CLT)). Let X1, X2, . . . be a sequence of i.i.d. random
variables with finite expectations EXi = µ and finite variances varXi = σ2 > 0. Then

X̄n − µ
σ/
√
n

D−→ N(0, 1) for n→∞.

Similarly
Sn − nµ
σ
√
n

D−→ N(0, 1) for n→∞.

Proof. See bibliography.

The symbol N(0, 1) stands for a variable with the standard normal distribution.
Recall that

E X̄n = µ, ESn = n · µ,

var X̄n = σ2/n. varSn = n · σ2,

The central limit theorem states that if we take either the standardised mean or the standar-
dised sum

Zn = X̄n − E X̄n√
var X̄n

= Sn − ESn√
varSn

= X̄n − µ√
σ2/n

,= Sn − nµ√
nσ2

the resulting variable converges to the standard normal distribution. For any z ∈ R:

P(Zn ≤ z)
n→∞−→ P(Z ≤ z) = Φ(z).

This allows us to effectively approximate the behavior of sums or means for large n. The

theorem can be used regardless of the original distribution, even if it is unknown. However,
the closer to the normal distribution, the more precise is the approximation.

CLT allows us to express probabilities of types P(X̄n < x), P(X̄n > x), etc. by means of
the distribution function Φ of the standard normal distribution

Φ(z) = P(Z ≤ z) for Z ∼ N(0, 1).

The advantage is that the values of Φ are tabulated.

Another variants of the statement:

•
√
n(X̄n − µ)

σ
D−→ N(0, 1),

• X̄n
approx.∼ N

(
µ,
σ2

n

)
for large n,
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• Sn
approx.∼ N(nµ, nσ2) for large n..
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Example 8.10. What is the probability that in 1000 independent tosses with a coin we get
more than 525 times Heads?

Let Xi be an indicator variable denoting, whether in the i-th toss Heads appears (Xi = 1)
or not (Xi = 0). We want to calculate P(S1000 > 525). The number of successes (Heads)
among n attempts (rolls) follows the binomial distribution Binom(n, p) with n = 1000 and
p = 1/2. Computing the probability directly would be very demanding.

Instead of using the binomial distribution we use CLT. For tossing a coin it holds that
EXi = p = 1/2 and varXi = p(1 − p) = 1/4. For the sum it holds that ES1000 = np = 500,
and varS1000 = np(1− p) = 250. We get

P
(1000∑
i=1

Xi > 525
)

= P(S1000 − 500 > 525− 500) = P
(
S1000 − 500√

250
>

25√
250

)
=

= 1− P
(
S1000 − 500√

250
≤ 5√

10

)
≈ 1− Φ

( 5√
10

)
= 1− Φ(1.58) = 0.0571.

Example 8.11 (– CLT vs. Markov’s and Chebyshev’s inequalities). Suppose that we operate
a cargo lift with a maximum load of 600 kg. We need to lift 25 packages, each having an expected
weight of 20 kilograms and a standard deviation of 8 kilograms. What is the probability that

the lift will be overloaded? Use the Markov’s and Chebyshev’s inequalities and CLT.

Let Xi be the weight of the i-th package. We have

EXi = µ = 20 and varXi = σ2 = 82 = 64.

The total weight of all n = 25 packages is Sn =
∑n
i=1Xi, with

ESn = nµ = 25 · 20 = 500 and varSn = nσ2 = 25 · 64 = 1600.

The weights are surely non-negative, thus the Markov’s inequality gives us:

P(Sn ≥ 600) = P(|Sn| ≥ 600) ≤ E|Sn|
600 = 500

600
.= 0.83.

Using the Chebyshev’s inequality we get

P(Sn ≥ 600) ≤ P(|Sn − ESn| ≥ 600− 500) ≤ varSn
1002 = 1600

10000 = 0.16.

CLT gives us

P(Sn > 600) = 1− P(Sn ≤ 600) = 1− P
(
Sn − ESn√

varSn
≤ 600− 500√

1600

)
= 1− P

(
Zn ≤

100
40

)
≈ 1− Φ(2.5) = 0.0062.

We were able to use the inequalities and the central limit theorem to approximate the pro-
bability, even if we didn’t know the distribution of the weights.
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