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9 Basic notions of statistics

9.1 Statistical inference

So far we have dealt with probabilistic problems with known parameters. For example if we
have a box with r red and b blue balls, we can:
• find the probability of drawing a blue ball,

• find the probability of drawing a certain number of blue balls in three draws with or
without replacement,

• find the expected number of blue balls in 10 draws with replacement,

• make statements about a sequence of 1000 draws,

• etc.

Now we will deal with statistical problems. For example if we have a box with an unknown
number of red and blue balls, we can take a sample and:
• estimate the proportion of red and blue balls,

• test whether there are 50% of blue balls or more,

• test whether the red/blue proportion is the same among two separate boxes,

• etc.
Probability theory deals with mathematical models of processes (experiments, tests, etc.)

with random results. These models are then utilized for prediction of possible outcomes, i.e.,
we determine probabilities of events, distributions and expected values of random variables,
etc.

Mathematical statistics proceeds, to some extent, reversely. On the grounds of real outco-
mes we choose an appropriate model and estimate its parameters. Then we can test hypotheses
about these parameters and verify how well does the model fit the data.

9.1.1 Random sample

Statistics uses specific terminology.

Definition 9.1. An n-tuple of independent and identically distributed random variables
(i.i.d.)X1, . . . , Xn with distribution function F is called a random sample from the distribution
F .

Examples 9.2.

• Measurement of a given variable in n independent repetitions of some experiment.

• Time to execute an algorithm in n repeated runs.

• Measurement of body height of n different people.

Definition 9.3. The random sample realization (random vector of observations or simply
data) is an n-tuple of particular observed values x1, . . . , xn.

2 c© 2011–2025 - BIE-PST, WS 2025/26
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9.1.2 Steps of statistical inference

Consider a random sample from an unknown distribution. On the grounds of measured data
(random sample realizations) we want to learn as much as possible about the underlying
distribution.

Typical steps of statistical inference:

• Estimate the shape of the distribution – restrict the inference to a family of distributions
Fθ with a parameter θ. This can follow from prior knowledge, intuition or experience.

• Estimate the parameters of the distribution

– Point estimation – determine the “most probable” value of θ.
– Interval estimation – determine an interval (region) in which θ lies with a given

large probability.

• Verify the model – hypothesis testing

– Goodness-of-fit tests – we verify hypothesis about the shape of the probability
distribution (e.g., whether the investigated variable has the normal distribution).

– Parametric tests – we state a hypothesis about the parameter θ (e.g., θ = 0) and
on the grounds of measured data we try to decide whether this hypothesis can be
true or not.

9.2 Estimation of the shape of the distribution

The distribution of an investigated random variable usually may not be absolutely arbitrary.

Based on previous experience, intuition or the type of underlying data we can often

• determine whether the variable is discrete or continuous;

• approximate the shape of the distribution (e.g., exponential, normal, etc.);

• establish other possible determining properties (e.g., range of values, zero expectation,
etc.).

This information leads us to a choice of a particular model, thus to the

• choice of parametric distribution family {Fθ(x)|θ ∈ Θ}, where Θ is a set of all possible
values of parameter θ;

• and the assumption that our random sample is governed by distribution from this family.

Examples of possible models

• Bernoulli distribution – tossing with an unknown coin

{Be(p) | p ∈ [0, 1]}

Parameter θ = p and Θ = [0, 1].

c© 2011–2025 - BIE-PST, WS 2025/26 3
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• Exponential distribution – times between two incoming request on a database server

{Exp(λ) |λ ∈ (0,+∞)}

Parameter θ = λ and Θ = (0,+∞).

• Normal distribution – results of an IQ test in a given population

{N(µ, σ2) |µ ∈ (−∞,+∞), σ2 ∈ (0,+∞)}

Two dimensional parameter θ = (µ, σ2) and Θ = (−∞,+∞)× (0,+∞).

9.2.1 Histogram

The shape of the density can be estimated by the histogram:

2 2.5 3 3.5 4 4.5 5 5.5 60
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0.4

xmin xmaxxmin xmax
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3
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• Determine the data range.

• Choose a number of bins k and their size h (here k = 4 and h = 1).

• Over each bin, plot a column of the size

number of observation in bin
h · total number of observations

denote= mi

h · n
.

Notice that the area under a histogram is 1. It is thanks to dividing by total number of
observations n. (It is not always done, we must beware while using a software.) In this case it
is possible to visually compare the histogram with known densities. However, there remains
the questions of how to choose the number and location of bins, their size, or decide whether
the bins should be of equal size or not. This is often a difficult question and inappropriate
choice can destroy the histogram. Very reliable visualisation (and estimate as well) is always
the empirical distribution function.

Example 9.4. We measured 1000 values from an unknown distribution. The histogram of
these values is:

4 c© 2011–2025 - BIE-PST, WS 2025/26
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We can assume that we deal with values from the normal distribution with unknown
parameters µ and σ2.

9.2.2 Empirical distribution function

The shape of the distribution function can be estimated by the empirical distribution function:

Fn(x,X1, . . . , Xn) = Fn(x) = 1
n

n∑
i=1

1{Xi≤x}.

In other words, the probability that the random variable in question is less than or equal x
can be estimated by the proportion of data points which are less than or equal to x.
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X The empirical distribution function is a piecewise constant function with jumps of size
1
n in the observed data points. Later we will see that the empirical distribution function is
a good estimate of an unknown distribution function of the random sample.

Example 9.5. We measured 100 and 1000 values from an unknown distribution. The empi-
rical distribution functions are:
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We can assume that we deal with values from the normal distribution with unknown para-
meters µ and σ2.

Example 9.6 (– waiting for a bus). Every morning we measure the time which we spend
waiting for a bus on our way to school. After 15 days, we have observed the following data
(in minutes, sorted):

0.1 0.3 0.5 0.7 1.0 1.9 2.8 3.4 3.5 3.8 5.3 7.7 8.6 8.7 11.1

Suppose that the waiting times form a random sample (X1, . . . , X15) from an unknown dis-
tribution Find the histogram and the empirical distribution function of this distribution.

The data are in the interval [0, 12]. If we take the bandwidth h too small or too large, the histogram
may be inaccurate:

0.1 0.3 0.5 0.7 1.0 1.9 2.8 3.4 3.5 3.8 5.3 7.7 8.6 8.7 11.1
>hist(waiting time,prob=T,breaks=12)
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The bandwidth seems too small.
>hist(waiting time,prob=T,breaks=2)
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The bandwidth seems too large.
The data are in the interval [0, 12]. It seems reasonable to divide them into six parts, each covering

two minutes. Each data point constitutes 1
h·n = 1

2·15 = 0.03̄3:
0.1 0.3 0.5 0.7 1.0 1.9 2.8 3.4 3.5 3.8 5.3 7.7 8.6 8.7 11.1

>hist(waiting time,prob=T)
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The histogram might seem similar to the exponential distribution.
We proceed from the left and add a jump of 1/15 at each data point encountered:
>plot(ecdf(waiting time))
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Now we can estimate probabilities of the type P(X ≤ x) using Fn(x). The probability that
we do not need to wait for more than six minutes is estimated as Fn(6) = 11/15 .= 0.733,
which is the proportion of data points less than or equal to 6.

The quantiles qα divide the population so that there are α% of values under the α-quantile
and (1− α)% above. The 50%-quantile is called the median and divides the population into
two equally large parts with respect to probability. If we denote the ordered data as

(
x(1), x(2), . . . , x(n)

)
,

the α%-quantile can be estimated as x(dnαe). This is then the inverse of the empirical distri-
bution function. The median q0.5 can then be estimated as the middle value of the ordered
data, x(dn

2 e). If there is an even number of data points, some software estimates the median
as the average of x( n

2 ) and x( n
2 +1).

Example 9.7 (– waiting for a bus – median). Estimate the median of the time spent waiting for the
bus using the observed data: 0.1 0.3 0.5 0.7 1.0 1.9 2.8 3.4 3.5 3.8 5.3 7.7 8.6 8.7 11.1
The median is estimated as the middle observed value. Therefore with a probability of about 50% we
will be waiting for the bus for less than 3.4 minutes and also for more than 3.4 minutes.

c© 2011–2025 - BIE-PST, WS 2025/26 7
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9.3 Point estimators

9.3.1 Introduction

From the measured data we can estimate the real value of the parameter θ using a point
estimator :

Definition 9.8. A point estimator of a parameter θ is a function θ̂n(X1, . . . , Xn) of the
random sample which does not depend on θ.

Notes:

• A point estimator is an example of a statistic. A statistic is an arbitrary function of the
random sample which does not depend on the parameter θ.

• Generally, we can also construct a point estimator of a function of a parameter g(θ).

• A typical example is g(λ) = 1
λ

= EX for the exponential distribution.

9.3.2 Most common point estimators

• Sample mean – point estimator of the expectation EX:

X̄n = 1
n

n∑
i=1

Xi.

• Sample variance – point estimator the of variance varX:

s2
n = s2

X = 1
n− 1

n∑
i=1

(Xi − X̄n)2.

• Sample standard deviation – point estimator of the standard deviation
√

varX:

sn =
√
s2
n.

• kth sample moment – point estimator of kth moment µk = EXk:

mk = 1
n

n∑
i=1

Xk
i .

• Sample covariance – point estimator of the covariance cov(X,Y ):

sX,Y = 1
n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn).

• Sample correlation coefficient – point estimator of the correlation coefficient ρ(X,Y ):

rX,Y = r = sX,Y
sXsY

,

where sX and sY are square roots of the sample variances of X and Y .

8 c© 2011–2025 - BIE-PST, WS 2025/26
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9.3.3 Properties of point estimators

A point estimator as a function of the random sample is itself also a random variable with
some distribution which obviously depends on the parameter θ.

A “good estimator ” θ̂n should be in some way close to the true value of θ for all values θ
and for all realizations of the random sample from Fθ.

Usually we want an estimator to be unbiased:

Definition 9.9. An estimator θ̂n of the parameter θ is called unbiased if

E θ̂n(X1, . . . , Xn) = θ for all θ ∈ Θ.

Unbiasedness means that an estimator does not have a systematic error, e.g., that it does
not produce systematically larger or smaller values.

The next desirable property of estimators is consistency:

Definition 9.10. An estimator θ̂n of the parameter θ is called consistent if for all θ ∈ Θ:

θ̂n
P→ θ for n→∞.

In other words, if for all ε > 0 we have P(|θ̂n(X1, . . . , Xn)− θ| ≥ ε) → 0. Consistency
means that by choosing a large n, the error of the estimate will be sufficiently small.

Theorem 9.11. Let E θ̂2
n < +∞ for all n. If for n→ +∞ it holds that

E θ̂n → θ and var θ̂n → 0,

then θ̂n is a consistent estimator.

Proof. Proof can be found in bibliography.

Example 9.12.
−2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

x

fθ̂n
(x)

Convergence of the densities of a consistent estimator θ̂n with the true value of θ = 0.

n = 8
n = 20
n = 100
n = +∞
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Sample mean
Consider a random sample X1, . . . , Xn from a distribution F(µ,σ2) where EXi = µ and

varXi = σ2.

• The sample mean X̄n is unbiased:

E X̄n = E 1
n

n∑
i=1

Xi = 1
n

E
n∑
i=1

Xi = 1
n

n∑
i=1

EXi = nµ

n
= µ.

• It is also consistent: from the weak law of large numbers we get that

X̄n
P−→ µ for n→∞.

• The same follows from previous theorem and the fact that var X̄n = σ2

n
→ 0.

The sample mean X̄n is thus an unbiased and consistent estimator of the expectation.
Histogram of the proportion of heads among 10 coin tosses (1000 simulations).
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Histogram of the proportion of heads among 20 coin tosses (1000 simulations).
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Histogram of the proportion of heads among 100 coin tosses (1000 simulations).
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Sample variance
Consider a random sample X1, . . . , Xn from a distribution F(µ,σ2) where EXi = µ and

varXi = σ2. We want to estimate the variance σ2 using the sample variance s2
n. First we

rewrite s2
n as

s2
n = 1

n− 1

n∑
i=1

(Xi − X̄n)2

= 1
n− 1

n∑
i=1

(
X2
i − 2XiX̄n + X̄2

n

)
= 1
n− 1

(
n∑
i=1

X2
i − 2

n∑
i=1

XiX̄n + nX̄2
n

)

= 1
n− 1

(
n∑
i=1

X2
i − nX̄2

n

)
.

• Unbiasedness: since EX2
i = σ2 + µ2 and E X̄2

n = σ2

n
+ µ2, we get

E s2
n = 1

n− 1 E
(∑

i

X2
i − nX̄2

n

)
= 1
n− 1

(
nEX2

i − nE X̄2
n

)
= 1
n− 1

(
nσ2 + nµ2 − nσ

2

n
− nµ2

)
= 1
n− 1(n− 1)σ2 = σ2.

This is the reason why we divide by number n − 1 instead of n, which can be more
natural at the first glance. But such estimate would no longer be unbiased, it will be
only asymptotically unbiased.

• Consistency: from the law of large numbers we get X̄n
n→∞−→ µ = EXi and also

1
n

∑
i

X2
i
n→∞−→ EX2

i . Thus we get

s2
n = 1

n− 1

(∑
i

X2
i − nX̄2

n

)
= n

n− 1

(
1
n

∑
i

X2
i − X̄2

n

)
n→∞−→ 1 · (EX2

i − µ2) = EX2
i − (EXi)2 = varXi = σ2.

The sample variance s2
n is thus an unbiased and consistent estimator of the variance σ2.

c© 2011–2025 - BIE-PST, WS 2025/26 11
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Quality of an unbiased estimator
Often we can construct several unbiased estimators of a given parameter. In this case we

try to find the best of them, meaning the one with the smallest variance.

Definition 9.13. An estimator θ̂best
n (X1, . . . , Xn) is called the best unbiased estimator of the

parameter θ if it is unbiased and for all other unbiased estimators θ̂n of parameter θ it holds
that

var(θ̂n) ≥ var(θ̂best
n ) for all θ ∈ Θ

There exists a lower bound for the variance of an unbiased estimator (Rao - Cramer lower
bound). If we find an unbiased estimator with the variance equal to this lower bound, we have
the best unbiased estimator.

Theorem 9.14. For binomial, Poisson, exponential, and normal distribution the sample
mean is the best unbiased estimator of the expected value.

For the normal distribution the sample variance is the best unbiased estimator of the
variance.

9.3.4 Method of moments

For a simple and quick (but sometimes not optimal) estimate of the parameters, the method
of moments can be used. Let X1, . . . , Xn be a sample from a distribution with a d-dimensional
parameter θ = (θ1, . . . , θd).

Steps of the method of moments:

• Compute the theoretical moments EXk
i , for k = 1, . . . , d.

• Express the parameters as functions of the moments.

• Estimate the theoretical moments by their empirical versions:

ÊXk
i = mk = 1

n

n∑
i=1

Xk
i .

• Insert the estimated moments and find the parameter estimates by solving the corre-
sponding equations.

The method is useful because the law of large numbers implies that mk → EXk
i for n→ +∞.

The estimates are thus always consistent.
Suppose X1, . . . , Xn form a random sample from a distribution F(µ,σ2) where EXi = µ

and varXi = σ2.

• The first two theoretical moments are

EXi = µ, EX2
i = varXi + (EXi)2 = σ2 + µ2.

• The parameters can be expressed as functions of the moments:

µ = EXi, σ2 = EX2
i − (EXi)2.

12 c© 2011–2025 - BIE-PST, WS 2025/26
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• We estimate EXi using m1 and EX2
i using m1 and m2.

• The estimators of the expectation and variance are then

µ̂n = X̄n and σ̂2
n = 1

n

n∑
i=1

X2
i − (X̄n)2.

• After some algebra

σ̂2
n = 1

n

n∑
i=1

(
X2
i − 2XiX̄n + (X̄n)2) = 1

n

n∑
i=1

(Xi − X̄n)2 = n− 1
n

s2
n.

This estimator of the variance is consistent, but not unbiased. However, the extent of the bias
will decrease, as n−1

n → 1 for n → ∞. Quite often a meaningful unbiased estimator does
not exist and we must be satisfied with an asymptotically unbiased or biased estimator.

9.3.5 Maximum likelihood method

Example 9.15. Suppose that among four coin tosses we obtained the sequence H,T,H,H.
How can we estimate the expected proportion of Heads?

X1, X2, X3, X4 form a random sample from the Bernoulli distribution with the parameter
p with realizations 1, 0, 1, 1. The probability of such realization is:

L(p) = P(H,T,H,H) = P(X1 = 1 ∩X2 = 0 ∩X3 = 1 ∩X4 = 1) = p3(1− p).

As an estimate of the parameter p we take the value for which the obtained realization has
the largest probability. Thus we find the maximum of the function L(p).

dL
dp (p) = d

dp(p3 − p4) = 3p2 − 4p3 = p2(3− 4p) = 0.

Stationary points are 0 and 3
4 and the maximum is achieved at point 3

4 . Hence we obtain the
estimate p̂n = 3

4 , which can be guessed from the set up.

Consistent estimators with desirable properties can be obtained using the maximum like-
lihood method. The aim is to maximize the likelihood function for given observations.

Definition 9.16. Let the random sample X1, . . . , Xn have a distribution given by the joint
density

fθ(x) =
n∏
i=1

fθ(xi) for a continuous distribution or

pθ(x) =
n∏
i=1

Pθ(Xi = xi) for a discrete distribution.

With values of x = (x1, . . . , xn) fixed, the function fθ(x), or pθ(x), as a function of θ is called
the likelihood function and is denoted as L(θ; x) or simply L(θ).

The likelihood function depends only on the parameter θ. The values x1, . . . , xn are treated
as known and fixed.

c© 2011–2025 - BIE-PST, WS 2025/26 13
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Definition 9.17. The value θ̂n of the parameter θ maximizing the likelihood function L(θ; x)
for a given random sample realization X = x is called the maximum likelihood estimator
(MLE) of the parameter θ. It means that

L(θ̂n; x) ≥ L(θ; x) for all θ ∈ Θ.

Notes:

• We can take g(θ̂n) as the maximum likelihood estimator of a function g(θ).

• Often it is advantageous to maximize the function lnL(θ; x), because the logarithm
turns a product into a sum.

• In the case of a k-dimensional parameter θ = (θ1, . . . , θk) we usually solve a system of
equations

∂ lnL(θ1, . . . , θk; x)
∂θj

= 0 for j = 1, . . . , k.

• If certain regularity conditions are met (see literature), the maximum likelihood estima-
tes are consistent, asymptotically unbiased and asymptotically normal.

Example 9.18 (– parameter of the exponential distribution). Construct the MLE estimate
of the parameter λ > 0 of the exponential distribution Exp(λ). The likelihood function for n
observed values x1, . . . , xn (random sample realization) is clearly:

L(λ; x) = fλ(x) =
n∏
i=1

λe−λxi = λne−λ
∑

xi .

In this case it is advantageous to maximize lnL(λ; x) = n ln(λ)− λ
n∑
i=1

xi.

After differentiating we obtain:

d lnL(λ; x)
dλ = n

λ
−

n∑
i=1

xi = 0.

A solution of this equation is the maximal likelihood estimator λ̂n = n∑n
i=1 xi

= 1
x̄n

.

Using the second derivative we can check that the obtained point is indeed the maximum.

Example 9.19 (– waiting for a bus – comparison of distributions). Try fitting known conti-
nuous distributions on the observed waiting times from before. Estimate their parameters and
compare the densities with the histogram.

0.1 0.3 0.5 0.7 1.0 1.9 2.8 3.4 3.5 3.8 5.3 7.7 8.6 8.7 11.1

We try fitting the uniform Unif(0, b), exponential Exp(λ) and normal N(µ, σ2) distributions
with estimated parameters:

Distribution Estimated parameters
Uniform a = 0 b̂n = max(x1, . . . , x15) .= 11.1
Exponential λ̂n = 1

x̄n

.= 0.25 −

Normal µ̂n = x̄n
.= 3.96 s2

n
.= 12.56.

14 c© 2011–2025 - BIE-PST, WS 2025/26
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Compare the histogram with the fitted densities.
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The exponential distribution seems to provide the best fit.
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