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Organization Content

Content

• Probability theory:
I Events, probability, conditional probability, Bayes’ Theorem, independence of events.
I Random variables, distribution function, functions of random variables, characteristics

of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

I Random vectors, joint and marginal distributions, independence of random variables,
conditional distribution, functions of random vectors, covariance and correlation.

I Markov’s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

• Mathematical statistics:
I Point estimators, sample mean, sample variance, properties of point estimators, Maximum

likelihood method.
I Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear

regression, estimators of regression parameters, testing of linear model.
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Organization Content

Recap
Discrete random variable X Continuous random variable X

Probabilities of values / density of X :
P(X = x) fX(x)

Independence of X and Y :
P(X = x ∩ Y = y) = P(X = x) P(Y = y) fX,Y (x, y) = fX(x)fY (y)

Expected value of X :

EX =
∑
x

xP(X = x) EX =

∫ ∞
−∞

xfX(x) dx

Variance of X :
varX = E(X − EX)2 = E(X2)− (EX)2

Linearity of the expectation (for any X and Y ):
E(X + Y ) = EX + EY

Variance of a sum of independent or non-correlated X and Y :
var(X + Y ) = varX + varY .
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Limit theorems Motivation

Limit theorems – motivation

So far we have studied individual random variables and vectors.

Now we concentrate on the behavior of sequences of random variables, which arise from
repeated experiments.

In particular, we are interested in the (arithmetic) mean

X̄n =
1

n

n∑
i=1

Xi,

and the sum

Sn =

n∑
i=1

Xi,

where X1, . . . , Xn are independent random variables with an identical distribution.
Notation: i.i.d. – independent and identically distributed.

Limit theorems describe the behavior of X̄n or Sn in limit for n→∞.
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Limit theorems Basic inequalities

Markov’s inequality

First, we obtain inequalities concerning tail probabilities:

Theorem – Markov’s inequality

Let X be a random variable with a finite expectation. Then it holds that

P(|X| ≥ a) ≤ E |X|
a

for all a > 0.

Proof

Denote the event A = {|X| ≥ a}. Then it holds that |X| ≥ a1A, where 1A is the indicator of the event A.
By taking expectation on both sides of the inequality we have

E |X| ≥ aE(1A) = aP(A) = aP(|X| ≥ a).

After dividing by a we obtain the inequality.
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Limit theorems Basic inequalities

Markov’s inequality – example
Example – waiting for a bus

Suppose that the time T which we spend waiting for a bus is exponentialy distributed with
the expectation of 3 minutes.
Find an upper bound for the probability that we need to wait for more than 10 minutes.
Compare the estimate with the exact probability.

Because the waiting time T is non-negative and therefore T = |T |, using the Markov’s
inequality we obtain that

P(T ≥ 10) = P(|T | ≥ 10) ≤ E |T |
10

=
3

10
= 0.3.

The expectation of the exponentially distributed waiting time is ET = 1/λ = 3, thus the
parameter λ is equal to 1/3. The exact probability is then

P(T ≥ 10) =

∫ ∞
10

λe−λt dt =
[
−e−λt

]∞
10

= e−
1
3 ·10 .

= 0.036.

We see that the Markov’s inequality provides a fast way to obtain an upper bound of the tail
probability.
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Limit theorems Basic inequalities

Chebyshev’s inequality
The Chebyshev’s inequality follows from the Markov’s inequality:

Theorem – Chebyshev’s inequality

Let X be a random variable with a finite expectation and a finite variance. Then it holds that

P(|X − EX| ≥ ε) ≤ varX

ε2
for all ε > 0.

Proof

Can be obtained directly, similarly to Markov’s inequality (for (X − EX)2), or by inserting (X − EX)2 instead
of X and ε2 instead of a into the Markov’s inequality. We obtain

P(|(X − EX)2| ≥ ε2) ≤
E |(X − EX)2|

ε2
.

Since |(X − EX)2| = (X − EX)2 = |X − EX|2 and a quadratic function is increasing for positive
arguments, it holds that

(X − EX)2 ≥ ε2 ⇔ |X − EX| ≥ ε.
Finally we obtain

P(|X − EX| ≥ ε) ≤
varX

ε2
.
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Limit theorems Basic inequalities

Chebyshev’s inequality – example

Example – waiting for a bus

Suppose that the time T which we spend waiting for a bus is exponentially distributed with
the expectation of 3 minutes.

Find an upper bound for the probability that we need to wait for more than 10 minutes using
the Chebyshev’s inequality. Compare the estimate with the exact probability and with the
bound obtained from the Markov’s inequality.

Because T ∼ Exp(λ) with λ = 1/3, we get ET = 1/λ = 3 and varT = 1/λ2 = 9.

Using the Chebyshev’s inequality we obtain

P(T ≥ 10) = P(T − ET ≥ 10− 3) ≤ P(|T − ET | ≥ 7) ≤ varT

72
=

9

49

.
= 0.184.

The Markov’s inequality provided a bound of P(T ≥ 10) ≤ 0.3, so the Chebyshev’s
inequality provides a somewhat closer approximation of the exact probability
P(T ≥ 10) = 0.036.
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Limit theorems Basic inequalities

Tail probabilities – example

Example – waiting for a bus and a tram

Suppose that during our way home, we need to wait for the bus and then for the tram. The time T1

spent waiting for the bus is exponentially distributed with the expectation of 3 minutes, time T2 spent
waiting for the tram is exponentially distributed with the expectation of 2 minutes. The times are
independent.

Find an upper bound for the probability that the total time we spend waiting, T = T1 + T2 will be
more than 15 minutes. Use the Markov’s and Chebyshev’s inequalities and compare the estimate with
the exact probability.

First we find the expectations and variances of T1, T2 and T .

T1 ∼ Exp(λ), ET1 = 1/λ = 3, λ = 1/3, varT1 = 1/λ2 = 9.

T2 ∼ Exp(µ), ET2 = 1/µ = 2, µ = 1/2, varT2 = 1/µ2 = 4.

Using the linearity of the expectation and independence of the waiting times we get:

ET = E(T1 + T2)
linearity
= ET1 + ET2 = 3 + 2 = 5.

varT = var(T1 + T2)
independence

= varT1 + varT2 = 9 + 4 = 13.
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Limit theorems Basic inequalities

Tail probabilities – example

Example – waiting for a bus and a tram, continued

Using the Markov’s inequality we obtain

P(T ≥ 15) = P(|T | ≥ 15) ≤ E |T |
15

=
5

15

.
= 0.333.

Using the Chebyshev’s inequality we obtain

P(T ≥ 15) = P(T − ET ≥ 15− 5) ≤ P(|T − ET | ≥ 10) ≤ varT

102
=

13

100
= 0.13.

The distribution of the sum is considerably more difficult to obtain than when dealing with
just one variable. Using convolution we get:

P(T ≥ 15) =

∫ ∞
15

∫ t

0

λe−λuµe−µ·(t−u) dudt = · · · = µe−λ·15 − λe−µ·15
µ− λ

.
= 0.019.

The upper bounds obtained using the inequalities seem somewhat imprecise, but they are
easy to compute, using only expectations and variances.
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Limit theorems Laws of large numbers

Characteristics of the mean of random variables
First we compute the expected value and variance of the mean

X̄n =
1

n

n∑
i=1

Xi,

where X1, . . . , Xn are i.i.d. random variables with EXi = µ and varXi = σ2.

• Expected value

E X̄n = E
1

n

n∑
i=1

Xi =
1

n
E

n∑
i=1

Xi =
1

n

n∑
i=1

EXi =
nµ

n
= µ.

• Variance

var X̄n = var
1

n

n∑
i=1

Xi =
1

n2
var

n∑
i=1

Xi =
1

n2

n∑
i=1

varXi =
nσ2

n2
=
σ2

n
.

We used the linearity of the expectation in the first part and the behavior of the variance of
a sum of independent random variables in the second part.
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Limit theorems Laws of large numbers

Weak law of large numbers

By inserting X̄n into the Chebyshev’s inequality we obtain the weak law of large numbers:

Theorem – weak law of large numbers

Let X1, X2, . . . be i.i.d. random variables with finite expectation EXi = µ and finite
variance σ2. Then X̄n converges to µ in probability

X̄n
P−→ µ for n→∞.

This means that for all ε > 0 it holds that lim
n→∞

P(|X̄n − µ| ≥ ε) = 0.

Proof

We use the Chebyshev’s inequality for the arithmetic mean X̄n:

0 ≤ P(|X̄n − E X̄n| ≥ ε) = P(|X̄n − µ| ≥ ε) ≤
var X̄n

ε2
=

σ2

nε2
→ 0 for n→∞.

The statement follows from the sandwich theorem.
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Limit theorems Laws of large numbers

Strong law of large numbers

Theorem – strong law of large numbers (SLLN)

Let X1, X2, . . . be i.i.d. random variables with expected value EXi = µ (not necessarily
finite). Then X̄n converges to µ almost surely (with probability 1)

X̄n
a.s.−−→ µ for n→∞.

It means that the set where Xn(ω) converges as a numerical sequence has probability 1:

P({ω ∈ Ω: X̄n(ω)→ µ for n→∞}) = 1.

Proof

Considerably more difficult, see bibliography.

In what sense is this law of large numbers “stronger”?

• It is enough to consider the existence of the expected value. Moreover, it can be
infinite and the variance as well.

• Convergence almost surely implies convergence in probability.
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Limit theorems Laws of large numbers

Strong law of large numbers – illustration
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Limit theorems Laws of large numbers

Strong law of large numbers – illustration
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Limit theorems Laws of large numbers

Characteristics of the sum of random variables
Recall that for the arithmetic mean X̄n of i.i.d. random variables with EXi = µ and
varXi = σ2 we have

E X̄n = µ, var X̄n =
σ2

n
.

Let us now find the characteristics of the sum:

Sn =

n∑
i=1

Xi.

• Expected value

ESn = E

n∑
i=1

Xi
linearity

=

n∑
i=1

EXi =

n∑
i=1

µ = nµ.

• Variance

varSn = var
n∑
i=1

Xi
independence

=
n∑
i=1

varXi =
n∑
i=1

σ2 = nσ2.

We can alternatively obtain this properties if we realize that Sn = n · X̄n and apply the
expectation and variance.
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Limit theorems Central limit theorem

Central limit theorem – motivation

Laws of large numbers deal with convergence of the mean to the expected value. For large
n, the mean represents a reasonable approximation of the expected value. In other words,
the expectation is the ideal average of an infinite number of repeated experiments.

However, what is the distribution of the mean or the sum as a random variable?

Central limit theorem (CLT) says that under particular circumstances the distribution of the
mean or a sum can be approximated by the normal distribution.
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Limit theorems Central limit theorem

Distribution of sums of dice rolls

Distribution of one die roll (simulation).
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Limit theorems Central limit theorem

Distribution of sums of dice rolls

Distribution of the sum of two dice rolls (simulation).
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Limit theorems Central limit theorem

Distribution of sums of dice rolls

Distribution of the sum of four dice rolls (simulation).
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Limit theorems Central limit theorem

Distribution of sums of dice rolls

Distribution of the sum of ten dice rolls (simulation).
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Limit theorems Central limit theorem

Convergence in distribution
For understanding the statement of central limit theorem we need to define the convergence
in distribution.

Definition

Let X1, X2, . . . be a sequence of random variables with distribution functions
FX1

, FX2
, . . . and X be a random variable with a distribution function FX .

We say that variables Xi converge to X in distribution,

Xn
D−→ X or Xn

L−→ X for n→∞,

if
lim
n→∞

FXn
(x) = FX(x)

in all continuity points of the distribution function FX .

When X has a continuous distribution, for large n we can consider:
• P(Xn ≤ x) = FXn

(x) ≈ FX(x) = P(X ≤ x),
• P(Xn > x) = 1− FXn

(x) ≈ 1− FX(x) = P(X > x),
• P(a < Xn ≤ b) = FXn

(b)− FXn
(a) ≈ FX(b)− FX(a) = P(a < X ≤ b).
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Limit theorems Central limit theorem

Central limit theorem

Theorem – Central limit theorem (CLT)

Let X1, X2, . . . be a sequence of i.i.d. random variables with finite expectations EXi = µ

and finite variances varXi = σ2 > 0. Then

X̄n − µ
σ/
√
n

D−→ N(0, 1) for n→∞.

Similarly
Sn − nµ
σ
√
n

D−→ N(0, 1) for n→∞.

Proof

See bibliography.

The symbol N(0, 1) stands for a variable with the standard normal distribution.
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Limit theorems Central limit theorem

Central limit theorem

Recall that
E X̄n = µ, ESn = n · µ,

var X̄n = σ2/n. varSn = n · σ2,

The central limit theorem states that if we take either the standardised mean or the
standardised sum

Zn =
X̄n − E X̄n√

var X̄n

=
Sn − ESn√

varSn
=
X̄n − µ√
σ2/n

,=
Sn − nµ√

nσ2

the resulting variable converges to the standard normal distribution. For any z ∈ R:

P(Zn ≤ z) n→∞−→ P(Z ≤ z) = Φ(z).

This allows us to effectively approximate the behavior of sums or means for large n.

The theorem can be used regardless of the original distribution, even if it is unknown.
However, the closer to the normal distribution, the more precise is the approximation.

BIE-PST, WS 2025/26 (FIT CTU) Probability and Statistics Lecture 8 24 / 33



Limit theorems Central limit theorem

Central limit theorem

Recall that
E X̄n = µ, ESn = n · µ,

var X̄n = σ2/n. varSn = n · σ2,

The central limit theorem states that if we take either the standardised mean or the
standardised sum

Zn =
X̄n − E X̄n√

var X̄n

=
Sn − ESn√

varSn
=
X̄n − µ√
σ2/n

,=
Sn − nµ√

nσ2

the resulting variable converges to the standard normal distribution. For any z ∈ R:

P(Zn ≤ z) n→∞−→ P(Z ≤ z) = Φ(z).

This allows us to effectively approximate the behavior of sums or means for large n.

The theorem can be used regardless of the original distribution, even if it is unknown.
However, the closer to the normal distribution, the more precise is the approximation.

BIE-PST, WS 2025/26 (FIT CTU) Probability and Statistics Lecture 8 24 / 33



Limit theorems Central limit theorem

Central limit theorem

CLT allows us to express probabilities of types P(X̄n < x), P(X̄n > x), etc. by means of
the distribution function Φ of the standard normal distribution

Φ(z) = P(Z ≤ z) for Z ∼ N(0, 1).

The advantage is that the values of Φ are tabulated.

Another variants of the statement:

•
√
n(X̄n − µ)

σ

D−→ N(0, 1),

• X̄n
approx.∼ N

(
µ,
σ2

n

)
for large n,

• Sn approx.∼ N(nµ, nσ2) for large n..
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Limit theorems Central limit theorem

Central limit theorem – illustration
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Estimate of the density of the arithmetic mean of n coin tosses (1000 realizations)
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Limit theorems Central limit theorem

Central limit theorem – illustration
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Limit theorems Central limit theorem

Central limit theorem – example

Example

What is the probability that in 1000 independent tosses with a coin we get more than 525
times Heads?

Let Xi be an indicator variable denoting, whether in the i-th toss Heads appears (Xi = 1)
or not (Xi = 0). We want to calculate P(S1000 > 525). The number of successes (Heads)
among n attempts (rolls) follows the binomial distribution Binom(n, p) with n = 1000 and
p = 1/2. Computing the probability directly would be very demanding.

Instead of using the binomial distribution we use CLT. For tossing a coin it holds that
EXi = p = 1/2 and varXi = p(1− p) = 1/4. For the sum it holds that
ES1000 = np = 500, and varS1000 = np(1− p) = 250. We get

P

(
1000∑
i=1

Xi > 525

)
= P(S1000 − 500 > 525− 500) = P

(
S1000 − 500
√

250
>

25
√

250

)
=

= 1− P

(
S1000 − 500
√

250
≤

5
√

10

)
≈ 1− Φ

(
5
√

10

)
= 1− Φ(1.58) = 0.0571.
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Instead of using the binomial distribution we use CLT. For tossing a coin it holds that
EXi = p = 1/2 and varXi = p(1− p) = 1/4. For the sum it holds that
ES1000 = np = 500, and varS1000 = np(1− p) = 250. We get

P

(
1000∑
i=1

Xi > 525

)
= P(S1000 − 500 > 525− 500) = P

(
S1000 − 500
√

250
>

25
√

250

)
=

= 1− P

(
S1000 − 500
√

250
≤

5
√

10

)
≈ 1− Φ

(
5
√

10

)
= 1− Φ(1.58) = 0.0571.
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Tables of the values of the distribution function Φ of the
standard normal distribution N(0, 1)

x

Φ(x)

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
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Central limit theorem – example

Example – CLT vs. Markov’s and Chebyshev’s inequalities

Suppose that we operate a cargo lift with a maximum load of 600 kg. We need to lift 25
packages, each having an expected weight of 20 kilograms and a standard deviation of 8
kilograms.

What is the probability that the lift will be overloaded? Use the Markov’s and Chebyshev’s
inequalities and CLT.

Let Xi be the weight of the i-th package. We have

EXi = µ = 20 and varXi = σ2 = 82 = 64.

The total weight of all n = 25 packages is Sn =

n∑
i=1

Xi, with

ESn = nµ = 25 · 20 = 500 and varSn = nσ2 = 25 · 64 = 1600.
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Central limit theorem – example

Example – CLT vs. Markov’s and Chebyshev’s inequalities, continued

The weights are surely non-negative, thus the Markov’s inequality gives us:

P(Sn ≥ 600) = P(|Sn| ≥ 600) ≤ E|Sn|
600

=
500

600

.
= 0.83.

Using the Chebyshev’s inequality we get

P(Sn ≥ 600) ≤ P(|Sn − ESn| ≥ 600− 500) ≤ varSn
1002

=
1600

10000
= 0.16.

CLT gives us

P(Sn > 600) = 1− P(Sn ≤ 600) = 1− P

(
Sn − ESn√

varSn
≤ 600− 500√

1600

)
= 1− P

(
Zn ≤

100

40

)
≈ 1− Φ(2.5) = 0.0062.

We were able to use the inequalities and the central limit theorem to approximate the
probability, even if we didn’t know the distribution of the weights.
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Recap
Suppose we observe a sequence of independent and identically distributed (i.i.d.)
random variables X1, X2, . . ., with expectation EXi = µ and variance varXi = σ2.
• If we denote the arithmetic mean and the sum of the variables as

X̄n =
1

n

n∑
i=1

Xi and Sn =

n∑
i=1

Xi,

we get that
E X̄n = µ, ESn = n · µ,

var X̄n = σ2/n, varSn = n · σ2.

• According to the law of large numbers, the arithmetic mean converges to the
expectation, provided that it is finite:

X̄n
n→∞−→ µ.

• According to the central limit theorem, the distribution of the standardised mean or
sum converges to standard normal:

Zn =
X̄n − µ
σ/
√
n

=
Sn − nµ√

nσ

n→∞−→ N(0, 1).
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