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Content

® Probability theory:

> Events, probability, conditional probability, Bayes’ Theorem, independence of events.

» Random variables, distribution function, functions of random variables, characteristics
of random variables: expected value, variance, moments, generating function, quantiles,
critical values, important discrete and continuous distributions.

» Random vectors, joint and marginal distributions, independence of random variables,
conditional distribution, functions of random vectors, covariance and correlation.

» Markov’'s and Chebyshev’s inequality, weak law of large numbers, strong law of large
numbers, Central limit theorem.

® Mathematical statistics:

> Point estimators, sample mean, sample variance, properties of point estimators, Maximum
likelihood method.

> Interval estimators, hypothesis testing, one-sided vs. two-sided alternatives, linear
regression, estimators of regression parameters, testing of linear model.
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Content

Recap
Discrete random variable X ‘ Continuous random variable X

Probabilities of values / density of X:
P(X =x) ‘ fx (@)

Independence of X and Y':
PX=znY=y)=PX=2)P(Y =y) | fxy(zy) =/ x@)fr{)
Expected value of X:

EX =) zP(X =u) EX:/_OO afx(x)dz

Variance of X:
var X = B(X —EX)?*=E(X?) - (EX)?

Linearity of the expectation (for any X and Y):
E(X+Y)=EX+EY

Variance of a sum of independent or non-correlated X and Y':
var(X +Y) =var X + varY.
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Limit theorems — motivation

So far we have studied individual random variables and vectors.

Now we concentrate on the behavior of sequences of random variables, which arise from
repeated experiments.

In particular, we are interested in the (arithmetic) mean

=1
and the sum .
Sn = ZXH
i=1
where X1, ..., X, are independent random variables with an identical distribution.

Notation: i.i.d. — independent and identically distributed.

Limit theorems describe the behavior of )_(n or .S, in limit for n — oo.
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Limit theorems Basic inequalities

Markov’s inequality

First, we obtain inequalities concerning tail probabilities:

Theorem — Markov’s inequality

Let X be a random variable with a finite expectation. Then it holds that

E|X
P(|X|>a) < EIX] foralla > 0.
a

Proof

Denote the event A = {|X| > a}. Thenit holds that | X | > al 4, where 1 4 is the indicator of the event A.
By taking expectation on both sides of the inequality we have

E|X| > aE(14) = aP(4) = aP(IX| > a).

After dividing by a we obtain the inequality. O
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Limit theorems Basic inequalities

Markov’s inequality — example
Example — waiting for a bus

Suppose that the time 7" which we spend waiting for a bus is exponentialy distributed with
the expectation of 3 minutes.

Find an upper bound for the probability that we need to wait for more than 10 minutes.
Compare the estimate with the exact probability.

Because the waiting time 7" is non-negative and therefore T' = |T'|, using the Markov's
inequality we obtain that
E|T| 3
P(T>10)=P(|T| >10) < —— = — =0.3.
(T>10) = P(T] > 10) < = =
The expectation of the exponentially distributed waiting time is ET" = 1/ = 3, thus the
parameter A is equal to 1/3. The exact probability is then

o0

—1.10 -
> — 310 2 0,036,

P(T>10)= [ Xe Mdt=[-e?]
10

We see that the Markov’s inequality provides a fast way to obtain an upper bound of the tail
probability.

v
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Lol T
Chebyshev’s inequality

The Chebyshev’s inequality follows from the Markov’s inequality:
Theorem — Chebyshev’s inequality

Let X be a random variable with a finite expectation and a finite variance. Then it holds that

var X

P(X —EX|2¢) <

foralle > 0.

Proof

Can be obtained directly, similarly to Markov's inequality (for (X — E X)2), or by inserting (X — E X)? instead
of X and 2 instead of a into the Markov’s inequality. We obtain
< EIX - EX)?|

2 2
P((X —EX)? > &%) =
Since [(X — E X)?| = (X — E X)? = | X — E X|? and a quadratic function is increasing for positive
arguments, it holds that

(X —EX)2>2 o |[X —EX|>e.
Finally we obtain

X
P(X -EX|>¢) < 22,
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Limit theorems Basic inequalities

Chebyshev’s inequality — example

Example — waiting for a bus
Suppose that the time 7" which we spend waiting for a bus is exponentially distributed with
the expectation of 3 minutes.

Find an upper bound for the probability that we need to wait for more than 10 minutes using
the Chebyshev’s inequality. Compare the estimate with the exact probability and with the
bound obtained from the Markov’s inequality.

Because T ~ Exp(A) with A = 1/3, we get ET = 1/A = 3and var T = 1/A\? = 9.
Using the Chebyshev’s inequality we obtain
varT 9

P(T 210)=P(T~ET 210-3) <P(T-ET| 27) < 5 = ;5 = 0.184.

The Markov’s inequality provided a bound of P(T" > 10) < 0.3, so the Chebyshev’s
inequality provides a somewhat closer approximation of the exact probability
P(T > 10) = 0.036.
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Besio nequales
Tail probabilities — example

Example — waiting for a bus and a tram

Suppose that during our way home, we need to wait for the bus and then for the tram. The time T}
spent waiting for the bus is exponentially distributed with the expectation of 3 minutes, time 7% spent
waiting for the tram is exponentially distributed with the expectation of 2 minutes. The times are
independent.

Find an upper bound for the probability that the total time we spend waiting, 7' = T4 + 15 will be
more than 15 minutes. Use the Markov’s and Chebyshev’s inequalities and compare the estimate with
the exact probability.

First we find the expectations and variances of 77, 15 and T'.
T ~Exp(\), ETi =1/A=3, A=1/3, varTi =1/X*=0.
To ~Exp(u), ETo=1/p=2, p=1/2, varTs = 1/,u2 =4.
Using the linearity of the expectation and independence of the waiting times we get:

ET=ET +T) "2 ET, +ET, =3+2=>5.

indepe_ndence

var T = var(Ty + T3) varTy +varTs, =9 +4 = 13.
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Limit theorems Basic inequalities

Tail probabilities — example

Example — waiting for a bus and a tram, continued

Using the Markov’s inequality we obtain
E|T]| )
P(T'>15)=P(|T| >15) < — = — = 0.333.
(T 215) =P(|T| 2 15) < — =~ = 17 = 0.333

Using the Chebyshev’s inequality we obtain
varT 13

— =0.13.

> = — > — < — > < — —
P(T215)=P(T ~ET 215-5) <P(T - ET| 2 10) < = = 105

The distribution of the sum is considerably more difficult to obtain than when dealing with
just one variable. Using convolution we get:

—X\15 _ yp—p-15

[e’e} t e
P(T >15) = / / e Mpe W qydt = ... = = 0.019.
15 Jo B=A

The upper bounds obtained using the inequalities seem somewhat imprecise, but they are
easy to compute, using only expectations and variances.
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N il o oroerumbers

Characteristics of the mean of random variables
First we compute the expected value and variance of the mean

where X7, ..., X, are i.i.d. random variables with E X;, = p and var X; = o2

® Expected value

n n

EX. —ELS x 1 o
EX, = Eg —EZXZ_nZEXl_ —=p

i=1 =1

® Variance

2

1 & 1 - 1 « no? o
var X, = var — g Xi:—zvarg Xi=— E var X; = — = —.
n n — n? &~ n n
1= 1=

i=1

We used the linearity of the expectation in the first part and the behavior of the variance of
a sum of independent random variables in the second part.
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E X Lo Xt
Weak law of large numbers

By inserting X, into the Chebyshev’s inequality we obtain the weak law of large numbers:

Theorem — weak law of large numbers

Let X1, X5, ... beiid. random variables with finite expectation E X; = 1 and finite
variance o2. Then X. n_converges to (. in probability

Xo Sp  for m— .

This means that for all ¢ > 0 it holds that lim P(|X,, — u| > ¢) = 0.
n—oo

Proof
We use the Chebyshev’s inequality for the arithmetic mean Xn:

var X, o2
T =—5 0 forn — oco.
€ ne

0 < P(|Xn —EXn| >¢) = P(IXn —ul 2 ) <

The statement follows from the sandwich theorem. O
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Limit theorems Laws of large numbers

Strong law of large numbers

Theorem - strong law of large numbers (SLLN)

Let X1, Xs,... beiid. random variables with expected value E X; = p (not necessarily
finite). Then X,, converges to | almost surely (with probability 1)

X, . o) for n — oo.
It means that the set where X,,(w) converges as a numerical sequence has probability 1:

P({w € Q: X,,(w) = pforn — oo}) = 1.

Proof

Considerably more difficult, see bibliography. O

In what sense is this law of large numbers “stronger”?

® |t is enough to consider the existence of the expected value. Moreover, it can be
infinite and the variance as well.

® Convergence almost surely implies convergence in probability.
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Strong law of large numbers — illustration

Arithmetic mean of the indicator of Heads as a result of a coin toss

0.8 1

:i><:|

0.6 1

0.4 1

0 20 40 60 80 100 120 140
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Strong law of large numbers — illustration

Arithmetic mean of values from the Cauchy distribution with non-defined expectation
6 .

0 50 100 150 200 250 300 350 400 450 500
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Characteristics of the sum of random variables

Recall that for the arithmetic mean X, of i.i.d. random variables with E X; =  and
var X; = 0 we have

— — 0'2
EX,=u, var X,, = —.
n
Let us now find the characteristics of the sum:

n
Sn =) X,
i=1
® Expected value
n n n
ES,=EY X, "E"3NEX; =) p=np
i=1 i=1 i=1
® Variance
n n n
var S, = var Z X; independence Z var X; = Z o? = no?.
i=1 i=1 i=1

We can alternatively obtain this properties if we realize that S,, = n - X,, and apply the
expectation and variance.
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Central limit theorem — motivation

Laws of large numbers deal with convergence of the mean to the expected value. For large
n, the mean represents a reasonable approximation of the expected value. In other words,
the expectation is the ideal average of an infinite number of repeated experiments.

However, what is the distribution of the mean or the sum as a random variable?

Central limit theorem (CLT) says that under particular circumstances the distribution of the
mean or a sum can be approximated by the normal distribution.
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Distribution of sums of dice rolls

Distribution of one die roll (simulation).

n
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result
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Central limi theorem
Distribution of sums of dice rolls

Distribution of the sum of two dice rolls (simulation).

n
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Central limi theorem
Distribution of sums of dice rolls

Distribution of the sum of four dice rolls (simulation).

probability
0.06 0.08 0.10
1 1 1
| |
|
|

0.04
1

0.02
1

0.00
L

result
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Central limi theorem
Distribution of sums of dice rolls

Distribution of the sum of ten dice rolls (simulation).
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Convergence in distribution
For understanding the statement of central limit theorem we need to define the convergence
in distribution.

Definition
Let X1, X3, ... be a sequence of random variables with distribution functions
Fx,,Fx,,... and X be a random variable with a distribution function F'x.

We say that variables X; converge to X in distribution,

Xn2—>X or Xn£>X forn — oo,

lim Fx, (x) = Fx(z)

n—oo

in all continuity points of the distribution function F'y.

When X has a continuous distribution, for large n we can consider:
* P(X,<z)=Fx,(v)~ Fx(z) =P(X <x),
* P(X,>z)=1—Fx, ()~ 1— Fx(z) =P(X > x),
* P(a< X, <b)=Fx,(b)— Fx,(a) = Fx(b) — Fx(a) =P(a < X <b).
(o0 PEES)



Central limit theorem

Theorem — Central limit theorem (CLT)

Let X1, Xs, ... be a sequence of i.i.d. random variables with finite expectations E X; =
and finite variances var X; = o> > 0. Then

X —
il 2, N(0,1)  for n — oo.
o/\/n
Similarly
Sn—n
Ve TR N(0,1)  for n — oco.
ovn
Proof
See bibliography. O

The symbol N(0, 1) stands for a variable with the standard normal distribution.
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Central limi theorem
Central limit theorem

Recall that
EX’I’L:M7 ESn:’I’L,U/,
var X,, = o%/n. varS, =n- o2,

The central limit theorem states that if we take either the standardised mean or the
standardised sum

_)_(n—E)_(n S, —ES, _)_(n—,u Sy —np
Vvar X, Vvar S, VoZ/n' Vno?

the resulting variable converges to the standard normal distribution. For any z € R:

Zn

P(Z, < 2) =3 P(Z < 2) = ®(2).

This allows us to effectively approximate the behavior of sums or means for large n.

The theorem can be used regardless of the original distribution, even if it is unknown.
However, the closer to the normal distribution, the more precise is the approximation.
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Central limit theorem

CLT allows us to express probabilities of types P(X,, < z), P(X,, > z), etc. by means of
the distribution function ® of the standard normal distribution

O(z)=P(Z<z) for Z~N(0,1).
The advantage is that the values of ® are tabulated.

Another variants of the statement:

° V(X — )

22 N(0, 1),

S approx 0'2
* X, ~ N (,u, —> for large n,
n

o g, RO N(nu,no?) for large n..
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Limit theorems

Central limit theorem — illustration

Estimate of the density of the arithmetic mean of n coin tosses (1000 realizations)
0.5 T T T T T T \

0.4
0.3
fx.

0.2

0.1
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Limit theorems

Central limit theorem — illustration

Estimate of the density of the arithmetic mean of n coin tosses (1000 realizations)
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Limit theorems

Central limit theorem — illustration

Estimate of the density of the arithmetic mean of n coin tosses (1000 realizations)
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entallimit theorem
Central limit theorem — example

Example

What is the probability that in 1000 independent tosses with a coin we get more than 525
times Heads?

Let X; be an indicator variable denoting, whether in the i-th toss Heads appears (X; = 1)
or not (X; = 0). We want to calculate P(S1000 > 525). The number of successes (Heads)
among n attempts (rolls) follows the binomial distribution Binom(n, p) with n = 1000 and
p = 1/2. Computing the probability directly would be very demanding.

Instead of using the binomial distribution we use CLT. For tossing a coin it holds that
EX;, =p=1/2andvar X; = p(1 — p) = 1/4. For the sum it holds that
E S1000 = np = 500, and var S1ggp = np(l = p) = 250. We get

1000
S1000 — 500 _ 25
P <Z X; > 525) = P(S1000 — 500 > 525 — 500) = P ( 1009 ) =

>
= V250 /250
S1000 — 500 5 ) ( 5 )
=1-Pl——— < — | ~1—-®(— ) =1—P(1.58) = 0.0571.
( V250 ~ V10 V10 ( )
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Tables of the values of the distribution function ® of the
standard normal distribution N(0, 1)

00 .01 .02 .03 .04 05 .06 .07 .08 .09

0.0 5000 5040 5080 5120 5160 5199 .5239 .5279 .5319 5359
0.1 5398 5438  .5478 5517 5557 .5596 .5636 .5675 5714 5753
0.2 5793 5832 5871 5910 5948 5987 .6026 .6064 .6103 .6141
0.3 6179 6217 6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
04 | .6554 6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
0.5 6915 6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 | .7257 7201 7324 7357 7389 .7422 7454 7486 .7517 .7549
07 | .7580 7611 .7642 7673 .7704 7734 7764 7794 7823 .7852
0.8 7881 L7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
09 | .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 | 8413 8438 .8461 .8485 8508 .8531 8554 8577 .8599 .8621
1.1 8643 .8665 .8686 .8708 .8729 .8749 8770 .8790 .8810 .8830
1.2 | 8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 9032 .9049 .9066 .9082 .9099 9115 9131 .9147 9162 .9177
14 | 9192 9207 .9222 .9236 .9251 9265 .9279 9292 .9306 .9319
1.5 9332 9345 .9357 9370 .9382 .9394 .9406 .9418 9441
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Central limit theorem — example

Example — CLT vs. Markov’s and Chebyshev’s inequalities

Suppose that we operate a cargo lift with a maximum load of 600 kg. We need to lift 25
packages, each having an expected weight of 20 kilograms and a standard deviation of 8
kilograms.

What is the probability that the lift will be overloaded? Use the Markov's and Chebyshev’s
inequalities and CLT.

Let X; be the weight of the i-th package. We have

EX,=u=20 and var X; = o2 = 8% = 64.

n
The total weight of all n = 25 packages is S,, = Z X, with

=1

ES,=nu=25-20=500 and varS, =no’=25-64 = 1600.
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Central limit theorem — example

Example — CLT vs. Markov’s and Chebyshev’s inequalities, continued

The weights are surely non-negative, thus the Markov’s inequality gives us:

E|S,| 500 .
P > =P > < = — =0.83.
(S, > 600) (1Sn| > 600) < 600 600 0.83
Using the Chebyshev’s inequality we get
var Sy, 1600
P(S, > <P(|S, — E > — < = —— =0.16.
(S, > 600) < P(|S, Sn| > 600 — 500) 1002 10000 0.16

CLT gives us

P(S, > 600) =1 —P(S, <600)=1—P (S” —B5 600_500)

<
VvarS, — /1600

1
=1-P <Zn < %) ~1— ®(2.5) = 0.0062.

We were able to use the inequalities and the central limit theorem to approximate the
probability, even if we didn’t know the distribution of the weights.

y
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Recap
Suppose we observe a sequence of independent and identically distributed (i.i.d.)
random variables X7, X5, . . ., with expectation E X; = y and variance var X; = a2

® |f we denote the arithmetic mean and the sum of the variables as

Xn:%in and Sn:iX“
i=1 =1

we get that
EX, = u, ES,=n-pu,

var X,, = 0%/n, var S, =n - o>,

® According to the law of large numbers, the arithmetic mean converges to the
expectation, provided that it is finite:

X, "2
® According to the central limit theorem, the distribution of the standardised mean or
sum converges to standard normal:

Xn_,u/ Sn_n,U/ n—oo

Zn, — N(0,1).

T o/yn o
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