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Abstract. We prove that, given a Sturmian word w with quadratic
slope, it is possible to construct a one-dimensional cellular automaton
such that w is represented in a chosen column in its space-time diagram.
Our proof is constructive and use the continued fraction expansion of
the slope of the word.
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1 Introduction

Sturmian words are infinite words over a binary alphabet that have exactly
n + 1 factors of length n for each non-negative n. Their origin can be traced
back to the astronomer J. Bernoulli III. Their first in-depth study is by Morse
and Hedlund [17]. Many combinatorial properties were described in the paper
by Coven and Hedlund [5]. Sturmian words are one of the most studied topics
in combinatorics on words. They can be defined in different ways and have
various interpretations in several domains, including combinatorics and discrete
geometry. A possible way to describe them is by using mechanical words.

In this paper we consider characteristic Sturmian words with quadratic slope
(see Section 2 for precise definitions). In particular, given such a Sturmian word
w with continued fraction of its slope α = [0, 1 + b1, b2, . . . , bm, a1, a2, . . . , ak]
and corresponding directive sequence ∆ = (b1, b2, · · · , bm, (a1, a2, · · · , ak)ω), we
have w = limn→∞ wn, where w0 = a, w1 = b, wn = wbnn−1wn−2 for 1 ≤ n ≤ m

and wm+n = w
a(n mod k)

m+n−1 wm+n−2 for n > 0 (where a0 := ak). We use such a char-
acterisation to construct a machine, called cellular automaton, that will “print”
us the infinite word w. A cellular automaton is a dynamical system defined
by an infinite string of symbols over an alphabet and a map, called local rule,
that transforms every symbol of the string according to its neighbourhood (see
Section 3 for a more precise definition). A classical example of a 2-dimensional
? The research received funding from the Ministry of Education, Youth and Sports of
the Czech Republic through the projects CZ.02.1.01/0.0/0.0/16_019/0000765 and
CZ.02.1.01/0.0/0.0/16_019/0000778.
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cellular automaton is given by 1970 Conway’s Game of Life. In spite of its very
simple definition, the Game of Life has some quite remarkable properties. In-
deed, Rendell proved that starting from it, it is possible to simulate any Turing
machine [18]. In this paper we consider one-dimensional cellular automata. The
initial configuration will be given by an infinite string over a (finite) alphabet.

Our main result is the following one.

Theorem 1. A Sturmian word with quadratic slope can be represented as a
column in the space-time diagram of a one-dimensional cellular automaton.

The task of representing a sequence over a finite alphabet in the space-time
diagram of a cellular automaton is a non-trivial and still not entirely explored
topic. One of the first results on the subject is the construction of the characteris-
tic sequence of primes numbers, done by Fischer in 1965, using a cellular automa-
ton with more than 30,000 states [8]. In 1997, Korec gives another construction
with only 11 states [13]. In 1999, Mazoyer and Terrier establish several geometric
constructions of increasing functions, which they call Fischer constructible [16].
A very interesting result is given by Rowland and Yassawi in 2015 [19]: they
give a complete characterisation of the construction of q-automatic sequence,
with q a power of a prime number, in the columns of the space-time diagram of
linear cellular automata. Finally, in 2018, Marcovici, Stoll and Tahay construct
different non-automatic sequences, such as the characteristic sequences of poly-
nomials (squares, cubes, etc.) and the Fibonacci word [15]. Our main result in
this paper can be seen as an extension of the construction obtained by Marcovici,
Stoll and Tahay for this last infinite word. While in [15] the authors use ad hoc
properties of Fibonacci numbers and Fibonacci finite words, in this article we
consider the development of the continued fraction associated a Sturmian word
with quadratic slope to define a new algorithm. Such an algorithm could even
be generalised to larger families of infinite words (see Section 6).

2 Preliminaries

In this section we recall some basic definitions on finite and infinite words. For
all undefined terms we refer to [14]. We denote the set of integers, of positive
integers and of non-negative integers respectively by Z, Z+ and N, while Q and
R denote the set of rational and of real numbers.

2.1 Words

An alphabet Σ is a (finite) set of symbols called letters. The set of finite words
Σ∗ over Σ is the free monoid having neutral element the empty word ε. We also
denote by Σ+ the free semigroup over Σ, e.g., Σ+ = Σ∗ \ {ε}. The length of a
word w = a0a1 · · · an−1, with ai ∈ Σ, is the non-negative integer |w| = n. The
length of ε is considered to be 0. When it is possible to write w = pus, with
p, u, s ∈ Σ∗, we call p (resp., s, u) a prefix (resp., suffix, factor) of w.
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An infinite word over Σ is a sequence w = a0a1a2 · · · , with ai ∈ Σ for
all i. Similarly to finite words we can define the set of infinite words ΣN and
extend in a natural way to Σ∗ ∪ΣN the notions of prefix, suffix and factor. An
infinite word w is eventually periodic if w = uvω = uvvv · · · . When u = ε we
say that w is purely periodic. An infinite word that is not eventually periodic
is called aperiodic. The factor complexity of an infinite word w is the mapping
Cw : N→ N defined by Cw(n) = #{u | u is a factor of w and |u| = n}.

Aperiodic infinite words with the lowest possible factor complexity, i.e., such
that Cw(n) = n+1 for all n ∈ N, are called Sturmian words (for other equivalent
definitions see [1]). It follows from the definition that all Sturmian words are
defined over a binary alphabet, e.g., {a, b}. If both sequences aw and bw are
Sturmian, we call w a characteristic Sturmian word. The family of Sturmian
words coincide with the family of irrational mechanical words, as well as the
family of binary balanced aperiodic words (for more on balanced words see, for
instance, [1,6,10]). In particular, characteristic Sturmian words correspond to
balanced irrational mechanical words with intercept equal to the slope[14]. We
denote by cα the unique characteristic Sturmian word with slope (and intercept)
α. Since two Sturmian words with the same slope (but different intercept) share
the same set of factors, we will focus only on the study of characteristic Sturmian
words. Note that every mechanical word with rational slope is a purely periodic
word.

Example 1. Let us consider the well-known Fibonacci word f = abaababaab · · · .
It is defined as the fixed point of the morphism sending a 7→ ab and b 7→ a. The
word f is the characteristic Sturmian word c1/ϕ2 , where ϕ = 1+

√
5

2 .

2.2 Continued fraction expansion

Let θ be a real number. A continued fraction expansion of θ is defined as
[c0, c1, c2, . . .] whenever

θ = c0 +
1

c1 +
1

c2+
. . .

with c0 ∈ Z and ci ∈ Z+ for every positive i. It is known that if θ ∈ Q then there
exist exactly two continued fraction expansion of θ and they are both finite. On
the other hand every positive irrational number corresponds to a unique infinite
continued fraction expansion with c0 ∈ N and ci ∈ Z+ for all i ≥ 1. Note that, if
c0 = 0 then 0 ≤ θ ≤ 1. If θ is a quadratic irrational, then its continued fraction
expansion is eventually periodic, that is it will be of the form

θ = [b0, . . . , bm, a1, . . . , ak] = [b0, . . . , bm, a1, . . . , ak, a1, . . . , ak, . . .] .

Example 2. The golden ratio ϕ = 1+
√
5

2 is a quadratic irrational number. Its
continued fraction expansion is ϕ =

[
1
]
= [1, 1, 1, . . .] The continued fraction ex-

pansions of e and π are [2, 1, 2, 1, 1, 4, 1, 1, 6, . . .] and [3, 7, 15, 1, 292, 1, 1, 1, 2, . . .]
respectively (sequences A003417 and A001203 in the OEIS [20]).

https://oeis.org/A003417
https://oeis.org/A001203
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2.3 Standard sequences and directed sequences

Let ∆ = (dn)n≥1 be an integer sequence with d1 ∈ N and dn ∈ Z+ for every
positive integer n. The standard sequence associated to ∆ is the sequence of
finite words (wn)n≥−1 defined by

w−1 = b, w0 = a, wn = wdnn−1wn−2 for every n ≥ 1.

The sequence ∆ is also called the directive sequence of (wn)n≥−1. Note that
if d1 > 0, every wn starts with a. Otherwise, wn starts with b for every n 6= 0.
Let us consider the infinite word w = limn→∞ wn. Such an infinite word is
well defined and wn is a prefix of w for every positive n. We say that ∆ (resp.
(wn)n≥−1) is the directive sequence (resp. the standard sequence) of w.

Example 3. Let us consider the directive sequence ∆ = (1ω) = (1, 1, 1, . . .). The
associated standard sequence is f−1 = b, f0 = a, and fn = fn−1fn−2 for every
n ≥ 1. It is known that the Fibonacci word f defined in Example 1 can be
obtained as the limit f = limn→∞ fn.

Proposition 1 ([14]). Let α be an irrational number with 0 < α < 1 having
continued fraction expansion α = [0, d1 + 1, d2, d3, . . .], and let (wn)n≥−1 be the
standard sequence associated to (d1, d2, d3, . . .). Then cα = limn→∞ wn.

Note that mechanical words are defined for 0 ≤ α ≤ 1. It is possible to gener-
alise such definition to every α ∈ R [14, Remark 2.1.12]: the fraction expansion in
the statement of Proposition 1 would be α = [c0, d1 + 1, d2, d3, . . .] with c0 ∈ Z,
but the standard associated sequence would not change.

Example 4. As seen in Example 3, the directive sequence of the Fibonacci word
f is (1ω). The continued fraction expansion of the corresponding irrational slope
(see also Example 1) is 1

ϕ2 =
[
0, 2, 1

]
.

Example 5. Let us consider the characteristic Sturmian word v having associated
directive sequence ∆ = ((1, 2)ω). We have v = limn→∞ vn, where the standard
sequence (vn)n≥−1 is defined by v−1 = b, v0 = a, v2n+1 = v2nv2n−1 and v2n =

v22n−1v2n−2 for every n ∈ N. Since 3−
√
3

3 =
[
0, 2, 2, 1

]
, we have, according to

Proposition 1, v = c(3−
√
3)/3.

In the next sections we will also need the lengths of the prefixes of a charac-
teristic Sturmian sequence. Given a standard sequence (wn)n≥−1 we define for
every integer n ≥ −1 the number Wn = |wn|.

Example 6. Let (fn)n≥−1, and (vn)n≥−1 be the standard sequences defined in
Examples 3, and 5. Let Fn = |fn| and Vn = |vn|. For every n ∈ N we have the
relations Fn = Fn−1 + Fn−2, V2n+1 = V2n + V2n−1 and V2n = 2V2n−1 + V2n−2.
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3 Cellular automata

In the following we use the terminology developed by Mazoyer and Terrier in [16]
and Marcovici, Stoll and Tahay in [15].

Definition 1. A one-dimensional cellular automaton (CA) is a dynamical sys-
tem (AZ, T ), where A is a finite set, and where the map T : AZ → AZ is defined
by a local rule which acts uniformly and synchronously on the configuration space.
More precisely, there exists an integer r ∈ N called the radius of the CA, and a
local rule τ : A2r+1 → A such that for every x = (xk)k∈Z and for every k ∈ Z,
we have T (x)k = τ((xk+i)−r≤i≤r).

When the set A is understood, we will call cellular automaton just the map
T . The elements of AZ are called configurations. By the Curtis-Hedlund-Lyndon
Theorem [9], a map T : AZ → AZ is a CA if and only if it is continuous with
respect to the product topology and it commutes with the shift map σ defined
by σ(x)k = xk−1, for every configuration x = (xk)k∈Z and every k ∈ Z. Let
0 ∈ A and T : AZ → AZ a cellular automaton. We say that T is 0-quiescent
if T (0Z) = 0Z = · · · 000 · · · . A configuration x = (xk)k∈Z is called finite if the
set {k ∈ Z : xk 6= 0} is finite. A cellular automaton can be visualized by using
a space-time diagram which is a 2-dimensional grid where each cell contains
an element of the set A and is represented by a space coordinate and a time
coordinate.

Let us consider the set

S =
{
(Tn(x)0)n≥0 ∈ AN : T is a 0-quiescent CA on AZ and x is finite

}
.

In other words, S is the set of sequences of AN that can occur as the first
column (and thus as any column) in the space-time diagram of some one-
dimensional 0-quiescent CA, starting from a finite initial configuration. This
set corresponds to the set of Fischer’s produced sequences in [16].

In a space-time diagram it is also possible to “transmit information” through
signals, that is to connect two cells (m,n) and (m′, n+ t) through a monotonous
path; we call slope of the signal the number t

m′−m (see [16, Definitions 3 and 4]
for a formal definition). When m = m′, we call such a signal a vertical signal or
a signal of infinite slope. For the sake of simplicity, we usually represent a signal
as a straight line between the cells (m,n) and (m′, n + t). Signals are usually
“porous”, i.e., they do not interact between each other. In some case, however, we
also need to consider “concrete” signals. In particular, let us define two distinct
kinds of walls. We say that a wall is of type (i) whenever a given signal hitting
the wall bounces from the cell just above, i.e., when a given signal of slope d
arrives in a cell (`, t), then such a signal dies and a new signal of slope −d starts
from the cell (`, t+1). We say that a wall is of type (ii) whenever a given signal
hitting the wall bounces from the same cell, i.e., when a given signal of slope d
arrives in a cell (`, t), then such a signal dies and a new signal of slope −d starts
from the same cell (`, t). We usually represent a wall of type (i) as a line inside
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the column ` + 1 when the signals comes from the left (resp. ` − 1 when the
signal comes from the right), and a wall of type (ii) as a rectangle containing
the cells in the column ` (see Figure 1).

`

t
t+ 1

`

t

Fig. 1. Walls of type (i) (on the left) and of type (ii) (on the right).

When two signals meet, we can mark the cell at the intersection, i.e., assign
to it a value from the set A, and define new signals starting from it.

4 Construction of numbers

To prove our main result we proceed in two steps. First let us construct a CA
recognising the lengths Wn of the prefixes wn of our Sturmian word w.

Let X ⊂ Z. Let us denote by 1X the characteristic function of X, that is the
map 1X : Z→ {0, 1} defined by 1X(x) = 1 iff x ∈ X.

Proposition 2 ([16]). Let (Sn)n≥0 be an integer sequence defined by Sn+p =
p−1∑
i=0

aiSn+i, where p, ai ∈ N. Then 1{Sn}n≥0
∈ S.

Mazoyer and Terrier give an explicit method to build this sequences in a
column of a CA. We propose here a different construction for a particular case
that will be necessary for representing a Sturmian word of quadratic slope.

Proposition 3. Let (dn)n≥1 be an eventually periodic integer sequence with
d1 ∈ N and di ∈ Z+ for every i ≥ 2. Let (Sn)n≥0 be the integer sequence defined
by Sn = dnSn−1+Sn−2 for every n ≥ 0, with S−1, S0 ∈ Z+. Then 1{Sn}n≥0

∈ S.

Proof (Sketch). Since the sequence (dn)n≥1 is eventually periodic, then there
exist m ∈ N, k ∈ Z+ and b1, . . . , bm, a1, . . . ak ∈ N such that (dn)n≥1 =
(b1, . . . , bm, (a1, . . . , ak)

ω) . Note that we can consider the first Sm rows of the
cellular automaton as initial conditions, i.e., we can start the construction from
the row of rank Sm. Let n ≥ 1 be an integer. We are going to consider two
distinct cases according to the value of dn+1.

Let us first suppose that dn+1 6= 1. Assume that we have already marked the
cells (0, Sn), (Sn−2, Sn), (Sn−1, Sn), (Sn−1 + Sn−2, Sn) and (Sn, Sn). We claim
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that we can mark the cells (0, Sn+1), (Sn−1, Sn+1), (Sn, Sn+1), (Sn+Sn−1, Sn+1)
and (Sn+1, Sn+1) In order to do that, we use the relation

Sn+1 = Sn + dn(dn+1 − 1)Sn−1 + (dn+1 − 1)Sn−2 + Sn−1.

The idea is to consider intermediate rows, such that their distance is given by
the addends in the previous sum. When two signals meet, they died and we can
use the cell on the intersection to define other signals. The slope of each signal
is determined by the ratio between the difference between the time coordinates
and the difference between the space coordinates. For example, the slope of the
signal between the cell (0, Sn) and the cell (Sn−1, Sn + dn(dn+1 − 1)Sn−1) is

(Sn + dn(dn+1 − 1)Sn−1) − Sn
Sn−1 − 0

= dn(dn+1 − 1)

When dn+1 = 1 the construction is different. In this case the three rows
Sn, Sn+dn(dn+1−1)Sn−1 and dn+1Sn coincide, as well as the two rows Sn+Sn−1
and Sn+1 (resp. the two columns Sn + Sn−1 and Sn+1). We start with the cells
(0, Sn), (Sn−2, Sn), (Sn−1, Sn) and (Sn, Sn) and we claim that we can mark the
cells (0, Sn+1), (Sn−1, Sn+1), (Sn, Sn+1) and (Sn+1, Sn+1).

The construction of the sequence (Sn)n≥0 is illustrated in Figures 2 and 3.
Using these figures it is not hard to recover exact definitions of the signals. For
sake of simplicity we use the same colour when two signals have the same slope
and we represent only the cells on the intersections between two signals.

Sn

Sn + Sn−1

Sn + dn(dn+1 − 1)Sn−1

dn+1Sn

Sn+1 = dn+1Sn + Sn−1

0 Sn−2 Sn−1 Sn−1 + Sn−2 Sn Sn + Sn−1 Sn+1

slope 1

slope dn(dn+1 − 1)

slope dn+1 − 1

slope
dn(dn+1−1)

dn+1

slope 1 − dn+1

slope
dn+1−1

dn+1

slope −1

slope 1
dn

vertical signal

Fig. 2. Construction of the number sequence (Sn)n≥0 when dn+1 6= 1.
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Sn

Sn+1

0 Sn−2 Sn−1 Sn Sn+1

slope 1 slope −1 slope 1
dn

slope 1
dn+1 vertical signal

Fig. 3. Construction of the number sequence (Sn)n≥0 when dn+1 = 1.

In particular, in both cases we are able to mark the cell (0, Sn). Hence we
can mark the sequence {Sn}n≥0 on the column 0. To complete the proof it is
enough to put the letter 1 in the cells (0, Sn), for every n ≥ 0 and the letter 0
in all other cells in the column 0.

Note that the hypothesis of eventual periodicity of the sequence (dn)n≥1 in
the previous proof is essential to guarantee that the cellular automaton is defined
over a finite set A. Indeed, since the signals (and their slope) are periodically
repeated, we have Card(A) = O(k), where k is the length of the maximum
between the pre-period and the eventual period of (dn)n≥1.

Example 7. Let us consider the word f defined in Example 1 and the associated
numerical sequence (Fn)n≥0. According to Proposition 3 we have 1{Fn}n≥0

∈ S.

5 Construction of prefixes

In this section we prove our main theorem. In order to do that, we need some
preliminary results.

Proposition 4. Let ∆ = (dn)n≥1 be an eventually periodic integer sequence
with d1 ≥ 0 and dn ≥ 1 for every n > 1; let (wn)n≥−1 be the standard sequence
associated to ∆ defined by w−1 = b, w0 = a, and wn = wdnn−1wn−2 for every
n ≥ 1. Then w = limn→∞ wn ∈ S

In order to prove Proposition 4, we need the following result stating that a
letter in a cell of a CA can be recopied in the same column and in any row above.
Moreover, we can do it by using only walls and signals of slope 1 and −1.

Lemma 1. Let T : AZ → AZ be a CA, a ∈ A, and n,m, t, t′ ∈ Z with m > 0,
and t > t′ ≥ 0. Suppose that the cells (n, t′), (n +m, t′) and (n, t) are marked,
the last one with a. Then it is possible to mark the cell (n, t+m) with a.

Proof. Without loss of generality, suppose that n = 0 and t′ = 0. and so a is
in the cell (0, t). Let us prove that we can recopy a into the cell (0, t +m). To
mark the wall we are going to use the cell (m, 0). We consider two distinct cases,
according to the parity of m.
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Let m be odd. We consider a wall of type (i) to the right of the column bm2 c.
Such a wall can be defined, for instance, using two signals of slope 1 and −1
starting respectively at (0, 0) and at (m, 0) (see left of Figure 4).

We send a signal of slope 1 from the cell (0, t); when this signal touches the
wall we define a new signal of slope −1 (starting from the cell above); when this
new signal meets the column 0, we write the letter a. Since bm2 c =

m−1
2 , we have

that the new a is exactly on the row t+ m−1
2 + m−1

2 + 1 = t+m. as wanted.
Suppose now that m is even. We consider this time a wall of type (ii) in the

column m
2 . Such a wall can be defined, for instance, using two signals of slope

1 and −1 starting respectively at (0, 0) and at (m, 0) (see right of Figure 4).
We send a signal of slope 1 from the cell (0, t); when this signal hit the wall,
we define a new signal of slope −1 (starting from the same cell); when this new
signal meets the column 0, we write the letter a. The new a is exactly on the
row t+ m

2 + m
2 − 1 + 1 = t+m, as wanted.

a

a

0 m

t

t+m

a

a

0 m

t

t+m

Fig. 4. Recopying of letters.

We can now prove Proposition 4.

Proof (of Proposition 4). Let us denote Sn = |wn| for all n ≥ −1. For every
n ≥ 1 we have Sn = dnSn−1 + Sn−2. Since, for all n ≥ 2, wn−3 is a suffix of
wn−1, the word wn−3wn−2 is a suffix of wn. Suppose the word wn constructed
for a given n ≥ 2 and suppose that the last letter of wn is in the cell (0, Sn).

Let us first suppose that dn 6= 1. We will show that it is possible to construct
the word wn+1 with its last letter in the cell (0, Sn+1). In order to do that,
we will use the relation wn+1 = wn((w

dn−1

n−2 wn−3)
dnwn−2)

dn+1−1w
dn−1

n−2 wn−3. Let
us take up the construction of Proposition 3 until the number Sn. Moreover,
in the column 0 we mark the cell (0, Sn−1 + dn−1(dn − 1)Sn−2). For this, we
define a signal of slope −(dn−1(dn − 1)) from the cell (Sn−2, Sn−1). This signal
meets the vertical signal defined from (0, Sn−1) in the required cell (0, Sn−1 +
dn−1(dn− 1)Sn−2). From this cell we define a signal P(n−1)

1 of slope 1 and from
the cells (Sn−2, Sn−1+dn−1(dn−1)Sn−2), (Sn−1, Sn−1+dn−1(dn−1)Sn−2) and
(Sn−1+Sn−2, Sn−1+dn−1(dn−1)Sn−2) we define three signals N

(n−1)
1 , N(n−1)

2

and N
(n−1)
3 of slope −1. At the intersection of these with the signal P(n−1)

1 we
define three walls M(n−1)

1 , M(n−1)
2 and M

(n−1)
3 in the columns Sn−2, Sn−1 and
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Sn−1+Sn−2 respectively. These walls will be of type (i) or of type (ii) according
to the parity of the columns where N

(n−1)
i originate. Suppose we have already

recopied the words wn−3 and wn−2 in the suffix of wn, i.e., we have found the two
corresponding heights in the column 0. Now, from these two words, we are going
to define signals of slope 1 that will stop against one of the three walls previously
defined and send back signals of slope −1 that will recopy the same word in the
column 0. Using Lemma 1 we can recopy one by one the letters of wn−2 and wn−3.
First, we send a signal of slope 1 from each letter of wn−2. When this signal meets
the wall M(n−1)

1 we send a signal of slope −1 until the column 0. Since N
(n−1)
1

is generated from the column Sn−2 the letters of wn−2 are recopied in the same
column but above at distance Sn−2. This means that we have recopied a second
word wn−2 above the first. We repeat this procedure dn−1 times and we get the
word wdn−1

n−2 above the wn already constructed. Next, we send a signal of slope
1 from each letter of wn−3 to the wall M(n−1)

3 and, in a similar way, from there
we send a signal of slope −1 to the column 0. The letters of wn−3 are recopied in
the same column but above at distance Sn−1+Sn−2 = dn−1Sn−2+Sn−3+Sn−2.
Thus, we have recopied a word wn−3 above the word wn−3wn−2w

dn−1

n−2 , where the
subword wn−3wn−2 corresponds to a suffix of wn. So far we have constructed
the word wn(w

dn−1

n−2 wn−3) on the column 0. For the next step we need to use
also the word wn−2 in the suffix of wn. This time, we send signals of slope
1 from cells in column 0 to the wall M(n−1)

3 and from there, signals of slope
−1 to the column 0. Therefore, the letters of wn−2 are recopied in the same
column but above at distance Sn−1 + Sn−2 = (dn−1 + 1)Sn−2 + Sn−3. Hence
we obtain the word wn(w

dn−1

n−2 wn−3)wn−2 in the column 0. By using the wall
M

(n−1)
1 the word wn((w

dn−1

n−2 wn−3)w
dn−1

n−2 can be obtained. From every letter
of the word wn−3 we send signals of slope 1 to the wall M

(n−1)
2 and, from

there, signals of slope −1 back to column 0. The letters of wn−3 are recopied in
the same column but above at distance Sn−1 = dn−1Sn−2 + Sn−3. Hence, we
obtain the word wn(w

dn−1

n−2 wn−3)w
dn−1

n−2 wn−3. Similarly, it is easy to obtain the
word wn(w

dn−1

n−2 wn−3)
dn = wn(w

dn−1

n−2 wn−3)
dn−1(wn−2w

dn−1−1
n−2 wn−3). Following

the same idea, we use the wall M(n−1)
2 to recopy wn−2 in the column 0 but

Sn−1 = (dn−1 − 1)Sn−2 + Sn−3 + Sn−2 cells above and so, we obtain the word
wn(w

dn−1

n−2 wn−3)
dnwn−2. Since the suffix of this word is wn−3wn−2 the previous

steps can be applied again to obtain the word wn((w
dn−1

n−2 wn−3)
dnwn−2)

dn+1−1

which also has the suffix wn−3wn−2. Thus we easily obtain the word
wn((w

dn−1

n−2 wn−3)
dnwn−2)

dn+1−1w
dn−1

n−2 wn−3 = wn+1.

Let us now consider the case dn = 1. Here we have Sn = Sn−1 + Sn−2 and
the cell (Sn−1 + Sn−2, Sn−1 + dn−1(dn − 1)Sn−2) = (Sn, Sn−1) is not marked.
Therefore the wall M(n−1)

3 can no longer be defined as before. This time, we
define a wall M(n)

4 at the intersection of a signal P(n)
2 a slope 1 starting from

(0, Sn) and a signalN(n)
4 of slope−1 starting from (Sn, Sn). The suffix wn−2wn−3

of wn is below the signals used to define the wall M
(n)
4 , therefore, we have
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to construct the word wn−3wn−2 in wn(w
dn−1

n−2 wn−3wn−2)
dn+1−1

w
dn−1

n−2 wn−3 =
wn+1 in another way. We have to copy the letters of the word wn−3wn−2 in the
column 0 above at distance Sn−3 + Sn−2 + dn−1Sn−2 = Sn−1 + Sn−2 = Sn. In
order to do that, we define a wall M(n−1)

5 of type (i) or (ii) (according to the
parity) by intersecting a signal P(n−1)

3 of slope 1 from (Sn−2, Sn−1) and a signal
N

(n−1)
2 of slope −1 from (Sn−1, Sn−1) defined as in the previous case. Such a

wall is in the column Sn−2 +
⌊
Sn−1−Sn−2

2

⌋
= Sn−Sn−1 +

⌊
Sn−1 − Sn

2

⌋
=
⌊
Sn

2

⌋
.

We send a signal of slope 1 from each letter of wn−3wn−2 to the wall M(n−1)
5

and from there we send a signal of slope −1 until the column 0. Therefore, we
have constructed the word wnw

dn−1

n−2 wn−3wn−2. The rest of the construction is
the same as before, with M

(n)
4 playing the role of the wall M(n−1)

3 for the rows
above the word wn−3wn−2.

Note that the signals P
(n)
i can also be used to destroy the walls M

(n−1)
i

previously constructed. Formally, when a signal P(n)
i meets a wall M(n−1)

i , the
last one is destroyed and the signal P(n)

i continues its move.

Example 8. The Fibonacci word f defined in Example 1 is in S.

We can now prove our main result.

Proof (of Theorem 1). Let w be a Sturmian word of quadratic slope, α =
[0, 1 + b1, b2, . . . , bm, a1, a2, . . . , ak] the continued fraction expansion of its slope,
and (wn)n≥−1 the standard sequence associated to the eventually periodic in-
teger sequence ∆ = (b1, · · · , bm, (a1, · · · , ak)ω) so that ∆ is an eventually peri-
odic integer sequence. Following Proposition 1, we have w = limn→∞ wn. Using
Propositions 3 and 4, it is clear that w ∈ S.

6 Conclusions

To prove our results we used the continued fraction expansion associated with
w. However, to use Proposition 4 it is enough to know how to decompose each
prefix wn in compositions of powers of smaller prefixes. A different approach
could be to use the morphisms

G =

{
a 7→ a

b 7→ ab
and D =

{
a 7→ ba

b 7→ b
.

Indeed, it is known that for every standard Sturmian sequence w there exist
a unique sequence of words

(
w(i)

)
i
and an infinite sequence (ψi)i ∈ {G,D}N

of morphisms such that w = limn→∞ ψ0ψ1 . . . ψn(w
(n)) (see, for instance, [12]).

Using these notions, and the strictly related notion of S-adicity, we think it is
possible to generalise our results to larger classes of words and languages, namely
Arnoux-Rauzy words and dendric words (see, e.g., [2,3,7]).
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Blanchard and Kůrka [4] consider a larger family of languages that can be
recognised by a non-deterministic Turing machine. This family contains the lan-
guages corresponding to quadratic numbers but also the ones corresponding to
Hurwitz numbers, such as e (a Hurwitz number is an irrational such that its con-
tinued fraction expansion is a polynomial mixture [11]). An interesting question
is whether it is possible to generalise our construction to such a family as well.
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