Playing with games and words

 $Francesco \ \mathrm{Dolce}$

Seminář pro studenty

Praha, 13. května 2022

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つ Q () PRAHA, 13.05.2022 1/16

Nim Game (Czech version)

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ > ○ Q (~ PRAHA, 13.05.2022 2 / 16

Nim Game

Initial position: Three piles of beers with arbitrary sizes. **Rules:**

i) At each turn a player drinks a positive number of beers from one pile. Winner: Who drinks the last beer.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Ркана, 13.05.2022 2/16

Nim Game

Using some math

Denote by (a, b, c) be a game position (*a* beers on the first pile, etc.). A position is in \mathcal{P} if there exists a *winning strategy* for the player who plays next. Otherwise it is in \mathcal{N} .

Formally

- $(0,0,0)\in \mathcal{P};$
- $(a, b, c) \in \mathcal{P} \Rightarrow Nim(a, b, c) \subseteq \mathcal{N};$
- $(a, b, c) \in \mathcal{N} \Rightarrow Nim(a, b, c) \cap \mathcal{P} \neq \emptyset.$

The set \mathcal{P} contains: $(0, 0, 0), (0, 1, 1), (1, 2, 3), (7, 8, 15), \dots$ The set \mathcal{N} contains: $(0, 0, 1), (1, 2, 2), (2, 3, 4), (8, 11, 17), \dots$

Francesco Dolce (ČVUT)

GAMES AND WORDS

Ркана, 13.05.2022 3/16

Nim Game Using more math

Question: How to determine whether a position is in \mathcal{P} ?

Theorem [C. Bouton (1904)]

A position (a, b, c) is in \mathcal{P} if its *Nim-sum* is 0.

 $\mathbf{3} \oplus \mathbf{6} \oplus \mathbf{8} \neq \mathbf{0}$

Francesco Dolce (ČVUT)

GAMES AND WORDS

<ロト < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < の へ () Praha, 13.05.2022 4 / 16

Wythoff's Game A modification of Nim Game

Initial position: Two piles of beers with arbitrary sizes. **Rules:** At each turn a player drinks either

- i) a positive number of beers from one pile, or
- ii) a positive equal number of beers from both piles.

Winner: Who drinks the last beer.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Ргана, 13.05.2022 5/16

化口水 化塑料 化医水化医水合 医

Wythoff's Game Playing chess

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ♡ PRAHA, 13.05.2022 6 / 16

Wythoff's Game Safe positions

Question: How to compute the set \mathcal{P} ?

- $(0,0) \in \mathcal{P}$ but $(n,n) \in \mathcal{N}$ for every n > 0;
- if $(a, b) \in \mathcal{P}$ then $(a + k, b + k) \in \mathcal{N}$ for every k > 0;

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Ргана, 13.05.2022 7/16

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Wythoff's Game Safe positions

Question: How to compute the set \mathcal{P} ?

- $(0,0) \in \mathcal{P}$ but $(n,n) \in \mathcal{N}$ for every n > 0;
- if $(a, b) \in \mathcal{P}$ then $(a + k, b + k) \in \mathcal{N}$ for every k > 0;

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where $(a_0, b_0) = (0, 0)$ and

$$a_n = Mex(\{a_i, b_i \mid 0 \le i < n\}),$$

 $b_n = a_n + n.$

Thus \mathcal{P} contains: (0,0), (1,2), (3,5), (4,7), (6,10),

Francesco Dolce (ČVUT)

GAMES AND WORDS

Ркана, 13.05.2022 7/16

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Wythoff's Game Safe positions

Question: How to compute the set \mathcal{P} ?

- $(0,0) \in \mathcal{P}$ but $(n,n) \in \mathcal{N}$ for every n > 0;
- if $(a, b) \in \mathcal{P}$ then $(a + k, b + k) \in \mathcal{N}$ for every k > 0;

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where $(a_0, b_0) = (0, 0)$ and

$$a_n = Mex(\{a_i, b_i \mid 0 \le i < n\}),$$

 $b_n = a_n + n.$

Thus \mathcal{P} contains: (0,0), (1,2), (3,5), (4,7), (6,10),

Question: Is there another way to compute the set?

Francesco Dolce (ČVUT)

GAMES AND WORDS

Fibonacci word

 $\mathbf{f} = \texttt{abaabaabaabaabaaba} \cdots$

$$\mathbf{f} = \lim_{n \to \infty} \varphi^n(\mathbf{a})$$
 where $\varphi : \left\{ egin{array}{c} \mathbf{a} \mapsto \mathbf{a} \ \mathbf{b} \mapsto \mathbf{a} \end{array}
ight.$

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < 0 < ○ PRAHA, 13.05.2022 8 / 16

Fibonacci word

$\mathbf{f} = \texttt{abaabaabaabaabaaba} \cdots$

Let a_n denote the n^{th} occurrence of **a** and b_n denote the n^{th} occurrence of **b**.

 $(a_n)_{n\geq 1} = 1, 3, 4, 6, 8, 9, \ldots$ $(b_n)_{n\geq 1} = 2, 5, 7, 10, 13, 15, \ldots$

Theorem [Duchêne, Rigo (2008)]

Let $a_0 = b_0 = 0$. The sequence $(a_n, b_n)_{n \in \mathbb{N}}$ is the Wythoff's sequence. **Proof.**

Francesco Dolce (ČVUT)

GAMES AND WORDS

Ркана, 13.05.2022 8/16

イロト イヨト イヨト イヨト ニヨー

Fibonacci word

$\mathbf{f} = \texttt{abaabaabaabaabaaba} \cdots$

Let a_n denote the n^{th} occurrence of **a** and b_n denote the n^{th} occurrence of **b**.

 $(a_n)_{n\geq 1} = 1, 3, 4, 6, 8, 9, \ldots$ $(b_n)_{n\geq 1} = 2, 5, 7, 10, 13, 15, \ldots$

Theorem [Duchêne, Rigo (2008)]

Let $a_0 = b_0 = 0$. The sequence $(a_n, b_n)_{n \in \mathbb{N}}$ is the Wythoff's sequence. **Proof.**

→ All b are created by a, the gaps are filled with a and $a_n = Mex(\{a_i, b_i \mid 0 \le i < n\})$. → Since f starts with ab, then $b_1 = 2 = a_1 + 1$; Let us suppose that $b_{n-1} = a_{n-1} + n - 1$.

- Since $\varphi(aa) = abab$, if $a_n a_{n-1} = 1$ then $b_n b_{n-1} = 2$;
- Since $\varphi(aba) = abaab$, if $a_n a_{n-1} = 2$ then $b_n b_{n-1} = 3$;

In both case $b_n = a_n + n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

$Sturmian \ words$

Definition

An infinite word w is *Sturmian* if it has n + 1 distinct factors of length n for every $n \ge 0$.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Ргана, 13.05.2022 9/16

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

$Sturmian \ words$

Definition

An infinite word **w** is *Sturmian* if it has n+1 distinct factors of length *n* for every $n \ge 0$. A Sturmian word can also be represented geometrically.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Wythoff's Game Algebraic characterisation

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where

$$b_n = \lfloor n\tau \rfloor$$
 $b_n = \lfloor n\tau^2 \rfloor$

where $au = rac{1+\sqrt{5}}{2}$ (and thus $au^2 = rac{3+\sqrt{5}}{2}$).

Francesco Dolce (ČVUT)

GAMES AND WORDS

Wythoff's Game Algebraic characterisation

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where

$$a_n = \lfloor n\tau \rfloor \qquad b_n = \lfloor n\tau^2 \rfloor$$

where $\tau = \frac{1+\sqrt{5}}{2}$ (and thus $\tau^2 = \frac{3+\sqrt{5}}{2}$).

Proof.

- \rightarrow Easy to see that $b_n a_n = n$.
- \rightarrow Prove that every positive integer appears exactly once is a bit more complicated...
 - For every irrational α the set of infinite pairs $\{\lfloor n\alpha \rfloor, \lfloor n\frac{\alpha}{\alpha-1} \rfloor\}_{n \in \mathbb{N}}$ covers \mathbb{Z} .

•
$$\alpha - \frac{\alpha}{\alpha - 1} = 1 \quad \Leftrightarrow \quad \alpha = \tau$$

Francesco Dolce (ČVUT)

GAMES AND WORDS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Praha, 13.05.2022

10/16

Wythoff's Game Algebraic characterisation

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where

$$a_n = \lfloor n\tau \rfloor \qquad b_n = \lfloor n\tau^2 \rfloor$$

where $au = \frac{1+\sqrt{5}}{2}$ (and thus $au^2 = \frac{3+\sqrt{5}}{2}$).

Proof.

- \rightarrow Easy to see that $b_n a_n = n$.
- \rightarrow Prove that every positive integer appears exactly once is a bit more complicated...
 - For every irrational α the set of infinite pairs $\{\lfloor n\alpha \rfloor, \lfloor n\frac{\alpha}{\alpha-1} \rfloor\}_{n\in\mathbb{N}}$ covers \mathbb{Z} .

•
$$\alpha - \frac{\alpha}{\alpha - 1} = 1 \quad \Leftrightarrow \quad \alpha = \tau$$

The golden ration τ is exactly the frequence of **a** in **f** (and τ^2 the frequence of **b**).

Francesco Dolce (ČVUT)

GAMES AND WORDS

Modified Wythoff's Games? always with two piles

Question: Let x be a Sturmian word. Is it possible to define a new game (*similar rules as* Wythoff's one) such that $(A, B) \in \mathcal{P}$ if and only if $A = a_n$ and $B = b_n$ with a_n (resp. b_n) the n^{th} occurrence of a (resp. of b) in x?

GAMES AND WORDS

Ркана, 13.05.2022 11/16

イロト イボト イヨト イヨト

Arnoux-Rauzy words

Definition

An infinite word w over an alphabet of k letters is an Arnoux-Rauzy word if

- 1. it has (k-1)n+1 distinct factors of length n for every $n \ge 0$;
- 2. its set of factors is closed under reversal and
- 3. for each lenght only one factor is right special.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Modified Wythoff's Game

Initial position: Two piles of beers with arbitrary sizes. **Rules:** At each turn a player drinks either

- i) a positive number of beers from one pile; or
- *ii)* a positive number α , β and γ of beers from the first, second and third pile whenever $2 \max{\{\alpha, \beta, \gamma\}} \le \alpha + \beta + \gamma$; or
- *iii)* the same positive number α of beers from two piles and β from the other pile whenever $\beta > 2\alpha > 0$ and a' < c' < b', with (a, b, c) the original position and (a', b', c') the new one.

Winner: Who drinks the last beer.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Ргана, 13.05.2022 13/16

化口水 化塑料 化医水化医水合 医

Tribonacci game and Tribonacci word

 $\mathbf{t} = \mathtt{abacabaabacabaabaca} \cdots$

Let a_n , b_n and c_n denote the n^{th} occurrences of **a**, **b** and **c** in **t** respectively.

 $(a_n)_n = 1, 3, 4, 7, 8, \ldots$ $(b_n)_n = 2, 6, 9, 13, 15, \ldots$ $(c_n)_n = 4, 11, 17, 24, 28, \ldots$

Theorem [Duchêne, Rigo (2008)]

The set $\{(a_n, b_n, c_n) \mid n \ge 1\}$ is set of \mathcal{P} -positions of the Tribonacci game.

Proof. (idea)

$$\begin{bmatrix} a_n = Mex(\{a_i, b_i, c_i \mid 0 \le i < n\}), \\ b_n = a_n + Mex(b_i - a_i, c_i - b_i \mid 0 \le i < n), \\ c_n = a_n + b_n + n \end{bmatrix}$$

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Ркана, 13.05.2022 14/16

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Modified Whythoff's Games? on two or more piles

Question: Let x be an Arnaux-Rauzy word. Is it possible to define a new game (*similar* rules as Whytoff's one) such that $(A, B, C) \in \mathcal{P}$ if and only if $A = a_n, B = b_n$ and $C = c_n$ with a_n (resp. b_n, c_n) the n^{th} occurrence of **a** (resp. **b**, c) in x?

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Ргана, 13.05.2022 15/16

イロト イボト イヨト イヨト

Děkuji za pozornost!

(řekli Alice a Bob)