## Playing with games and words

Francesco Dolce


Seminář pro studenty
Praha, 13. května 2022

Nim Game
(Czech version)

## Nim Game (Czech version)

Initial position: Three piles of beers with arbitrary sizes.
Rules:
i) At each turn a player drinks a positive number of beers from one pile. Winner: Who drinks the last beer.


## Nim Game

Using some math
Denote by $(a, b, c)$ be a game position ( $a$ beers on the first pile, etc.). A position is in $\mathcal{P}$ if there exists a winning strategy for the player who plays next. Otherwise it is in $\mathcal{N}$.

Formally

- $(0,0,0) \in \mathcal{P}$;
- $(a, b, c) \in \mathcal{P} \quad \Rightarrow \quad \operatorname{Nim}(a, b, c) \subseteq \mathcal{N}$;
- $(a, b, c) \in \mathcal{N} \quad \Rightarrow \quad \operatorname{Nim}(a, b, c) \cap \mathcal{P} \neq \emptyset$.


The set $\mathcal{P}$ contains: $(0,0,0),(0,1,1),(1,2,3),(7,8,15), \ldots$
The set $\mathcal{N}$ contains: $(0,0,1),(1,2,2),(2,3,4),(8,11,17), \ldots$

## Nim Game <br> Using more math

Question: How to determine whether a position is in $\mathcal{P}$ ?

## Theorem [C. Bouton (1904)]

A position $(a, b, c)$ is in $\mathcal{P}$ if its Nim-sum is 0 .


$$
2 \oplus 4 \oplus 6=0
$$

|  | 1 | 0 |
| :---: | :---: | :---: |
| 1 | 0 | 0 |
| 1 | 1 | 0 |
| 0 | 0 | 0 |


|  |  | 1 | 1 |
| :--- | :--- | :--- | :--- |
|  | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 |

$$
\begin{gathered}
\text { Wythoff's Game } \\
\text { A modification of Nim Game }
\end{gathered}
$$

Initial position: Two piles of beers with arbitrary sizes. Rules: At each turn a player drinks either
i) a positive number of beers from one pile, or
ii) a positive equal number of beers from both piles.

Winner: Who drinks the last beer.



Wythoff's Game
Playing chess


$$
\begin{gathered}
\text { Wythoff's Game } \\
\text { Safe positions }
\end{gathered}
$$

Question: How to compute the set $\mathcal{P}$ ?

- $(0,0) \in \mathcal{P}$ but $(n, n) \in \mathcal{N}$ for every $n>0$;
- if $(a, b) \in \mathcal{P}$ then $(a+k, b+k) \in \mathcal{N}$ for every $k>0$;


## Wythoff's Game <br> Safe positions

Question: How to compute the set $\mathcal{P}$ ?

- $(0,0) \in \mathcal{P}$ but $(n, n) \in \mathcal{N}$ for every $n>0$;
- if $(a, b) \in \mathcal{P}$ then $(a+k, b+k) \in \mathcal{N}$ for every $k>0$;


## Theorem [W. Wythoff (1907)]

The set $\mathcal{P}$ is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where $\left(a_{0}, b_{0}\right)=(0,0)$ and

$$
\left\{\begin{array}{l}
a_{n}=\operatorname{Mex}\left(\left\{a_{i}, b_{i} \mid 0 \leq i<n\right\}\right), \\
b_{n}=a_{n}+n .
\end{array}\right.
$$

Thus $\mathcal{P}$ contains: $(0,0),(1,2),(3,5),(4,7),(6,10), \ldots$

## Wythoff's Game <br> Safe positions

Question: How to compute the set $\mathcal{P}$ ?

- $(0,0) \in \mathcal{P}$ but $(n, n) \in \mathcal{N}$ for every $n>0$;
- if $(a, b) \in \mathcal{P}$ then $(a+k, b+k) \in \mathcal{N}$ for every $k>0$;


## Theorem [W. Wythoff (1907)]

The set $\mathcal{P}$ is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where $\left(a_{0}, b_{0}\right)=(0,0)$ and

$$
\left\{\begin{array}{l}
a_{n}=\operatorname{Mex}\left(\left\{a_{i}, b_{i} \mid 0 \leq i<n\right\}\right), \\
b_{n}=a_{n}+n .
\end{array}\right.
$$

Thus $\mathcal{P}$ contains: $(0,0),(1,2),(3,5),(4,7),(6,10), \ldots$
Question: Is there another way to compute the set?

## Fibonacci word

$\mathbf{f}=$ abaababaabaababaaba $\cdots$

$$
f=\lim _{n \rightarrow \infty} \varphi^{n}(a) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto a
\end{array}\right.
$$



## Fibonacci word

$$
\mathbf{f}=\text { abaababaabaababaaba } \cdots
$$

Let $a_{n}$ denote the $n^{\text {th }}$ occurrence of a and $b_{n}$ denote the $n^{\text {th }}$ occurrence of b .

$$
\left(a_{n}\right)_{n \geq 1}=1,3,4,6,8,9, \ldots \quad\left(b_{n}\right)_{n \geq 1}=2,5,7,10,13,15, \ldots
$$

## Theorem [Duchêne, Rigo (2008)]

Let $a_{0}=b_{0}=0$. The sequence $\left(a_{n}, b_{n}\right)_{n \in \mathbb{N}}$ is the Wythoff's sequence. Proof.

## Fibonacci word

$\mathbf{f}=$ abaababaabaababaaba $\cdots$
Let $a_{n}$ denote the $n^{\text {th }}$ occurrence of a and $b_{n}$ denote the $n^{\text {th }}$ occurrence of b .

$$
\left(a_{n}\right)_{n \geq 1}=1,3,4,6,8,9, \ldots \quad\left(b_{n}\right)_{n \geq 1}=2,5,7,10,13,15, \ldots
$$

## Theorem [Duchêne, Rigo (2008)]

Let $a_{0}=b_{0}=0$. The sequence $\left(a_{n}, b_{n}\right)_{n \in \mathbb{N}}$ is the Wythoff's sequence.
Proof.
$\rightarrow$ All b are created by a , the gaps are filled with a and $a_{n}=\operatorname{Mex}\left(\left\{a_{i}, b_{i} \mid 0 \leq i<n\right\}\right)$.
$\rightarrow$ Since $\mathbf{f}$ starts with ab , then $b_{1}=2=a_{1}+1$;
Let us suppose that $b_{n-1}=a_{n-1}+n-1$.

- Since $\varphi(\mathrm{aa})=\mathrm{abab}$, if $a_{n}-a_{n-1}=1$ then $b_{n}-b_{n-1}=2$;
- Since $\varphi(\mathrm{aba})=$ abaab, if $a_{n}-a_{n-1}=2$ then $b_{n}-b_{n-1}=3$;

In both case $b_{n}=a_{n}+n$.

## Sturmian words

## Definition

An infinite word $w$ is Sturmian if it has $n+1$ distinct factors of length $n$ for every $n \geq 0$.

## Example (Fibonacci)

$$
\mathbf{f}=\text { abaababaabaababa } \cdots
$$

$$
\mathcal{L}(f)=\{\underbrace{\varepsilon}_{1}, \underbrace{a, b}_{2}, \underbrace{\text { aa, ab, ba, aab, aba, baa, bab }}_{3}, \underbrace{\text { aaba, abaa, abab, baab, baba }}_{4}, \ldots\}
$$

## Sturmian words

## Definition

An infinite word $w$ is Sturmian if it has $n+1$ distinct factors of length $n$ for every $n \geq 0$. A Sturmian word can also be represented geometrically.

## Example (Fibonacci)



$$
\left\{\begin{array}{l}
\mathrm{a} \text { if }\lfloor(n+1) \theta+\rho\rfloor-\lfloor n \theta+\rho\rfloor=0 \\
\mathrm{~b} \text { if }\lfloor(n+1) \theta+\rho\rfloor-\lfloor n \theta+\rho\rfloor=1
\end{array}\right.
$$

# Wythoff's Game <br> Algebraic characterisation 

## Theorem [W. Wythoff (1907)]

The set $\mathcal{P}$ is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where

$$
a_{n}=\lfloor n \tau\rfloor \quad b_{n}=\left\lfloor n \tau^{2}\right\rfloor
$$

where $\tau=\frac{1+\sqrt{5}}{2}$ (and thus $\tau^{2}=\frac{3+\sqrt{5}}{2}$ ).

# Wythoff's Game <br> Algebraic characterisation 

## Theorem [W. Wythoff (1907)]

The set $\mathcal{P}$ is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where

$$
a_{n}=\lfloor n \tau\rfloor \quad b_{n}=\left\lfloor n \tau^{2}\right\rfloor
$$

where $\tau=\frac{1+\sqrt{5}}{2}$ (and thus $\tau^{2}=\frac{3+\sqrt{5}}{2}$ ).

## Proof.

$\rightarrow$ Easy to see that $b_{n}-a_{n}=n$.
$\rightarrow$ Prove that every positive integer appears exactly once is a bit more complicated...

- For every irrational $\alpha$ the set of infinite pairs $\left\{\lfloor n \alpha\rfloor,\left\lfloor n \frac{\alpha}{\alpha-1}\right\rfloor\right\}_{n \in \mathbb{N}}$ covers $\mathbb{Z}$.
- $\alpha-\frac{\alpha}{\alpha-1}=1 \Leftrightarrow \alpha=\tau$


# Wythoff's Game <br> Algebraic characterisation 

## Theorem [W. Wythoff (1907)]

The set $\mathcal{P}$ is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where

$$
a_{n}=\lfloor n \tau\rfloor \quad b_{n}=\left\lfloor n \tau^{2}\right\rfloor
$$

where $\tau=\frac{1+\sqrt{5}}{2}$ (and thus $\tau^{2}=\frac{3+\sqrt{5}}{2}$ ).

## Proof.

$\rightarrow$ Easy to see that $b_{n}-a_{n}=n$.
$\rightarrow$ Prove that every positive integer appears exactly once is a bit more complicated...

- For every irrational $\alpha$ the set of infinite pairs $\left\{\lfloor n \alpha\rfloor,\left\lfloor n \frac{\alpha}{\alpha-1}\right\rfloor\right\}_{n \in \mathbb{N}}$ covers $\mathbb{Z}$.
- $\alpha-\frac{\alpha}{\alpha-1}=1 \Leftrightarrow \alpha=\tau$

The golden ration $\tau$ is exactly the frequence of a in $\mathbf{f}$ (and $\tau^{2}$ the frequence of b ).

## Modified Wythoff's Games? always with two piles

Question: Let $\mathbf{x}$ be a Sturmian word. Is it possible to define a new game (similar rules as Wythoff's one) such that $(A, B) \in \mathcal{P}$ if and only if $A=a_{n}$ and $B=b_{n}$ with $a_{n}$ (resp. $b_{n}$ ) the $n^{\text {th }}$ occurrence of a (resp. of b ) in $\mathbf{x}$ ?


## Arnoux-Rauzy words

## Definition

An infinite word $w$ over an alphabet of $k$ letters is an Arnoux-Rauzy word if

1. it has $(k-1) n+1$ distinct factors of length $n$ for every $n \geq 0$;
2. its set of factors is closed under reversal and
3. for each lenght only one factor is right special.
```
Example (Tribonacci: \psi : a \mapsto ab, b \mapsto ac, c \mapsto a)
```

$\mathbf{t}=$ abacabaabacababacabaabaca $\cdots$

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

## Modified Wythoff's Game

## Tribonacci game

Initial position: Two piles of beers with arbitrary sizes.
Rules: At each turn a player drinks either
i) a positive number of beers from one pile; or
ii) a positive number $\alpha, \beta$ and $\gamma$ of beers from the first, second and third pile whenever $2 \max \{\alpha, \beta, \gamma\} \leq \alpha+\beta+\gamma$; or
iii) the same positive number $\alpha$ of beers from two piles and $\beta$ from the other pile whenever $\beta>2 \alpha>0$ and $a^{\prime}<c^{\prime}<b^{\prime}$, with $(a, b, c)$ the original position and ( $a^{\prime}, b^{\prime}, c^{\prime}$ ) the new one.
Winner: Who drinks the last beer.


## Tribonacci game and Tribonacci word

$$
\mathbf{t}=\text { abacabaabacababacabaabaca } \cdots
$$

Let $a_{n}, b_{n}$ and $c_{n}$ denote the $n^{\text {th }}$ occurrences of $\mathrm{a}, \mathrm{b}$ and c in $\mathbf{t}$ respectively.

$$
\left(a_{n}\right)_{n}=1,3,4,7,8, \ldots \quad\left(b_{n}\right)_{n}=2,6,9,13,15, \ldots \quad\left(c_{n}\right)_{n}=4,11,17,24,28, \ldots
$$

## Theorem [Duchêne, Rigo (2008)]

The set $\left\{\left(a_{n}, b_{n}, c_{n}\right) \mid n \geq 1\right\}$ is set of $\mathcal{P}$-positions of the Tribonacci game.
Proof. (idea)

$$
\left\{\begin{array}{l}
a_{n}=\operatorname{Mex}\left(\left\{a_{i}, b_{i}, c_{i} \mid 0 \leq i<n\right\}\right), \\
b_{n}=a_{n}+\operatorname{Mex}\left(b_{i}-a_{i}, c_{i}-b_{i} \mid 0 \leq i<n\right) \\
c_{n}=a_{n}+b_{n}+n
\end{array}\right.
$$

## Modified Whythoff's Games? <br> on two or more piles

Question: Let $\mathbf{x}$ be an Arnaux-Rauzy word. Is it possible to define a new game (similar rules as Whytoff's one) such that $(A, B, C) \in \mathcal{P}$ if and only if $A=a_{n}, B=b_{n}$ and $C=c_{n}$ with $a_{n}$ (resp. $b_{n}, c_{n}$ ) the $n^{\text {th }}$ occurrence of a (resp. $\mathrm{b}, \mathrm{c}$ ) in $\mathbf{x}$ ?



