Francesco DOLCE

 $\label{eq:continuous} \mbox{joint work with} \\ \mbox{Antonio ${\rm RESTIVO}$ and ${\rm Christophe}$ ${\rm REUTENAUER}$ }$

Séminaire de l'Équipe Automates et Applications (IRIF) Paris, 26 mars 2019

$$(A^{\infty}, <)$$

$$u < v :\Leftrightarrow v = us \text{ or } \begin{cases} u = pau' \\ v = pbv' \\ a < b \end{cases}$$

$$(A^{\infty}, <)$$

$$u < v :\Leftrightarrow v = us \text{ or } \begin{cases} u = pau' \\ v = pbv' \\ a < b \end{cases}$$

$$(A^{\infty}, <_{g} = (<_{n})_{n \ge 1})$$

$$u <_{g} v :\Leftrightarrow v = us \text{ or } \begin{cases} u = pau' \\ v = pbv' \\ a <_{|n|+1} b \end{cases}$$

$$(A^{\infty}, <)$$

$$u < v :\Leftrightarrow v = us \text{ or } \begin{cases} u = pau' \\ v = pbv' \\ a < b \end{cases}$$

$$(A^{\infty}, <_{g} = (<_{n})_{n \ge 1})$$

$$u <_{g} v : \Leftrightarrow v = us \text{ or } \begin{cases} u = pau' \\ v = pbv' \\ a <_{|n|+1} b \end{cases}$$

$$u \prec v : \Leftrightarrow \begin{cases} u^{\omega} < v^{\omega} \text{ or } \\ u^{\omega} = v^{\omega} \text{ and } |u| > |v| \end{cases}$$

2/25

$$(A^{\infty}, <)$$

$$u < v :\Leftrightarrow v = us \text{ or } \begin{cases} u = pau' \\ v = pbv' \\ a < b \end{cases}$$

$$(A^{\infty}, <_{g} = (<_{n})_{n \ge 1})$$

$$u <_{g} v :\Leftrightarrow v = us \text{ or } \begin{cases} u = pau' \\ v = pbv' \\ a <_{|p| + 1} b \end{cases}$$

$$u \prec v :\Leftrightarrow \begin{cases} u^{\omega} < v^{\omega} \text{ or } \\ u^{\omega} = v^{\omega} \text{ and } |u| > |v| \end{cases}$$

$$(A^{\infty}, \prec_{g})$$

$$u \prec_{g} v \Leftrightarrow \begin{cases} u^{\omega} <_{g} v^{\omega} \text{ or } \\ u^{\omega} = v^{\omega} \text{ and } |u| > |v| \end{cases}$$

Let $(<_n)_{n\geq 1}$ be a sequence of total orders on A.

Let $(<_n)_{n\geq 1}$ be a sequence of total orders on A.

The generalized lexicographical order is defined as u < v if either :

- u is a proper prefix of v, or
- u = pas, v = pbt for some $p \in A^*$, $s, t \in A^{\infty}$, and $a, b \in A$ s.t. $a <_{|p|+1} b$.

Let $(<_n)_{n>1}$ be a sequence of total orders on A.

The generalized lexicographical order is defined as u < v if either :

- u is a proper prefix of v, or
- u = pas, v = pbt for some $p \in A^*$, $s, t \in A^{\infty}$, and $a, b \in A$ s.t. $a <_{|p|+1} b$.

Examples

• Classical order (<) : $a <_n b$ for all $n \ge 1$.

a < aa < ab < aba < bab

Let $(<_n)_{n\geq 1}$ be a sequence of total orders on A.

The generalized lexicographical order is defined as u < v if either :

- u is a proper prefix of v, or
- u = pas, v = pbt for some $p \in A^*$, $s, t \in A^{\infty}$, and $a, b \in A$ s.t. $a <_{|p|+1} b$.

- Classical order (<) : $a <_n b$ for all $n \ge 1$.
- Alternate order $(<_{alt})$: $\begin{cases} a <_n b & \text{if } n \equiv 1 \pmod{2} \\ b <_n a & \text{otherwise.} \end{cases}$

$$a <_{alt} ab <_{alt} aa <_{alt} b <_{alt} bba <_{alt} ba$$

Let $(<_n)_{n\geq 1}$ be a sequence of total orders on A.

The generalized lexicographical order is defined as u < v if either :

- u is a proper prefix of v, or
- u = pas, v = pbt for some $p \in A^*$, $s, t \in A^{\infty}$, and $a, b \in A$ s.t. $a <_{|p|+1} b$.

Examples

- Classical order (<) : $a <_n b$ for all $n \ge 1$.
- Alternate order $(<_{alt})$: $\begin{cases} a <_n b & \text{if } n \equiv 1 \pmod{2} \\ b <_n a & \text{otherwise.} \end{cases}$
- Prime order $(<_{\pi})$: $\begin{cases} b <_n a & \text{if } n \text{ is prime} \\ a <_n b & \text{otherwise.} \end{cases}$

aba $<_{\pi}$ abaa $<_{\pi}$ aab $<_{\pi}$ bab $<_{\pi}$ baab

Generalized lexicographical order inverse order

The *inverse* (generalized) order $\stackrel{\sim}{\sim}$, obtained by reversing all the orders $<_n$, is also a generalized order.

- aba $<_{\pi}$ aab $<_{\pi}$ bab $<_{\pi}$ baa
- baa $\widetilde{<}_{\pi}$ bab $\widetilde{<}_{\pi}$ aab $\widetilde{<}_{\pi}$ aba.

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

$$u \prec v \quad :\iff \quad \left\{ \begin{array}{ll} u^\omega < v^\omega & \text{or} \\ u^\omega = v^\omega & \text{and} \ |u| > |v|. \end{array} \right.$$

When |u| = |v| one has $u < v \Leftrightarrow u^{\omega} < v^{\omega}$. In general, this is not true.

ab < aba but $(ab)^{\omega} > (aba)^{\omega}$.

$$u \prec v \quad :\iff \quad \left\{ \begin{array}{ll} u^\omega < v^\omega & \text{or} \\ u^\omega = v^\omega & \text{and} \ |u| > |v|. \end{array} \right.$$

When |u| = |v| one has $u < v \Leftrightarrow u^{\omega} < v^{\omega}$. In general, this is not true.

Example

$$ab < aba$$
 but $(ab)^{\omega} > (aba)^{\omega}$.

We can also consider the generalized lexicographical infinite order.

$$(ab)^{\omega} <_{\pi} a^{\omega} <_{\pi} b^{\omega} <_{\pi} (ba)^{\omega}$$
.

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

When |u| = |v| one has $u < v \Leftrightarrow u^{\omega} < v^{\omega}$. In general, this is not true.

Example

$$ab < aba$$
 but $(ab)^{\omega} > (aba)^{\omega}$.

We can also consider the generalized lexicographical infinite order.

$$(ab)^{\omega} <_{\pi} a^{\omega} <_{\pi} b^{\omega} <_{\pi} (ba)^{\omega}.$$

$$u^{\omega} = v^{\omega} \iff u$$
 and v are power of a common word ($\iff uv = vu$).

Proposition [Reutenauer (2015)]

Let $<_g$ be a generalized order.

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{\mathbf{g}} \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} <_{g} v^{\omega},$
- (3) $\mathbf{u}^{\omega} <_{\mathbf{g}} (\mathbf{v}\mathbf{u})^{\omega}$,
- $(4) (uv)^{\omega} <_{g} (vu)^{\omega}.$

Proposition [Reutenauer (2015)]

Let $<_g$ be a generalized order.

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{\mathbf{g}} \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} <_{g} v^{\omega},$
- (3) $u^{\omega} <_{g} (vu)^{\omega}$,
- $(4) (uv)^{\omega} <_{\varepsilon} (vu)^{\omega}$

Examples

$$(ab.a)^{\omega} <_{\pi} (ab)^{\omega} <_{\pi} (a.ab)^{\omega} <_{\pi} a^{\omega}$$

Proposition [Reutenauer (2015)]

Let $<_g$ be a generalized order.

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $u^{\omega} <_{g} v^{\omega}$,
- $(2) (uv)^{\omega} <_{g} v^{\omega},$
- (3) $u^{\omega} <_{g} (vu)^{\omega}$,
- $(4) (uv)^{\omega} <_{g} (vu)^{\omega}$

Examples

$$(ab.a)^{\omega} <_{\pi} (ab)^{\omega} <_{\pi} (a.ab)^{\omega} <_{\pi} a^{\omega}$$

Proposition [Reutenauer (2015)]

Let $<_g$ be a generalized order.

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{\mathbf{g}} \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} <_{g} v^{\omega},$
- (3) $u^{\omega} <_{g} (vu)^{\omega}$,
- $(4) (uv)^{\omega} <_{g} (vu)^{\omega}$.

Examples

$$(ab.a)^{\omega}$$
 $<_{\pi}$ $(ab)^{\omega}$ $<_{\pi}$ $(a.ab)^{\omega}$ $<_{\pi}$ a^{ω}

Proposition [Reutenauer (2015)]

Let $<_g$ be a generalized order.

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{\mathbf{g}} \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} <_{g} v^{\omega},$
- (3) $u^{\omega} <_{g} (vu)^{\omega}$,
- $(4) (uv)^{\omega} <_g (vu)^{\omega}$.

Examples

$$(ab.a)^{\omega} <_{\pi} (ab)^{\omega} <_{\pi} (a.ab)^{\omega} <_{\pi} a^{\omega}$$

Proposition [Reutenauer (2015)]

Let $<_g$ be a generalized order.

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{\mathbf{g}} \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} <_{g} v^{\omega},$
- (3) $u^{\omega} <_{g} (vu)^{\omega}$,
- $(4) (uv)^{\omega} <_{g} (vu)^{\omega}$.

Examples

$$(ab.a)^{\omega} <_{\pi} (ab)^{\omega} <_{\pi} (a.ab)^{\omega} <_{\pi} a^{\omega}$$

A word $w \in A^+$ is a (classical) Lyndon word if for any nontrivial factorization w = uv one has w < vu.

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

Examples

• *a*, *aab*, *abcd* are classical Lyndon words.

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_{g} (vu)^{\omega}$.

- a, aab, abcd are classical Lyndon words.
- *abcab* is a $<_{\pi}$ -Lyndon word.

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

- a, aab, abcd are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.

```
abcab.abcab...
bcaba.bcaba...
cabab.cabab...
ababc.ababc...
babca.babca...
```

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

- a, aab, abcd are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.

```
abcab.abcab...
bcaba.bcaba...
cabab.cabab...
ababc.ababc...
babca.babca...
```

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

- a, aab, abcd are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

- *a*, *aab*, *abcd* are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

- a, aab, abcd are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

Examples

- *a*, *aab*, *abcd* are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.

```
abcab.abcab...
bcaba.bcaba...
cabab.cabab...
```

ababc.ababc · · ·

babca.babca...

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

- *a*, *aab*, *abcd* are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.
- *cab* is a \leq -Lyndon word.

$$(cab)^{\omega} \stackrel{\sim}{<} (bca)^{\omega} \stackrel{\sim}{<} (abc)^{\omega}$$

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

- *a*, *aab*, *abcd* are classical Lyndon words.
- *abcab* is a $<_{\pi}$ -Lyndon word.
- cab is a <
 −Lyndon word.
- acab is a <_{alt}-Lyndon word (Galois word).

$$\left(acab
ight)^{\omega} <_{alt} \left(abac
ight)^{\omega} <_{alt} \left(baca
ight)^{\omega} <_{alt} \left(caba
ight)^{\omega}$$

A word $w \in A^+$ is a generalized Lyndon word if for any nontrivial factorization w = uv one has $w^{\omega} <_g (vu)^{\omega}$.

Examples

- *a*, *aab*, *abcd* are classical Lyndon words.
- abcab is a $<_{\pi}$ -Lyndon word.
- *cab* is a \sim -Lyndon word.
- acab is a <_{alt}-Lyndon word (Galois word).

Classical Lyndon words are unbordered. This is not true for generalized Lyndon ones.

Example

abcab is a $<_{\pi}$ -Lyndon word.

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

A word w is a generalized Lyndon word if and only if for any non trivial factorization w = uv one has :

- $u^{\omega} <_{g} v^{\omega}$
- $w^{\omega} <_{g} v^{\omega}$.

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

A word w is a generalized Lyndon word if and only if for any non trivial factorization w = uv one has :

- $u^{\omega} <_{g} v^{\omega}$
- $w^{\omega} <_{g} v^{\omega}$

 $\underline{\mathsf{Proof.}} \quad (\mathit{uv})^\omega <_\mathsf{g} (\mathit{vu})^\omega \quad \Leftrightarrow \quad \mathit{u}^\omega <_\mathsf{g} \mathit{v}^\omega \quad \Leftrightarrow \quad (\mathit{uv})^\omega <_\mathsf{g} \mathit{v}^\omega.$

Generalized Lyndon words

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

A word w is a generalized Lyndon word if and only if for any non trivial factorization $w = \mu v$ one has:

- $u^{\omega} <_{\varepsilon} v^{\omega}$
- $\mathbf{w}^{\omega} <_{\varepsilon} \mathbf{v}^{\omega}$.

$$\underline{\mathsf{Proof.}} \quad (\mathit{uv})^\omega \ <_{\mathsf{g}} \ (\mathit{vu})^\omega \quad \Leftrightarrow \quad \mathit{u}^\omega \ <_{\mathsf{g}} \ \mathit{v}^\omega \quad \Leftrightarrow \quad (\mathit{uv})^\omega \ <_{\mathsf{g}} \ \mathit{v}^\omega.$$

Example [acab (
$$<_{alt}$$
),

•
$$a^{\omega}$$
 $<_{\mathit{alt}}$ $(\mathit{cab})^{\omega}$, $(\mathit{ac})^{\omega}$ $<_{\mathit{alt}}$ $(\mathit{ab})^{\omega}$, $(\mathit{aca})^{\omega}$ $<_{\mathit{alt}}$ b^{ω}

Generalized Lyndon words

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

A word w is a generalized Lyndon word if and only if for any non trivial factorization $w = \mu v$ one has:

- $u^{\omega} <_{\varepsilon} v^{\omega}$
- $\mathbf{w}^{\omega} <_{\varepsilon} \mathbf{v}^{\omega}$.

 $\underline{\mathsf{Proof.}} \quad (\mathit{uv})^\omega <_\mathsf{g} (\mathit{vu})^\omega \quad \Leftrightarrow \quad \mathit{u}^\omega <_\mathsf{g} \mathit{v}^\omega \quad \Leftrightarrow \quad (\mathit{uv})^\omega <_\mathsf{g} \mathit{v}^\omega.$

Example [acab ($<_{alt}$), cab (\approx)]

- ullet $a^\omega<_{\mathsf{alt}}(\mathsf{cab})^\omega$, $(\mathsf{ac})^\omega<_{\mathsf{alt}}(\mathsf{ab})^\omega$, $(\mathsf{aca})^\omega<_{\mathsf{alt}}b^\omega$
- $(cab)^{\omega} \lesssim b^{\omega}$, $(ab)^{\omega}$

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

Each word $w \in A^+$ can be factorized in a unique way as $w = \ell_1 \ell_2 \cdots \ell_n$, with ℓ_i generalized Lyndon words s.t. $\ell_1^\omega \geq_g \ell_2^\omega \geq_g \cdots \geq_g \ell_n^\omega$.

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

Each word $w \in A^+$ can be factorized in a unique way as $w = \ell_1 \ell_2 \cdots \ell_n$, with ℓ_i generalized Lyndon words s.t. $\ell_1^\omega \geq_g \ell_2^\omega \geq_g \cdots \geq_g \ell_n^\omega$.

Example

• The factorization in classical Lyndon word of acaabaa is (ac)(aab)(a)(a), since

$$(ac)^{\omega} \geq (aab)^{\omega} \geq a^{\omega} \geq a^{\omega}$$

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

Each word $w \in A^+$ can be factorized in a unique way as $w = \ell_1 \ell_2 \cdots \ell_n$, with ℓ_i generalized Lyndon words s.t. $\ell_1^\omega \geq_g \ell_2^\omega \geq_g \cdots \geq_g \ell_n^\omega$.

Example

• The factorization in classical Lyndon word of acaabaa is (ac)(aab)(a)(a), since

$$(ac)^{\omega} \geq (aab)^{\omega} \geq a^{\omega} \geq a^{\omega}$$

• The factorization in $<_{alt}$ -Lyndon word of aabaabaabb is (a)(aba)(aba)(abb), since

$$a^{\omega} \geq_{\mathit{alt}} (aba)^{\omega} \geq_{\mathit{alt}} (aba)^{\omega} \geq_{\mathit{alt}} (abb)^{\omega}$$

Theorem [Reutenauer (2005), D., Restivo, Reutenauer (2018)]

Each word $w \in A^+$ can be factorized in a unique way as $w = \ell_1 \ell_2 \cdots \ell_n$, with ℓ_i generalized Lyndon words s.t. $\ell_1^\omega \geq_g \ell_2^\omega \geq_g \cdots \geq_g \ell_n^\omega$.

- Moreover, ℓ_n is
 - the shortest suffix s of w s.t. s^{ω} is minimum,
 - ullet the longest suffix of w which is a generalized Lyndon word.

Example

• The factorization in classical Lyndon word of acaabaa is (ac)(aab)(a)(a), since

$$(ac)^{\omega} \geq (aab)^{\omega} \geq a^{\omega} \geq a^{\omega}$$

• The factorization in $<_{alt}$ -Lyndon word of aabaabaabb is (a)(aba)(aba)(abb), since

$$a^{\omega} \geq_{alt} (aba)^{\omega} \geq_{alt} (aba)^{\omega} \geq_{alt} (abb)^{\omega}$$

Proposition

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} < \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} < v^{\omega},$
- $(3) \ u^{\omega} < (vu)^{\omega},$
- $(4) (uv)^{\omega} < (vu)^{\omega}.$

Proposition

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} < \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} < v^{\omega},$
- $(3) \ \mathbf{u}^{\omega} < (\mathbf{v}\mathbf{u})^{\omega},$
- $(4) (uv)^{\omega} < (vu)^{\omega}.$
- $(5) \quad u^{\omega} < (uv)^{\omega}.$
- (6) $(vu)^{\omega} < v^{\omega}$.

Proposition

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} < \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} < v^{\omega},$
- $(3) \ \mathbf{u}^{\omega} < (\mathbf{v}\mathbf{u})^{\omega},$
- $(4) (uv)^{\omega} < (vu)^{\omega}.$
- (5) $\mathbf{u}^{\omega} < (\mathbf{u}\mathbf{v})^{\omega}$.
- (6) $(vu)^{\omega} < v^{\omega}$.

Theorem [Bergman (1969)]

If $u^{\omega} < v^{\omega}$ then $u^{\omega} < (uv)^{\omega} < (vu)^{\omega} < v^{\omega}$.

Proposition

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} < \mathbf{v}^{\omega}$,
- (2) $(uv)^{\omega} < v^{\omega}$,
- $(3) \ \mathbf{u}^{\omega} < (\mathbf{v}\mathbf{u})^{\omega},$
- $(4) (uv)^{\omega} < (vu)^{\omega}.$
- $(5) \quad u^{\omega} < (uv)^{\omega}.$
- $(6) (vu)^{\omega} < v^{\omega}.$

Theorem [Bergman (1969)]

If $u^{\omega} < v^{\omega}$ then $u^{\omega} < (uv)^{\omega} < (vu)^{\omega} < v^{\omega}$.

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^\omega < w^\omega$.

Factorization into classical Lyndon words

Theorem [Ufnarovskij (1995)]

Let $w = \ell_1 \ell_2 \cdots \ell_n$ the unique non-increasing factorization of w in Lyndon word.

Then

- $\ell_1^{\omega} > (\ell_2 \cdots \ell_n)^{\omega}$
- ℓ_1 is the shortest nontrivial prefix p s.t. w = ps and $p^{\omega} \geq s^{\omega}$,
- ℓ_1 is the shortest nontrivial prefix p s.t. w = ps and $p^{\omega} \ge w^{\omega}$.

Factorization into classical Lyndon words

Theorem [Ufnarovskij (1995)]

Let $w = \ell_1 \ell_2 \cdots \ell_n$ the unique non-increasing factorization of w in Lyndon word.

Then

- $\ell_1^{\omega} > (\ell_2 \cdots \ell_n)^{\omega}$
- ℓ_1 is the shortest nontrivial prefix p s.t. w = ps and $p^{\omega} \geq s^{\omega}$,
- ℓ_1 is the shortest nontrivial prefix p s.t. w = ps and $p^{\omega} \ge w^{\omega}$.

Example (w = ac.aab.a.a)

- $(ac)^{\omega} > ((aab)(a)(a))^{\omega}$,
- $(ac)^{\omega} > (acaabaa)^{\omega}$.

Galois words

The alternating lexicographical order $<_{alt}$ (w.r.t. an order <) is the generalized lexicographical order defined by the sequence $(<_n)_{n\geq 1}$ with

$$<_n =$$
 $\begin{cases} < & \text{if } n \equiv 1 \pmod{2} \\ \widetilde{<} & \text{otherwise.} \end{cases}$

Example

$$(ab)^{\omega} <_{\mathit{alt}} a^{\omega} <_{\mathit{alt}} b^{\omega} <_{\mathit{alt}} (ba)^{\omega}.$$

Galois words

The alternating lexicographical order $<_{alt}$ (w.r.t. an order <) is the generalized lexicographical order defined by the sequence $(<_n)_{n\geq 1}$ with

$$<_n = \left\{ egin{array}{ll} < & ext{if } n \equiv 1 \pmod{2} \\ \widetilde{<} & ext{otherwise.} \end{array} \right.$$

Example

Let
$$a_i, b_i \in \{0, 1, \dots, 9\}$$
.

$$a_1 a_2 a_3 \cdots <_{alt} b_1 b_2 b_3 \cdots \iff a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\cdots}}} < b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \frac{1}{\cdots}}}$$

Galois words

The alternating lexicographical order $<_{alt}$ (w.r.t. an order <) is the generalized lexicographical order defined by the sequence $(<_n)_{n>1}$ with

$$<_n =$$
 $\left\{ \begin{array}{l} < & \text{if } n \equiv 1 \pmod{2} \\ \stackrel{\sim}{<} & \text{otherwise.} \end{array} \right.$

Example

Let
$$a_i, b_i \in \{0, 1, \dots, 9\}$$
.

$$a_1 a_2 a_3 \cdots <_{alt} b_1 b_2 b_3 \cdots \iff a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_3}}} < b_1 + \frac{1}{b_2 + \frac{1}{b_3 + \frac{1}{a_3}}}$$

A Galois word is a generalized Lyndon word for an alternating lexicographical order.

Characterization of Galois words

Proposition

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{alt} \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} <_{alt} v^{\omega},$
- (3) $u^{\omega} <_{alt} (vu)^{\omega}$,
- $(4) \ (uv)^{\omega} <_{\mathit{alt}} (vu)^{\omega},$

Characterization of Galois words

Proposition

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{alt} \mathbf{v}^{\omega}$,
- $(2) (uv)^{\omega} <_{alt} v^{\omega},$
- (3) $u^{\omega} <_{alt} (vu)^{\omega}$,
- $(4) (uv)^{\omega} <_{alt} (vu)^{\omega},$
- (5') $\begin{cases} u^{\omega} <_{alt} (uv)^{\omega} & \text{if } |u| \text{ is even} \\ u^{\omega} >_{alt} (uv)^{\omega} & \text{if } |u| \text{ is odd} \end{cases}$
- (6') $\begin{cases} (vu)^{\omega} <_{alt} v^{\omega} & \text{if } |v| \text{ is even} \\ (vu)^{\omega} >_{alt} v^{\omega} & \text{if } |v| \text{ is odd} \end{cases}$

Characterization of Galois words

Proposition

The following conditions are equivalent for nonempty words $u, v \in A^*$.

- (1) $\mathbf{u}^{\omega} <_{alt} \mathbf{v}^{\omega}$.
- $(2) (uv)^{\omega} <_{alt} v^{\omega},$
- (3) $u^{\omega} <_{alt} (vu)^{\omega}$,
- $(4) (uv)^{\omega} <_{alt} (vu)^{\omega}$,
- (5') $\begin{cases} u^{\omega} <_{alt} (uv)^{\omega} & \text{if } |u| \text{ is even} \\ u^{\omega} >_{alt} (uv)^{\omega} & \text{if } |u| \text{ is odd} \end{cases}$
- (6') $\begin{cases} (vu)^{\omega} <_{alt} v^{\omega} & \text{if } |v| \text{ is even} \\ (vu)^{\omega} >_{alt} v^{\omega} & \text{if } |v| \text{ is odd} \end{cases}$

Theorem [D., Restivo, Reutenauer (2018)]

w is a Galois word if and only if for any nontrivial factorization w = ps one has

$$\begin{cases} p^{\omega} <_{alt} w^{\omega} & \text{if } |p| \text{ is even,} \\ p^{\omega} >_{alt} w^{\omega} & \text{if } |p| \text{ is odd.} \end{cases}$$

Factorization into Galois words

Theorem [D., Restivo, Reutenauer (2018)]

Let $w = g_1 g_2 \cdots g_n$ with g_i Galois words s.t. $g_1^{\omega} \geq_{alt} g_2^{\omega} \geq_{alt} \cdots \geq_{alt} g_n^{\omega}$.

Let m be the multiplicity of g_1 .

Let p be the shortest nontrivial prefix of w s.t.

$$p^{\omega} \ge_{alt} w^{\omega}$$
 if $|p|$ is even and $p^{\omega} \le_{alt} w^{\omega}$ if $|p|$ is odd. (\star)

Then

- (i) if $|g_1|$ is odd, m is even, and m < n, then $p = g_1^2$,
- (ii) otherwise, $p = g_1$.

Let w = (abb)(abb)(abaa).

 $((abb)^2)^{\omega} >_{alt} w^{\omega}$ and each proper prefix of $(abb)^2$ does not satisfy condition (\star) .

$Complete\ trees$

The set of $complete\ trees\ over\ A$ is defined recursively as follows:

- each letter a ∈ A is a tree;
- if $\mathfrak{t}_1,\mathfrak{t}_2$ are trees, then $(\mathfrak{t}_1,\mathfrak{t}_2)$ is a tree.

$Complete\ trees$

The set of *complete trees* over A is defined recursively as follows:

- each letter $a \in A$ is a tree;
- if $\mathfrak{t}_1,\mathfrak{t}_2$ are trees, then $(\mathfrak{t}_1,\mathfrak{t}_2)$ is a tree.

We will use the classical notions of root, internal node and leaf for a tree.

$Complete\ trees$

The set of *complete trees* over *A* is defined recursively as follows :

- each letter $a \in A$ is a tree;
- if $\mathfrak{t}_1,\mathfrak{t}_2$ are trees, then $(\mathfrak{t}_1,\mathfrak{t}_2)$ is a tree.

We will use the classical notions of **root**, internal node and leaf for a tree. The foliage $\varphi(t)$ of a tree t is defined as :

- $\varphi(a) = a$ for any $a \in A$,
- $\varphi((\mathfrak{t}_1,\mathfrak{t}_2)) = \varphi(\mathfrak{t}_1)\varphi(\mathfrak{t}_2)$ for any two trees $\mathfrak{t}_1,\mathfrak{t}_2$.

Left standard factorization

Let w be a Lyndon word of length at least 2.

The *left standard factorization* of w is the factorization w = uv, where u is the longest nonempty proper prefix of w which is a Lyndon word.

Example

The left standard factorization of aabaacab is (aabaac)(ab).

Left standard factorization

Let w be a Lyndon word of length at least 2.

The *left standard factorization* of w is the factorization w = uv, where u is the longest nonempty proper prefix of w which is a Lyndon word.

Proposition

Both u and v are Lyndon words.

Moreover, either v is a letter or $v = v_1 v_2$, and $v_1 \le u$.

Example

The left standard factorization of aabaacab is (aabaac)(ab).

The left standard factorization of ab is (a)(b), and a < aabaac.

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

Let $w \in A^+$ be a Lyndon word. Its left Lyndon tree $\mathcal{L}(w)$ is defined as :

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

aabaacab

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

Let $w \in A^+$ be a Lyndon word. Its *left Lyndon tree* $\mathcal{L}(w)$ is defined as :

- $\mathcal{L}(a) = a$ for each letter $a \in A$;
- $\mathcal{L}(w) = (\mathcal{L}(u), \mathcal{L}(v))$ for each Lyndon word w of length at least 2 with left standard factorization w = uv.

Clearly $\varphi(\mathcal{L}(w)) = w$.

Prefix standardization

$$u \prec v \quad :\iff \quad \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

 $aa \prec a \prec ab \prec ba \prec b$.

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$
.

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

$$u \prec v \quad :\iff \quad \left\{ \begin{array}{ll} u^\omega < v^\omega & \text{or} \\ u^\omega = v^\omega & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

w = aabaacab aaba aabaa aabaac aabaaca

aabaacab

$$u \prec v \quad :\iff \quad \left\{ \begin{array}{ll} u^\omega < v^\omega & \text{or} \\ u^\omega = v^\omega & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$

a.aaaaaaaaa · · · · aab.aabaabaa · · · · aaba.aabaa · · · · aaba.aabaa · · · · aabaa.aabaa · · · · aabaa.aabaa · · · · aabaaca.aaba · · · · aabaaca.aab

$$u \prec v \quad :\iff \quad \left\{ \begin{array}{ll} u^\omega < v^\omega & \text{or} \\ u^\omega = v^\omega & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$

a.aaaaaaaaa · · · aabaabaaba · · · aabaabaaba · · · aabaabaa · · · aabaa.aabaa · · · aabaac.aaba · · · aabaac.aaba · · · aabaaca.aab · · · · aabaaca.aab · · ·

aabaacab.aa · · ·

aa

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$

aa ≺ a

a.aaaaaaaaa · · · · aab.aabaaa · · · · aab.aabaa · · · · aabaa.aabaa · · · · aabaa.aabaa · · · · aabaa.aabaa · · · · aabaac.aaba · · · aabaaca.aab

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$
21 3

aa ≺ a ≺ aabaa

a.aaaaaaaaa · · · aa.aaaaaaaa · · · aab.aabaaba · · · aabaa.aabaa · · · aabaa.aabaa · · · · aabaac.aaba · · · aabaaca.aab · · · aabaacab.aa · · · aabaacab.aa · · · aabaacab.aa · · · · aabaacab.aa · · · · aabaacab.aa · · · ·

$$u \prec v \quad :\iff \quad \left\{ \begin{array}{ll} u^\omega < v^\omega & \text{or} \\ u^\omega = v^\omega & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$
.

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$
21 43

a.aaaaaaaa · · · aa.aaaaaaaa · · · aab.aabaaba · · · aabaa.aabaa · · · aabaa.aabaa · · · aabaac.aaba · · · aabaaca.aab · · · aabaacab.aa · · · aabaacab.aa · · · aabaacab.aa · · · · aabaacab.aa · · · ·

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$
.

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$
 21543

a.aaaaaaaaa · · · aab.aabaabaa · · · aabaabaa · · · aabaabaa · · · aabaa.aabaa · · · aabaac.aaba · · · aabaacaaba · · · aabaacab.aa · · · aabaacab.aa

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$
.

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$
 $21543 6$

a.aaaaaaaaa · · · aabaabaaba · · · aabaa.aabaa · · · aabaa.aabaa · · · aabaac.aaba · · · aabaacaabaacab.aa · · · aabaacab.aa

◆□▶◆□▶◆臺▶◆臺▶ 臺 めぬ⊙

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$
.

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$
 2154376

$$aa \prec a \prec aabaa \prec aaba \prec aab \prec aabaaca \prec aabac$$

a.aaaaaaaaa · · · · aab.aabaaa · · · · aab.aabaa · · · · aabaa.aabaa · · · · aabaa.aabaa · · · · aabaac.aaba · · · · aabaaca.aab · · · · aabaaca.aab · · · · aabaacab.aa · · · ·

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ める○

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$
.

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$
 21543768

$$aa \prec a \prec aabaa \prec aaba \prec aab \prec aabaaca \prec aabac \prec w$$

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ 夕 へ ②

$$u \prec v :\iff \left\{ \begin{array}{ll} u^{\omega} < v^{\omega} & \text{or} \\ u^{\omega} = v^{\omega} & \text{and} \ |u| > |v|. \end{array} \right.$$

Example

$$aa \prec a \prec ab \prec ba \prec b$$
.

The prefix standard permutation associated to a word w is obtained by ordering the nonempty prefixes of w according to \prec .

Example

$$w = aabaacab$$
 21543768

$$aa \prec a \prec aabaa \prec aaba \prec aab \prec aabaaca \prec aabac \prec w$$

a.aaaaaaaaa · · · · aab.aabaaba · · · · aaba.aabaa · · · · aabaa.aabaa · · · · aabaac.aaba · · · · aabaac.aaba · · · · aabaacab.aa · · · · aabaacab.aa · · · · aabaacab.aa · · · · aabaacab.aa

◆□▶◆□▶◆壹▶◆壹▶ 壹 める○

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

25

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

 $aabaacab \longleftrightarrow 2154376$

•

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

 $aabaacab \longleftrightarrow 2154376$

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

Theorem [Ufnarovskij (1995)]

w is a Lyndon word if and only if for any nontrivial factorization w=ps one has $p^{\omega} < w^{\omega}$.

aabaacab ←→ 2154376

We complete in such a way that $\varphi(\mathcal{C}(w)) = w$.

Equivalence of trees

Theorem [D., Restivo, Reutenauer (2019)]

Let w be a Lyndon word. Then $\mathcal{L}(w) = \mathcal{C}(w)$.

 $aabaacab \longleftrightarrow 2154376$

The non-increasing factorization in classical Lyndon words is the factorization in Lyndon words with minimal number of factors. This is not true for generalized Lyndon words.

Example

The nonincreasing factorization in Galois words of w = ababab is (ab)(ab)(ab). The word admits also the factorization w = (ababa)(b).

The non-increasing factorization in classical Lyndon words is the factorization in Lyndon words with minimal number of factors. This is not true for generalized Lyndon words.

Example

The nonincreasing factorization in Galois words of w = ababab is (ab)(ab)(ab). The word admits also the factorization w = (ababa)(b).

Theorem [Duval (1983)]

It is possible to compute the non-increasing factorization of a word into classical Lyndon words in linear time.

The non-increasing factorization in classical Lyndon words is the factorization in Lyndon words with minimal number of factors. This is not true for generalized Lyndon words.

Example

The nonincreasing factorization in Galois words of w = ababab is (ab)(ab)(ab). The word admits also the factorization w = (ababa)(b).

Theorem [Duval (1983)]

It is possible to compute the non-increasing factorization of a word into classical Lyndon words in linear time.

Open Problem 1

Generalize Duval's algorithm to generalized Lyndon words.

Theorem [Duval (1983)]

The number of classical Lyndon words of length at most n is equal to the number of words of length n that are prefixes of a Lyndon word, +1.

Theorem [Duval (1983)]

The number of classical Lyndon words of length at most n is equal to the number of words of length n that are prefixes of a Lyndon word, +1.

This property is no more true for a generalized order.

Theorem [Duval (1983)]

The number of classical Lyndon words of length at most n is equal to the number of words of length n that are prefixes of a Lyndon word, +1.

This property is no more true for a generalized order.

Example

There are exactly 6 classical Lyndon words of length at most 2 (namely a, b, c, ab, aca, bc) and 5 words of length 2 prefixes of a Lyndon word (namely aa, ab, ac, bb, bc.)

Theorem [Duval (1983)]

The number of classical Lyndon words of length at most n is equal to the number of words of length n that are prefixes of a Lyndon word, +1.

This property is no more true for a generalized order.

Example

There are exactly 6 classical Lyndon words of length at most 2 (namely a, b, c, ab, aca, bc) and 5 words of length 2 prefixes of a Lyndon word (namely aa, ab, ac, bb, bc.)

There are exactly 6 Galois words of length at most 2 (namely a, b, c, ab, aca, bc) but only 3 words of length 2 prefixes of a Galois word (namely ab, ac, bc.)

Theorem [Duval (1983)]

The number of classical Lyndon words of length at most n is equal to the number of words of length n that are prefixes of a Lyndon word, +1.

This property is no more true for a generalized order.

Example

There are exactly 6 classical Lyndon words of length at most 2 (namely a, b, c, ab, aca, bc) and 5 words of length 2 prefixes of a Lyndon word (namely aa, ab, ac, bb, bc.)

There are exactly 6 Galois words of length at most 2 (namely a, b, c, ab, aca, bc) but only 3 words of length 2 prefixes of a Galois word (namely ab, ac, bc.)

Open Problem 2

Find a formula to count generalized Lyndon words of a given length.

An *infinite Lyndon word* is an infinite word which has infinitely many prefixes that are (finite) Lyndon words.

An *infinite Lyndon word* is an infinite word which has infinitely many prefixes that are (finite) Lyndon words.

Theorem [Siromoney, Mathew, Dare, Subramanian (1994)]

 ${\bf x}$ is an infinite Lyndon word if and only if ${\bf x}$ is smaller than any of its nontrivial suffixes.

An *infinite Lyndon word* is an infinite word which has infinitely many prefixes that are (finite) Lyndon words.

Theorem [Siromoney, Mathew, Dare, Subramanian (1994)]

 \mathbf{x} is an infinite Lyndon word if and only if \mathbf{x} is smaller than any of its nontrivial suffixes.

Moreover, each infinite word \mathbf{w} could be factorized as either :

- $\mathbf{w} = \ell_1 \ell_2 \cdots$, with ℓ_i finite Lyndon words, and $\ell_1^\omega \ge \ell_2^\omega \ge \cdots$
- $\mathbf{w} = \ell_1 \cdots \ell_n \mathbf{s}$, with ℓ_i finite Lyndon words, \mathbf{s} infinite Lyndon words, and $\ell_1^{\omega} \geq \cdots \geq \ell_n^{\omega} \geq \mathbf{s}$.

An *infinite Lyndon word* is an infinite word which has infinitely many prefixes that are (finite) Lyndon words.

Theorem [Siromoney, Mathew, Dare, Subramanian (1994)]

x is an infinite Lyndon word if and only if x is smaller than any of its nontrivial suffixes.

Moreover, each infinite word ${\bf w}$ could be factorized as either :

- $\mathbf{w} = \ell_1 \ell_2 \cdots$, with ℓ_i finite Lyndon words, and $\ell_1^\omega \geq \ell_2^\omega \geq \cdots$
- $\mathbf{w} = \ell_1 \cdots \ell_n \mathbf{s}$, with ℓ_i finite Lyndon words, \mathbf{s} infinite Lyndon words, and $\ell_1^{\omega} \geq \cdots \geq \ell_n^{\omega} \geq \mathbf{s}$.

A generalized infinite Lyndon word is an infinite word x which is smaller that any of its nontrivial suffixes.

An *infinite Lyndon word* is an infinite word which has infinitely many prefixes that are (finite) Lyndon words.

Theorem [Siromoney, Mathew, Dare, Subramanian (1994)]

x is an infinite Lyndon word if and only if **x** is smaller than any of its nontrivial suffixes.

Moreover, each infinite word ${\bf w}$ could be factorized as either :

- $\mathbf{w} = \ell_1 \ell_2 \cdots$, with ℓ_i finite Lyndon words, and $\ell_1^\omega \geq \ell_2^\omega \geq \cdots$
- $\mathbf{w} = \ell_1 \cdots \ell_n \mathbf{s}$, with ℓ_i finite Lyndon words, \mathbf{s} infinite Lyndon words, and $\ell_1^{\omega} \geq \cdots \geq \ell_n^{\omega} \geq \mathbf{s}$.

A generalized infinite Lyndon word is an infinite word x which is smaller that any of its nontrivial suffixes.

Open Problem 3

Prove that each infinite word can be factorized in a unique way as a nonincresing product of finite and infinite generalized Lyndon words.

