Interval Exchange Transformations from Symbolic Dynamics to Combinatorics

Francesco Dolce

Informačne Technológie Aplikácie a Teória
Workshop: Numeration and Substitution Systems
Oravská Lesná, 19. septembra 2020

Interval Exchange Transformations from Symboli Dynamics to Combi Combinatorics Symbolic Dynamics
 Francesco Dolce

Informačne Technológie Aplikácie a Teória
Workshop: Numeration and Substitution Systems

Oravská Lesná, 19. septembra 2020

What to expect from this talk

1. Combinatorics on Words and Symbolic Dymamics (A very light introduction to take with your morning coffee)
2. Interval Exchange Transformations
(Who are they and what do they want from us?)
3. Dendric languages
(Or how to use Greek words to sound more sophisticated)
4. Shift spaces
(Entropy, Ergodicity, and other scary words starting in "E")
5. Rauzy induction (Pardon my French)

Some words about words

Some words about words

- strč, prst, skrz, $k r k \in\{a, b, c, \ldots, \check{z}\}^{*}$

Some words about words

- strč, prst, skrz, krk $\in\left\{a, b, c, \ldots, z \check{\}^{*}}\right.$
- 001, 101000, $010101010 \in\{01\}^{*}$

Some words about words

- strč, prst, skrz, krk $\in\{a, b, c, \ldots, \check{z}\}^{*}$
- 001, 101000, $010101010 \in\{01\}^{*}$
- aCGatacgGacattacatatacg $\in\{A, C, \mathrm{G}, \mathrm{T}\}^{*}$

Some words about words

- strč, prst, skrz, krk $\in\{a, b, c, \ldots, \text { ž }\}^{*}$
- 001, 101000, $010101010 \in\{01\}^{*}$
- aCGatacgGacattacatatacg $\in\{\text { A, C, G, T }\}^{*}$
- babaabaabaaabaaab $\cdots \in\{a, b\}^{\omega}$

Some words about words

- strč, prst, skrz, krk $\in\{a, b, c, \ldots, \text { ž }\}^{*}$
- 001, 101000, $010101010 \in\{01\}^{*}$
- aCGatacgGacattacatatacg $\in\{\text { A, C, G, T }\}^{*}$
- babaabaabaaabaaab $\cdots \in\{a, b\}^{\omega}$

$$
\begin{aligned}
w= & p f s \text { with } p, f, s \in \mathcal{A}^{*} \cup \mathcal{A}^{\omega} \\
& \text { prefix factor suffix }
\end{aligned}
$$

Some words about words

- strč, prst, skrz, krk $\in\{a, b, c, \ldots, \text { ž }\}^{*}$
- 001, 101000, $010101010 \in\{01\}^{*}$
- aCGatacgGacattacatatacg $\in\{\text { A, C, G, T }\}^{*}$
- babaabaabaaabaaab $\cdots \in\{a, b\}^{\omega}$

$$
\begin{aligned}
w= & p f s \text { with } p, f, s \in \mathcal{A}^{*} \cup \mathcal{A}^{\omega} \\
& \text { prefix factor suffix }
\end{aligned}
$$

The language of w is the set $\mathcal{L}(w)=\{f \mid f$ is a factor of $w\}$.

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.

$$
\stackrel{H}{\pi}: x \rightarrow x
$$

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.

$$
\stackrel{H}{\leftrightarrows}: x \rightarrow x
$$

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{N}{\pi}: X \rightarrow X$
path: I

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{H}{H}: x \rightarrow x$
path: I F

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{N}{\pi}: X \rightarrow X$ path: I F Č

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{N}{\pi}: X \rightarrow X$ path: I F Č E

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{N}{\pi}: X \rightarrow X$ path: I F Č E M

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{N}{\pi}: X \rightarrow X$ path: I F Č E M D

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{N}{\pi}: X \rightarrow X$ path: I F Č E M D D

What is a Dymamical System?

(X, T)
with X a compact metric space and $T: X \rightarrow X$ a continuous map.
$\stackrel{H}{\pi}: x \rightarrow X$ path: I F Č EMDDS...

Rotations

Rotations

Rotations

Rotations

Rotations

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $\left[0,1\left[\right.\right.$ s.t. $\left|I_{\alpha}\right|=\left|J_{\alpha}\right|$ for every $\alpha \in \mathcal{A}$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $\left[0,1\left[\right.\right.$ s.t. $\left|I_{\alpha}\right|=\left|J_{\alpha}\right|$ for every $\alpha \in \mathcal{A}$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $\left[0,1\left[\right.\right.$ s.t. $\left|I_{\alpha}\right|=\left|J_{\alpha}\right|$ for every $\alpha \in \mathcal{A}$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $\left[0,1\left[\right.\right.$ s.t. $\left|I_{\alpha}\right|=\left|J_{\alpha}\right|$ for every $\alpha \in \mathcal{A}$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $\left[0,1\left[\right.\right.$ s.t. $\left|I_{\alpha}\right|=\left|J_{\alpha}\right|$ for every $\alpha \in \mathcal{A}$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

[^0]Interval Exchange Transformations
19.09.2020
$7 / 32$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $\theta=(\sqrt{5}-1) \pi$)

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $\theta=(\sqrt{5}-1) \pi$)

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $\theta=(\sqrt{5}-1) \pi)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $\theta=(\sqrt{5}-1) \pi$)

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $\theta=(\sqrt{5}-1) \pi$)

$$
\Sigma_{T}(z)=\mathrm{abaa}
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $\theta=(\sqrt{5}-1) \pi$)

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $\theta=(\sqrt{5}-1) \pi$)

$$
\Sigma_{T}(z)=\text { abaaba } \cdots
$$

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1]} \mathcal{L}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.

Example (Fibonacci)

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1]} \mathcal{L}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\mathcal{L}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

$$
\mathcal{L}(T)=\{\varepsilon, \mathrm{a}, \mathrm{~b}, \text { aa, ab, ba, aab, aba, baa, bab, aaba, } \ldots\}
$$

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \mathcal{L}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\mathcal{L}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Proposition

Regular interval exchange sets have factor complexity $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$.

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.

Example (Fibonacci)

```
x = abaababaabaababaababaabaababa...
```


Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.

Example (Fibonacci)

$$
x=\underset{4}{a b a a} \text { ba baab aaba baababaaba abab a } \cdot \text {. . }
$$

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.

Proposition

Uniform recurrence \Longrightarrow Recurrence.

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.

Proposition

Uniform recurrence \Longrightarrow Recurrence.

Theorem

A IET T is minimal $\Longleftrightarrow \quad$ its language $\mathcal{L}(T)$ is uniformly recurrent.

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \mathrm{aaba}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \mathrm{aaba}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \mathrm{aaba}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \mathrm{aaba}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}$, aba, baa, bab, aaba, ... $\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \mathrm{aaba}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}$, aab, aba, baa, bab, aaba, ... $\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \mathrm{aaba}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
& L(w)=\{\alpha \in \mathcal{A} \mid \alpha w \in \mathcal{L}\} \\
& R(w)=\{\beta \in \mathcal{A} \mid w \beta \in \mathcal{L}\} \\
& B(w)=\{(\alpha, \beta) \in \mathcal{A} \times \mathcal{A} \mid \alpha w \beta \in \mathcal{L}\}
\end{aligned}
$$

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1 .
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}$, aab, aba, baa, bab, aaba, ... $\}$)

$$
m(\mathrm{a})=3-2-2+1=0
$$

Dendric and neutral sets

Definition

A language \mathcal{L} is called dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.

Dendric and neutral sets

Definition

A language \mathcal{L} is called dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral sets

Definition

A language \mathcal{L} is called dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral sets

Definition

A language \mathcal{L} is called dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

* Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Dendic languages
 Arnoux-Rauzy languages

Definition
A language is Arnoux-Rauzy if it is closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$ and with a unique right special factor for each length.

Dendic languages
 Arnoux-Rauzy languages

Definition

A language is Arnoux-Rauzy if it is closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$ and with a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\eta^{\omega}(\mathrm{a})$ of the morphism $\quad \eta: \mathrm{a} \mapsto \mathrm{ab}, \quad \mathrm{b} \mapsto \mathrm{ac}, \quad \mathrm{c} \mapsto \mathrm{a}$.

$$
\mathcal{L}=\{\underbrace{\varepsilon}_{1}, \underbrace{a, b, c}_{3}, \underbrace{a a, a b, a c, b a, c a}_{5}, \underbrace{a a b, a b a, a c a, b a a, b a b, b a c, c a b}_{7}, a a b a, \ldots\}
$$

Dendic languages Arnoux-Rauzy languages

Definition

A language is Arnoux-Rauzy if it is closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$ and with a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\eta^{\omega}(\mathrm{a})$ of the morphism $\quad \eta: \mathrm{a} \mapsto \mathrm{ab}, \quad \mathrm{b} \mapsto \mathrm{ac}, \quad \mathrm{c} \mapsto \mathrm{a}$.

$\mathcal{E}(\mathrm{aba})$

$$
\mathcal{L}=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \mathrm{aaba}, \ldots\}
$$

Dendric languages

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
Arnoux-Rauzy languages are dendric languages.

Planar dendric languages

Let $<_{L}$ and $<_{R}$ be two orders on \mathcal{A}.
For a language \mathcal{L} and a word $w \in \mathcal{L}$, the graph $\mathcal{E}(w)$ is compatible with $<_{L}$ and $<_{R}$ if for any $(a, b),(c, d) \in B(w)$, one has

$$
a<_{L} c \quad \Longrightarrow \quad b \leq_{R} d
$$

Example (Fibonacci, $\mathrm{b}<_{L}$ a and $\mathrm{a}<_{R} \mathrm{~b}$)

$\mathcal{E}(\mathrm{b})$

A language \mathcal{L} is planar dendric w.r.t. $<_{L}$ and $<_{R}$ on \mathcal{A} if for any $w \in \mathcal{L}$ the graph $\mathcal{E}(w)$ is a tree compatible with $<_{L}$ and $<_{R}$.

Planar dendric language

Example

The Tribonacci language is not planar dendric. Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

Planar dendric language

Example

The Tribonacci language is not planar dendric.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{a<_{L} c<_{L} b}$

Planar dendric language

Example

The Tribonacci language is not planar dendric.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \Longrightarrow \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$ or $\mathrm{c}<_{R} \mathrm{~b}<_{R} \mathrm{a}$

Planar dendric language

Example

The Tribonacci language is not planar dendric.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \Longrightarrow \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$ or $\mathrm{c}<_{R} \mathrm{~b}<_{R} \mathrm{a}$

Planar dendric language

Example

The Tribonacci language is not planar dendric.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \Longrightarrow \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$

Planar dendric language

Example

The Tribonacci language is not planar dendric.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \Longrightarrow \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$

Planar dendric language

Example

The Tribonacci language is not planar dendric.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \quad \Longrightarrow \quad$ a

Planar dendric languages

Theorem [Ferenczi, Zamboni (2008)]
A language \mathcal{L} is a regular interval exchange language if and only if it is a recurrent planar dendric language.

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}}
$$

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}}
$$

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow & \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
x=\cdots a b \cdot a b a a b a b a a b a a b a b a a b a b a a b a a b \cdots
$$

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}}
$$

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
\begin{array}{cl}
\mathbf{x} & =\cdots \text { ab.abaababaabaababaababaabaab } \cdots \\
\sigma(\mathbf{x}) & =\cdots \text { ba.baababaabaababaababaabaaba } \cdots
\end{array}
$$

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}}
$$

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
\begin{aligned}
\mathbf{x} & =\cdots \text { ab.abaababaabaababaababaabaab } \cdots \\
\sigma(\mathbf{x}) & =\cdots \text { ba.baababaabaababaababaabaaba } \cdots \\
\sigma^{2}(\mathbf{x}) & =\cdots \text { ab.aababaabaababaababaabaabab } \cdots
\end{aligned}
$$

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}}
$$

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
\begin{aligned}
\mathbf{x} & =\cdots \text { ab.abaababaabaababaababaabaab } \cdots \\
\sigma(\mathbf{x}) & =\cdots \text { ba.baababaabaababaababaabaaba } \cdots \\
\sigma^{2}(\mathbf{x}) & =\cdots \text { ab.aababaabaababaababaabaabab } \cdots \\
\sigma^{3}(\mathbf{x}) & =\cdots \text { ba.ababaabaababaababaabaababa } \cdots
\end{aligned}
$$

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}}
$$

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

The pair (X, σ), with X a closed σ-invariant subset of $\mathcal{A}^{\mathbb{Z}}$ is called a shift space.

Example (Fibonacci, but on two sides)

The Fibonacci shift space is the set $X=\overline{\mathcal{O}(\mathbf{x})}=\overline{\left\{\sigma^{k}(\mathbf{x}) \mid k \in \mathbb{Z}\right\}} \subset \mathcal{A}^{\mathbb{Z}}$, with
$\mathrm{x}=\cdots \mathrm{ab} . a b a a b a b a a b a a b a b a a b a b a a b a a b$

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}} .
$$

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow & \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

The pair (X, σ), with X a closed σ-invariant subset of $\mathcal{A}^{\mathbb{Z}}$ is called a shift space.

The language of a shift space (X, σ) is the language $\mathcal{L}(X)=\bigcup_{x \in X} \mathcal{L}(x)$.

Shift spaces

$\mathcal{A}^{\mathbb{Z}}=\left\{\left(x_{n}\right)_{n \in \mathbb{Z}}\right\}$ with the natural product topology.
(Equivalently, the compact metric space with distance defined for $\left(x_{n}\right)_{n} \neq\left(y_{n}\right)_{n}$ as

$$
d\left(\left(x_{n}\right)_{n},\left(y_{n}\right)_{n}\right)=\frac{1}{\min \left\{|i| \geq 0 \mid x_{i} \neq y_{i}\right\}} .
$$

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow & \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

The pair (X, σ), with X a closed σ-invariant subset of $\mathcal{A}^{\mathbb{Z}}$ is called a shift space.

The language of a shift space (X, σ) is the language $\mathcal{L}(X)=\bigcup_{x \in X} \mathcal{L}(x)$.
A shift space (X, σ) is a dendric shift (a IET shift) if its language is dendric (a IET set).

Entropy of dendric shift space

The entropy of a shift (X, σ) having language $\mathcal{L}(X) \subset \mathcal{A}^{*}$ is defined as

$$
h(X)=\lim _{n \rightarrow \infty} \frac{\log \left(p_{n}\right)}{n}(\geq 0)
$$

Entropy of dendric shift space

The entropy of a shift (X, σ) having language $\mathcal{L}(X) \subset \mathcal{A}^{*}$ is defined as

$$
h(X)=\lim _{n \rightarrow \infty} \frac{\log \left(p_{n}\right)}{n}(\geq 0)
$$

Proposition

All dendric shift spaces have entropy zero.

Ergodicity of dendric shift spaces

A probability measure μ on (X, σ) is said to be invariant if $\mu\left(\sigma^{-1}(U)\right)=\mu(U)$ for every Borel subset U of X.

A shift space having only one invariant probability measure is said to be uniquely ergodic.

Ergodicity of dendric shift spaces

A probability measure μ on (X, σ) is said to be invariant if $\mu\left(\sigma^{-1}(U)\right)=\mu(U)$ for every Borel subset U of X.

A shift space having only one invariant probability measure is said to be uniquely ergodic.

Theorem [P. Arnoux, G. Rauzy (1991)]

Shift spaces associated to Arnoux-Rauzy sets are uniquely ergodic.

Example (Fibonacci, $\theta=(\sqrt{5}-1) / 2)$

Ergodicity of dendric shift spaces

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{\mathrm{a} 0} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

Ergodicity of dendric shift spaces

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{\mathrm{a} 0} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

Ergodicity of dendric shift spaces

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{a_{0}} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

The map μ defined by $\mu([w])=\left|I_{w}\right|$ is an invariant probability measure.

Ergodicity of dendric shift spaces

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{\mathrm{a} 0} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

The map μ defined by $\mu([w])=\left|I_{w}\right|$ is an invariant probability measure.
Question : Is it the only one?

Ergodicity of dendric shift spaces

Conjecture [Keane (1975)]

Every regular IE is uniquely ergodic.

Ergodicity of dendric shift spaces

Conjecture [Keane (1975)]

Every regular IE is uniquely ergodic.

Theorem [Masur (1982), Veech (1982)]
Almost all regular IE are uniquely ergodic.

Ergodicity of dendric shift spaces

Conjecture [Keane (1975)]

Every regular IE is uniquely ergodic. False!

Theorem [Masur (1982), Veech (1982)]
Almost all regular IE are uniquely ergodic.

Theorem [Keynes, Newton (1976)]

There exist regular IE not uniquely ergodic.

Ergodicity of dendric shift spaces

Conjecture [Keane (1975)]

Every regular IE is uniquely ergodic. False!

Theorem [Masur (1982), Veech (1982)]
Almost all regular IE are uniquely ergodic.

Theorem [Keynes, Newton (1976)]

There exist regular IE not uniquely ergodic.

Corollary

Dendric shift spaces are not in general uniquely ergodic (even when minimal).

Ergodicity of dendric shift spaces

Theorem [Boshernitzan (1984)]

A minimal symbolic system such that $\limsup _{n \rightarrow \infty}\left(\frac{p_{n}}{n}\right)<3$ is uniquely ergodic.

Ergodicity of dendric shift spaces

Theorem [Boshernitzan (1984)]

A minimal symbolic system such that $\limsup _{n \rightarrow \infty}\left(\frac{p_{n}}{n}\right)<3$ is uniquely ergodic.

Corollary

Minimal dendric shift spaces over an alphabet of size ≤ 3 are uniquely ergodic.

Ergodicity of dendric shift spaces

Theorem [Boshernitzan (1984)]

A minimal symbolic system such that $\lim _{n \rightarrow \infty} \sup \left(\frac{p_{n}}{n}\right)<3$ is uniquely ergodic.

Corollary

Minimal dendric shift spaces over an alphabet of size ≤ 3 are uniquely ergodic.

Theorem [Damron, Fickenscher (2019)]

A minimal dendric shift space has at most $\frac{\sup _{n}\left(p_{n+1}-p_{n}\right)+1}{2}$ ergodic measures.

Induced transformations

Let T be a minimal interval exchange transformation and $I \subset[0,1[$. The transformation induced by T on I is the transformation $S: I \rightarrow I$ defined by

$$
S(z)=T^{n}(z) \quad \text { with } n=\min \left\{k>0 \mid T^{k}(z) \in I\right\} .
$$

Induced transformations

Let T be a minimal interval exchange transformation and $I \subset[0,1[$. The transformation induced by T on I is the transformation $S: I \rightarrow I$ defined by

$$
S(z)=T^{n}(z) \quad \text { with } n=\min \left\{k>0 \mid T^{k}(z) \in I\right\} .
$$

Example

Induced transformations

Let T be a minimal interval exchange transformation and $I \subset[0,1[$. The transformation induced by T on I is the transformation $S: I \rightarrow I$ defined by

$$
S(z)=T^{n}(z) \quad \text { with } n=\min \left\{k>0 \mid T^{k}(z) \in I\right\} .
$$

Example

Induced transformations

Let T be a minimal interval exchange transformation and $I \subset[0,1[$. The transformation induced by T on I is the transformation $S: I \rightarrow I$ defined by

$$
S(z)=T^{n}(z) \quad \text { with } n=\min \left\{k>0 \mid T^{k}(z) \in I\right\} .
$$

Example

Right-admissible semi-intervals

A semi-interval [$0, r[$, with $0<r<1$, is right-admissible for T if there exists a $k \in \mathbb{Z}$, s.t. $r=T^{k}\left(\gamma_{\alpha}\right)$ for some $\alpha \in \mathcal{A}$ and:
(i) if $k>0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $0<h<k$,
(ii) if $k \leq 0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $k<h \leq 0$.

Right-admissible semi-intervals

A semi-interval [$0, r[$, with $0<r<1$, is right-admissible for T if there exists a $k \in \mathbb{Z}$, s.t. $r=T^{k}\left(\gamma_{\alpha}\right)$ for some $\alpha \in \mathcal{A}$ and:
(i) if $k>0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $0<h<k$,
(ii) if $k \leq 0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $k<h \leq 0$.

Right-admissible semi-intervals

A semi-interval [$0, r[$, with $0<r<1$, is right-admissible for T if there exists a $k \in \mathbb{Z}$, s.t. $r=T^{k}\left(\gamma_{\alpha}\right)$ for some $\alpha \in \mathcal{A}$ and:
(i) if $k>0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $0<h<k$,
(ii) if $k \leq 0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $k<h \leq 0$.

Right-admissible semi-intervals

A semi-interval [$0, r[$, with $0<r<1$, is right-admissible for T if there exists a $k \in \mathbb{Z}$, s.t. $r=T^{k}\left(\gamma_{\alpha}\right)$ for some $\alpha \in \mathcal{A}$ and:
(i) if $k>0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $0<h<k$,
(ii) if $k \leq 0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $k<h \leq 0$.

Right-admissible semi-intervals

A semi-interval [$0, r[$, with $0<r<1$, is right-admissible for T if there exists a $k \in \mathbb{Z}$, s.t. $r=T^{k}\left(\gamma_{\alpha}\right)$ for some $\alpha \in \mathcal{A}$ and:
(i) if $k>0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $0<h<k$,
(ii) if $k \leq 0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $k<h \leq 0$.

Right-admissible semi-intervals

A semi-interval [$0, r[$, with $0<r<1$, is right-admissible for T if there exists a $k \in \mathbb{Z}$, s.t. $r=T^{k}\left(\gamma_{\alpha}\right)$ for some $\alpha \in \mathcal{A}$ and:
(i) if $k>0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $0<h<k$,
(ii) if $k \leq 0$, then $r<T^{h}\left(\gamma_{\alpha}\right)$ for all $k<h \leq 0$.

Theorem [Rauzy (1979)]

Let T a regular IET and I a right-admissible interval for T. Then, the induced transformation by T on I is a regular IET (on the same alphabet).

Right Rauzy induction

Given a regular IET T, set $Z(T)=\left[0, \max _{\alpha \in A}\left\{\gamma_{\alpha}, T\left(\gamma_{\alpha}\right)\right\}[\right.$.
We denote by $\psi(T)$ the transformation induced by T on $Z(T)$.

Theorem [Rauzy (1979)]

Let T a regular IET.
A semi-interval I is right-admissible for $T \Longleftrightarrow I=Z\left(\psi^{n}(T)\right)$ for some $n>0$. In this case, the transformation induced by T on I is $\psi^{n+1}(T)$.

The map $T \rightarrow \psi(T)$ is called right Rauzy induction.

Right Rauzy induction

Left Rauzy induction

The notions of left admissible semi-interval and the left Rauzy induction $T: \rightarrow \varphi(T)$ are defined simmetrically.

Two-sided Rauzy induction

A semi-interval $[\ell, r[$, with $0 \leq \ell<r \leq 1$ is admissible for a regular IET T if $\ell, r \in \operatorname{Div}(I, T) \cup\{1\}$, with

$$
\operatorname{Div}(I, T)=\bigcup_{\alpha \in \mathcal{A}}\left\{T^{k}\left(\gamma_{\alpha}\right) \mid-\rho^{-}\left(\gamma_{\alpha}\right) \leq k<\rho^{+}\left(\gamma_{\alpha}\right)\right\}
$$

where $\rho^{-}(z)=\min \left\{n>0 \mid T^{n}(z) \in\right] \ell, r[\}$ and $\rho^{+}(z)=\min \left\{n \geq 0 \mid T^{-n}(z) \in\right] \ell, r[\}$.

Two-sided Rauzy induction

A semi-interval $[\ell, r[$, with $0 \leq \ell<r \leq 1$ is admissible for a regular IET T if $\ell, r \in \operatorname{Div}(I, T) \cup\{1\}$, with

$$
\operatorname{Div}(I, T)=\bigcup_{\alpha \in \mathcal{A}}\left\{T^{k}\left(\gamma_{\alpha}\right) \mid-\rho^{-}\left(\gamma_{\alpha}\right) \leq k<\rho^{+}\left(\gamma_{\alpha}\right)\right\}
$$

where $\rho^{-}(z)=\min \left\{n>0 \mid T^{n}(z) \in\right] \ell, r[\}$ and $\rho^{+}(z)=\min \left\{n \geq 0 \mid T^{-n}(z) \in\right] \ell, r[\}$.

Theorem [Berthé, De Felice, D., Perrin, Reutenauer, Rindone (2015)]

The induced transformation by T on I is a regular IET (on the same alphabet).

Two-sided Rauzy induction

A semi-interval $[\ell, r[$, with $0 \leq \ell<r \leq 1$ is admissible for a regular IET T if $\ell, r \in \operatorname{Div}(I, T) \cup\{1\}$, with

$$
\operatorname{Div}(I, T)=\bigcup_{\alpha \in \mathcal{A}}\left\{T^{k}\left(\gamma_{\alpha}\right) \mid-\rho^{-}\left(\gamma_{\alpha}\right) \leq k<\rho^{+}\left(\gamma_{\alpha}\right)\right\}
$$

where $\rho^{-}(z)=\min \left\{n>0 \mid T^{n}(z) \in\right] \ell, r[\}$ and $\rho^{+}(z)=\min \left\{n \geq 0 \mid T^{-n}(z) \in\right] \ell, r[\}$.

Theorem [Berthé, De Felice, D., Perrin, Reutenauer, Rindone (2015)]

The induced transformation by T on I is a regular IET (on the same alphabet).
A semi-interval I is admissible for $T \Longleftrightarrow I$ is the domain of a $\chi \in\{\psi, \varphi\}^{*}$. In this case, the transformation induced by T on $/$ is $\chi(T)$.

Two-sided Rauzy induction

A semi-interval $[\ell, r[$, with $0 \leq \ell<r \leq 1$ is admissible for a regular IET T if $\ell, r \in \operatorname{Div}(I, T) \cup\{1\}$, with

$$
\operatorname{Div}(I, T)=\bigcup_{\alpha \in \mathcal{A}}\left\{T^{k}\left(\gamma_{\alpha}\right) \mid-\rho^{-}\left(\gamma_{\alpha}\right) \leq k<\rho^{+}\left(\gamma_{\alpha}\right)\right\}
$$

where $\rho^{-}(z)=\min \left\{n>0 \mid T^{n}(z) \in\right] \ell, r[\}$ and $\rho^{+}(z)=\min \left\{n \geq 0 \mid T^{-n}(z) \in\right] \ell, r[\}$.

Theorem [Berthé, De Felice, D., Perrin, Reutenaurer, Rindone (2015)]

The induced transformation by T on $/$ is a regular IET (on the same alphabet).
A semi-interval I is admissible for $T \Longleftrightarrow I$ is the domain of a $\chi \in\{\psi, \varphi\}^{*}$. In this case, the transformation induced by T on I is $\chi(T)$.

The interval I_{w} is admissible for every $w \in \mathcal{L}(T)$.

Rauzy induction and Euclidean algorithm
Let $\mathbb{R}_{+}^{2}=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2} \mid \lambda_{1} \geq 0, \lambda_{2} \geq 0\right\}$, and the map $\mathcal{E}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}$ given by

$$
\mathcal{E}\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}\left(\lambda_{1}-\lambda_{2}, \lambda_{2}\right) & \text { if } \lambda_{1} \geq \lambda_{2} \\ \left(\lambda_{1}, \lambda_{2}-\lambda_{1}\right) & \text { if } \lambda_{1}<\lambda_{2}\end{cases}
$$

Rauzy induction and Euclidean algorithm

Let $\mathbb{R}_{+}^{2}=\left\{\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R}^{2} \mid \lambda_{1} \geq 0, \lambda_{2} \geq 0\right\}$, and the map $\mathcal{E}: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}_{+}^{2}$ given by

$$
\mathcal{E}\left(\lambda_{1}, \lambda_{2}\right)= \begin{cases}\left(\lambda_{1}-\lambda_{2}, \lambda_{2}\right) & \text { if } \lambda_{1} \geq \lambda_{2} \\ \left(\lambda_{1}, \lambda_{2}-\lambda_{1}\right) & \text { if } \lambda_{1}<\lambda_{2}\end{cases}
$$

Example

$$
\begin{aligned}
\frac{\left|I_{\mathrm{a}}\right|}{\left|\iota_{\mathrm{b}}\right|} & =\frac{1+\sqrt{5}}{2}=1.61803 \ldots \\
& =1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}
\end{aligned}
$$

[^0]: Francesco Dolce (ČVUT)

