A gentle introduction to Combinatorics on Words

 $\mathsf{Francesco}\ \mathrm{Dolce}$ 



Konference TIGR CoW 2022

Janov nad Nisou, 19. května 2022

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

1/24

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

• strč, prst, skrz, krk



FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

- strč, prst, skrz, krk
- 001, 101000, 010101010



FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22 2 / 24

(日) (周) (日) (日) (日)

- strč, prst, skrz, krk
- 001, 101000, 010101010
- ACGA, TACGGACATTA, CATATACG



FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22 2/24

イロト イボト イヨト イヨト 一日

- strč, prst, skrz, krk
- 001, 101000, 010101010
- ACGA, TACGGACATTA, CATATACG





FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

★ 코 ▶ ★ 코 ▶ ... 코 TIGR CoW, 19.05.22 2/24

# Let's start with the A,B,C's

#### Definition

- $\mathcal{A}$  (finite) is an *alphabet*
- $a \in \mathcal{A}$  is a *letter*
- A<sup>\*</sup> is the free monoid and A<sup>+</sup> = A<sup>\*</sup> \ {ε} the free semigroup
- $w \in \mathcal{A}^*$  is a (finite) word

#### Example

- $\varepsilon, a, bba, abba \in \{a, b\}^*$
- $a \cdot bb = abb$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

3/24

TIGR CoW, 19.05.22

### Length matters

### Definition

The length |w| of a word  $w = a_0 a_1 \cdots a_{n-1}$  is *n*.

#### Example

• 
$$|\varepsilon| = 0$$
,  $|a| = 1$ ,  $|abbba| = 5$ .

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Length matters

### Definition

The length |w| of a word  $w = a_0 a_1 \cdots a_{n-1}$  is *n*.

For each letter *a*, we have  $|w|_a = #\{$ number of *a*'s in *w* $\}$ .

#### Example

• 
$$|\varepsilon| = 0$$
,  $|\mathbf{a}| = 1$ ,  $|\mathbf{a}bbba| = 5$ .

• 
$$|abbba|_a = 2$$
,  $|abbba|_b = 3$ ,  $|abbba|_c = 0$ .

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

### Length matters

#### Definition

The length |w| of a word  $w = a_0 a_1 \cdots a_{n-1}$  is *n*.

For each letter *a*, we have  $|w|_a = #\{$ number of *a*'s in *w* $\}$ .

#### Example

• 
$$|\varepsilon| = 0$$
,  $|a| = 1$ ,  $|abbba| = 5$ .

• 
$$|abbba|_a = 2$$
,  $|abbba|_b = 3$ ,  $|abbba|_c = 0$ .

#### Proposition

For every word  $w \in \mathcal{A}^*$  we have

$$|w| = \sum_{a \in \mathcal{A}} |w|_a.$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

# Of beginnings, endings and everything in between

#### Definition

- Let  $w = pfs \in \mathcal{A}^*$  with  $p, f, s \in \mathcal{A}^*$ .
  - f is a factor of w,
  - p is a prefix of w (proper prefix is  $p \neq w$ ),
  - s is a suffix of w (proper suffix if  $s \neq w$ ),
  - if  $p, s \in A^+$ , f is an internal factor of w.

#### Example

w = nejblbější

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Definition

A (finite or infinite) subset of  $\mathcal{A}^*$  is called a *language*.

#### Example

- $L_1 = \{a, b, aba, bb\},\$
- $L_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},$
- $L_3 = aba^* = \{ab, aba, abaaa, abaaa, abaaa, \ldots\}$ ,

• 
$$L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Definition

A (finite or infinite) subset of  $A^*$  is called a *language*.

The language of a word w is the set  $\mathcal{L}(w)$  of all its factors.

#### Example

- $L_1 = \{a, b, aba, bb\},\$
- $L_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},\$
- $L_3 = aba^* = \{ab, aba, abaa, abaaa, abaaa, \dots\}$ ,

• 
$$L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$$

•  $\mathcal{L}(abba) = \{\varepsilon, a, b, ab, ba, bb, abb, bba, abba\}.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Definition

A (finite or infinite) subset of  $A^*$  is called a *language*.

The language of a word w is the set  $\mathcal{L}(w)$  of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

#### Example

- $L_1 = \{a, b, aba, bb\},\$
- $L_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},\$
- $L_3 = aba^* = \{ab, aba, abaa, abaaa, abaaa, \dots\}$ ,

• 
$$L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$$

•  $\mathcal{L}(abba) = \{\varepsilon, a, b, ab, ba, bb, abb, bba, abba\}.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Definition

A (finite or infinite) subset of  $A^*$  is called a *language*.

The language of a word w is the set  $\mathcal{L}(w)$  of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

#### Example

- $L_1 = \{a, b, aba, bb\}$ , X  $Aba \in L_1$  but  $ab \notin L_1$
- $L_2 = \{w \in \mathcal{A}^* : |w| < 10\},\$
- $L_3 = aba^* = \{ab, aba, abaa, abaaa, abaaa, \dots\}$ ,

• 
$$L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$$

•  $\mathcal{L}(abba) = \{\varepsilon, a, b, ab, ba, bb, abb, bba, abba\}.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Definition

A (finite or infinite) subset of  $\mathcal{A}^*$  is called a *language*.

The language of a word w is the set  $\mathcal{L}(w)$  of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

#### Example

- $L_1 = \{a, b, aba, bb\}$ , X  $Aba \in L_1$  but  $ab \notin L_1$
- $L_2 = \{w \in \mathcal{A}^* : |w| < 10\},$
- $L_3 = aba^* = \{ab, aba, abaaa, abaaa, abaaa, \ldots\}$ ,

• 
$$L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$$

•  $\mathcal{L}(abba) = \{\varepsilon, a, b, ab, ba, bb, abb, bba, abba\}.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Definition

A (finite or infinite) subset of  $A^*$  is called a *language*.

The language of a word w is the set  $\mathcal{L}(w)$  of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

#### Example

- $L_1 = \{a, b, aba, bb\}$ , X  $Aba \in L_1$  but  $ab \notin L_1$
- $L_2 = \{w \in \mathcal{A}^* : |w| < 10\},$

• 
$$L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$$

•  $\mathcal{L}(abba) = \{\varepsilon, a, b, ab, ba, bb, abb, bba, abba\}.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

#### Definition

A (finite or infinite) subset of  $A^*$  is called a *language*.

The language of a word w is the set  $\mathcal{L}(w)$  of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

#### Example

- $L_1 = \{ a, b, aba, bb \}$ , X  $aba \in L_1$  but  $ab \notin L_1$
- $L_2 = \{w \in \mathcal{A}^* : |w| < 10\},$
- $L_3 = aba^* = \{ab, aba, abaa, abaaa, abaaa, \dots\}$ ,  $\bigstar$   $aba \in L_3$  but  $b \notin L_3$
- $L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$  **a** $b \in L_4$  but  $a \notin L_4$

•  $\mathcal{L}(abba) = \{\varepsilon, a, b, ab, ba, bb, abb, bba, abba\}.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Definition

A (finite or infinite) subset of  $A^*$  is called a *language*.

The language of a word w is the set  $\mathcal{L}(w)$  of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

#### Example

- $L_1 = \{ a, b, aba, bb \}$ , X  $Aba \in L_1$  but  $ab \notin L_1$
- $L_2 = \{w \in \mathcal{A}^* : |w| < 10\},$
- $L_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}.$  X  $ab \in L_4$  but  $a \notin L_4$

•  $\mathcal{L}(abba) = \{\varepsilon, a, b, ab, ba, bb, abb, bba, abba\}.$   $\checkmark$  by construction

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Factor complexity

The factor complexity function of a word w is the map  $C_w(n) : \mathcal{L}(w) \to \mathbb{N}$  counting the distinct factors of any length.



# Special factors

#### Definition

An element u of a language L (resp. a factor u of a word w) is *right-special* if  $ua, ub \in L$  (resp.  $ua, ub \in \mathcal{L}(w)$ ) for two different letters a, b. Similar definition for *left-special*. A factor *bispecial* if it is both left- and right-special.

#### Example

#### Let w = abaccb

- a is right-special, since  $ab, ac \in \mathcal{L}(w)$ ;
- b is left-special, since  $ab, cb \in \mathcal{L}(w)$ ;
- c is bispecial since it is both left-special and right-special  $(ac, cc, cb \in \mathcal{L}(w))$ .

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Powers

#### Definition

The  $n^{th}$ -power of a word w is defined recursively as

$$w^0 = \varepsilon, \qquad w^n = w^{n-1}w$$
 for every integer<sup>a</sup>  $n > 0.$ 

When n = 2 (resp. n = 3) we call it a square (resp. a cube).

<sup>a</sup>What if *n* is not an integer? Wait for Lubka's and Daniela's talks later.

#### Example

• If w = aba then

$$w^0 = \varepsilon$$
,  $w^1 = aba$ ,  $w^2 = abaaba$ ,  $w^3 = abaabaaba$ , .

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

э

9/24

イロン 不同と イヨン イヨン

### Powers

#### Definition

The  $n^{th}$ -power of a word w is defined recursively as

$$w^0 = \varepsilon, \qquad w^n = w^{n-1}w$$
 for every integer<sup>a</sup>  $n > 0$ .

When n = 2 (resp. n = 3) we call it a square (resp. a cube).

A word w is *primitive* if, whenever  $w = u^k$  then k = 1 and w = u.

<sup>a</sup>What if n is not an integer? Wait for Lubka's and Daniela's talks later.

#### Example

• If w = aba then

$$w^0 = \varepsilon$$
,  $w^1 = aba$ ,  $w^2 = abaaba$ ,  $w^3 = abaabaaba$ , ...

• a, b, ab, babba are primitive, while aaa, abab are NOT.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

ヘロン 人間 とくほと くほど

9/24

э

# $Conjugated\ words$

#### Definition

Two words  $w, w' \in A^+$  are *conjugated*, denoted  $w \equiv w'$ , if there exist  $x, y \in A^+$  s.t. w = xy and w' = yx.

The class of conjugacy of w is  $[w] = \{w' \mid w' \equiv w\}$ 

#### Example

- $aba \equiv aab$ ,  $abab \equiv baba$ .
- $[aba] = \{aab, aba, baa\}, [abab] = \{abab, baba\}.$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

# Oredered alphabets

#### Definition

Let us consider a total order < on A. This order can be extended to  $A^*$ , and it is called *lexicographical order*, by setting

 $u < v \qquad \Longleftrightarrow \qquad v = us \qquad s \in \mathcal{A}^*$ or  $u = pas, v = pbt \qquad p, s, t \in \mathcal{A}^*, a, b \in \mathcal{A}, a < b$ 

#### Example

If  $\mathcal{A} = \{a, b, c\}$  and a < b < c, then

a < aab < ab < aba < b < bac < bb.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS



# Lyndon words



### Definition [R. Lyndon (1954), А. И. Ширшов (1953)]

A word  $w \in A^+$  is a Lyndon word (or правильное слово) if for all  $p, s \in A^+$  s.t. w = ps one has one of the three following equivalent conditions:

- 1. w < sp,
- 2. w < s,
- 3. p < s.

#### Example

a, b, ab, ababb are Lyndon words, while abab and ba are  $\underline{\text{NOT}}$  .

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS



# $Lyndon\ words$



### Definition [R. Lyndon (1954), А. И. Ширшов (1953)]

A word  $w \in A^+$  is a Lyndon word (or правильное слово) if for all  $p, s \in A^+$  s.t. w = ps one has one of the three following equivalent conditions:

- 1. w < sp,
- 2. w < s,
- 3. p < s.

#### Example

a, b, ab, ababb are Lyndon words, while abab and ba are  $\underline{\text{NOT}}$  .

#### Proposition

A word w is Lyndon word iff w is primitive and smaller than all its conjugates.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

# $Lyndon\ factorization$

### Theorem [Lyndon (1954)]

Each word  $w \in A^+$  can be factorized in a unique way as  $w = \ell_1 \ell_2 \cdots \ell_n$ , with  $\ell_i$  Lyndon word for every *i* and  $\ell_1 \ge \ell_2 \ge \cdots \ge \ell_n$ .

#### Example

- aacab
- bc.bc.a
- b.abb.ab.a
- ab.a.a
- b.aaac.a

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

Do nekonečna a ještě dál (see also Viola's talk just next)

#### Definition

An *infinite word* is a sequence  $\mathbf{w} = a_0 a_1 a_2 \cdots$ , with  $a_i$  letters.

The set of all (right-)infinite words over  $\mathcal{A}$  is denoted by  $\mathcal{A}^{\mathbb{N}}$ .



#### Example

•  $\mathbf{w} = abbaaaaaaaaaaaaaaa \cdots \in \{a, b\}^{\mathbb{N}};$ 

Francesco Dolce (ČVUT)

# Do nekonečna a ještě dál (see also Viola's talk just next)

### Definition

An *infinite word* is a sequence  $\mathbf{w} = a_0 a_1 a_2 \cdots$ , with  $a_i$  letters.

The set of all (right-)infinite words over  $\mathcal{A}$  is denoted by  $\mathcal{A}^{\mathbb{N}}$ .

We can naturally extend the notions of *prefix*, *suffix*, *factor*, etc.



### Example

- $\mathbf{w} = abbaaaaaaaaaaaaaaa \cdots \in \{a, b\}^{\mathbb{N}};$
- ab is a proper prefix,
- w is a prefix;
- baa is an internal factor,
- baaaaaaa... is a suffix;
- $a^{\omega} = aaaaa \cdots;$
- $C_w(n) = 4$  for every  $n \ge 2$  (Prove it!).

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

### Definition

A language  $\mathcal{L}$  is *recurrent* if for every  $u, v \in \mathcal{L}$  there is a  $w \in \mathcal{L}$  such that uwv is in  $\mathcal{L}$ .

#### Example (Fibonacci, see later)

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22 15 / 24

### Definition

A language  $\mathcal{L}$  is *recurrent* if for every  $u, v \in \mathcal{L}$  there is a  $w \in \mathcal{L}$  such that uwv is in  $\mathcal{L}$ .

 $\mathcal{L}$  is *uniformly recurrent* if for every  $u \in \mathcal{L}$  there exists an  $n \in \mathbb{N}$  such that u is a factor of every word of length n in  $\mathcal{L}$ .



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

### Definition

A language  $\mathcal{L}$  is *recurrent* if for every  $u, v \in \mathcal{L}$  there is a  $w \in \mathcal{L}$  such that uwv is in  $\mathcal{L}$ .

 $\mathcal{L}$  is *uniformly recurrent* if for every  $u \in \mathcal{L}$  there exists an  $n \in \mathbb{N}$  such that u is a factor of every word of length n in  $\mathcal{L}$ .

#### Proposition

Uniformly recurrence  $\implies$  Recurrence.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22 15 / 24

= nar

イロト イヨト イヨト イヨト

#### Definition

A language  $\mathcal{L}$  is *recurrent* if for every  $u, v \in \mathcal{L}$  there is a  $w \in \mathcal{L}$  such that uwv is in  $\mathcal{L}$ .

 $\mathcal{L}$  is *uniformly recurrent* if for every  $u \in \mathcal{L}$  there exists an  $n \in \mathbb{N}$  such that u is a factor of every word of length n in  $\mathcal{L}$ .

#### Proposition

Uniformly recurrence  $\implies$  Recurrence.

#### Example (counter-example)

 $\mathbf{x} = \texttt{a.b.aa.ab.ba.bb.aaa.aab.aba.abb.baa} \cdots$ 

is recurrent, but  $a^n$  is never a factor of  $b^m$ .

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

# Morphisms

### Definition

A morphism is a map  $\psi : \mathcal{A}^* \to \mathcal{B}^*$  such that  $\psi(uv) = \psi(u)\psi(v)$  for every  $u, v \in \mathcal{A}^*$ .

#### Example

$$\psi_1: \left\{ egin{array}{cc} \mathtt{a} o \mathtt{010} \ \mathtt{b} o \mathtt{1} \end{array} 
ight.$$
 ,  $\psi_2: \left\{ egin{array}{cc} \mathtt{a} o \mathtt{ab} \ \mathtt{b} o \mathtt{b} \end{array} 
ight.$ 

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

# Morphisms

#### Definition

A morphism is a map  $\psi : \mathcal{A}^* \to \mathcal{B}^*$  such that  $\psi(uv) = \psi(u)\psi(v)$  for every  $u, v \in \mathcal{A}^*$ .

A substitution is a morphism  $\psi : \mathcal{A} \to \mathcal{A}$  such that there exists a letter  $a \in \mathcal{A}$  with  $\psi(a) = as$  and  $\lim_{n \to \infty} |\psi^n(a)| = \infty$ . The word  $\psi^{\omega}(a)$  is a *fixed point* of the substitution.

#### Example

$$\psi_1: \left\{ egin{array}{c} \mathbf{a} o 010 \ \mathbf{b} o 1 \end{array}, \psi_2: \left\{ egin{array}{c} \mathbf{a} o \mathbf{a}\mathbf{b} \ \mathbf{b} o \mathbf{b} \end{array} 
ight.$$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS



# Two important fixed points 1/2



### The Thue-Morse word is defined as a fixed point

of the morphism

 $heta: \left\{ egin{array}{c} 0\mapsto 01 \ 1\mapsto 10 \end{array} 
ight.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ → < ⑦ → < ≧ → < ≧ → TIGR CoW, 19.05.22

17/24



### Two important fixed points 1/2Thue-Morse



### The Thue-Morse word is defined as a fixed point

 $\mathbf{x} = \texttt{01101001100101101001011001100101100101001001001000} \cdots$ 

of the morphism

$$\theta: \left\{ \begin{array}{c} \mathbf{0} \mapsto \mathbf{01} \\ \mathbf{1} \mapsto \mathbf{10} \end{array} \right.$$

#### Definition

A morphism  $\psi$  is a *k*-uniform if  $|\psi(a)| = k$  for every letter *a*.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

### Two important fixed points 2/2Fibonacci



The Fibonacci word is defined as the fixed point

$$\mathbf{f}=arphi^{\omega}(\mathtt{a})=\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\cdots$$

of the morphism

$$arphi : \left\{ egin{array}{c} \mathtt{a} \mapsto \mathtt{a} \mathtt{b} \ \mathtt{b} \mapsto \mathtt{a} \end{array} 
ight.$$

The lengths of the prefixes  $|\varphi^n(\mathbf{a})|_n = 0, 1, 2, 3, 5, 8, \dots$  are the Fibonacci numbers<sup>1</sup>.



<sup>1</sup>See Jan's talk on Saturday. Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS



TIGR CoW, 19.05.22

18/24

### Sturmian words

(More about Sturmian words and Sturmian morphisms in Edita's talk on Sunday)



FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS



# Arnoux-Rauzy words



### Definition

An infinite word  $\mathbf{w}$  over an alphabet of k letters is an Arnoux-Rauzy word if

- 1. it has (k-1)n+1 distinct factors of length n for every  $n \ge 0$ ;
- $\ensuremath{\mathcal{D}}.$  for each lenght only one factor is right special; and
- 3. its set of factors is closed under reversal.

#### Example (Tribonacci: $\psi$ : $\overline{a \mapsto ab, b \mapsto ac, c \mapsto a}$ )

 $\mathbf{t}=\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}$ 

$$\mathcal{L}(\mathbf{t}) = \{\underbrace{\varepsilon}_{1}, \underbrace{a, b, c}_{3}, \underbrace{aa, ab, ac, ba, ca}_{5}, \underbrace{aab, aba, aca, baa, bab, bac, cab}_{7}, \ldots\}$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS



# Arnoux-Rauzy words



### Definition

An infinite word  $\mathbf{w}$  over an alphabet of k letters is an Arnoux-Rauzy word if

- 1. it has (k-1)n+1 distinct factors of length n for every  $n \ge 0$ ;
- 2. for each lenght only one factor is right special; and
- 3. its set of factors is closed under reversal.

#### Example (Tribonacci: $\psi$ : $a \mapsto ab$ , $b \mapsto ac$ , $c \mapsto a$ )

 $\mathbf{t}=\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{c}\mathtt{a}\cdots$ 

$$\mathcal{L}(\mathbf{t}) = \{\underbrace{\varepsilon}_{1}, \underbrace{\mathbf{a}, \mathbf{b}, \mathbf{c}}_{3}, \underbrace{\mathbf{aa}, \mathbf{ab}, \mathbf{ac}, \mathbf{ba}, \mathbf{ca}}_{5}, \underbrace{\mathbf{aab}, \mathbf{aba}, \mathbf{aca}, \mathbf{baa}, \mathbf{bab}, \mathbf{bac}, \mathbf{cab}}_{7}, \ldots\}$$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS



# Arnoux-Rauzy words



### Definition

An infinite word  $\mathbf{w}$  over an alphabet of k letters is an Arnoux-Rauzy word if

- 1. it has (k-1)n+1 distinct factors of length n for every  $n \ge 0$ ;
- $\ensuremath{\mathcal{D}}.$  for each lenght only one factor is right special; and
- 3. its set of factors is closed under reversal.

#### Example (Tribonacci: $\psi$ : $a \mapsto ab$ , $b \mapsto ac$ , $c \mapsto a$ )





Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

#### Definition

A *palindrome* is a finite word w that is equal to its reversal  $\widetilde{w}$ .

#### Example

- kayak
- blb, krk, oko
- nepochopen

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

21 / 24

#### Definition

A *palindrome* is a finite word w that is equal to its reversal  $\widetilde{w}$ .

#### Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat



#### FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

(日) (周) (日) (日) (日)

21 / 24

#### Definition

A palindrome is a finite word w that is equal to its reversal  $\widetilde{w}$ .

- kayak
- blb, krk, oko •
- nepochopen
- Taco Cat
- V elipse spí lev



#### FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

(本間) (本語) (本語) TIGR CoW, 19.05.22

21/24

э

#### Definition

A *palindrome* is a finite word w that is equal to its reversal  $\widetilde{w}$ .

#### Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej



#### Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

▲御★ ▲注★ ▲注★

21/24

#### Definition

A *palindrome* is a finite word w that is equal to its reversal  $\widetilde{w}$ .

#### Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej
- Ital platí

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS



Theorem [Droubay, Justin, Pirillo (2001)]

A word of length *n* has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

22 / 24

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length *n* has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

•  $\mathcal{P}\{pizza\} = \{\varepsilon, a, i, p, z, zz\}$  $\#\mathcal{P}\{\mathbf{w}\} = 6 = |\mathbf{w}| + 1 \qquad \checkmark$ 



FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22 22 / 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Theorem Droubay, Justin, Pirillo (2001)

A word of length *n* has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}$ {pizza} = { $\varepsilon$ , a, i, p, z, zz}  $\#\mathcal{P}\{\mathbf{w}\} = 6 = |\mathbf{w}| + 1 \qquad \checkmark$
- $\mathcal{P}\{ananas\} = \{\varepsilon, a, n, s, ana, nan, anana\}$  $\# \mathcal{P} \{ w \} = 7 = |w| + 1$



FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22 22 / 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

Theorem [Droubay, Justin, Pirillo (2001) ]

A word of length *n* has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}\{pizza\} = \{\varepsilon, a, i, p, z, zz\}$  $\#\mathcal{P}\{w\} = 6 = |w| + 1 \qquad \checkmark$
- $\mathcal{P}\{ananas\} = \{\varepsilon, a, n, s, ana, nan, anana\}$  $\#\mathcal{P}\{w\} = 7 = |w| + 1 \qquad \checkmark$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

An infinite word  $\mathbf{w}$  is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW, 19.05.22

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

23/24

An infinite word  $\mathbf{w}$  is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

#### • Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

where  $\varphi = \left\{ egin{array}{c} \mathtt{a} o \mathtt{a} \mathtt{b} \\ \mathtt{b} o \mathtt{a} \end{array} 
ight.$ 

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

An infinite word **w** is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

### Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

Symmetric regular interval exchange sets

Baláži, Masáková, Pelantová (2007)



FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS.

∃ > TIGR CoW, 19.05.22

- ( E ) (

23/24

An infinite word  $\mathbf{w}$  is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

### Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

Symmetric regular interval exchange sets

Baláži, Masáková, Pelantová (2007)

• Recurrent dendric sets closed under reversal

Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)



An infinite word  $\mathbf{w}$  is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

### Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

Symmetric regular interval exchange sets

Baláži, Masáková, Pelantová (2007)

Recurrent dendric sets closed under reversal

Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)

Complementary-symmetric Rote words

Blondin-Massé, Brlek, Labbé, Vuillon (2011)

• Languages closed under reversal with factor complexity C(n) = 2n + 1

Balková, Pelantová, Starosta (2009)

etc.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

# Děkuji za pozornost!