A gentle introduction to Combinatorics on Words

Francesco Dolce

Janov nad Nisou, 19. května 2022

Some words about words

Some words about words

- strč, prst, skrz, krk

Some words about words

- strč, prst, skrz, krk
- 001, 101000, 010101010

Some words about words

- strč, prst, skrz, krk
- 001, 101000, 010101010
- ACGA, TACGGACATTA, CATATACG

Some words about words

- strč, prst, skrz, krk
- 001, 101000, 010101010
- ACGA, TACGGACATTA, CATATACG

Let's start with the A, B, C 's

Definition

- \mathcal{A} (finite) is an alphabet
- $a \in \mathcal{A}$ is a letter
- \mathcal{A}^{*} is the free monoid and $\mathcal{A}^{+}=\mathcal{A}^{*} \backslash\{\varepsilon\}$ the free semigroup
- $w \in \mathcal{A}^{*}$ is a (finite) word

Example

- $\varepsilon, \mathrm{a}, \mathrm{bba}, \mathrm{abba} \in\{\mathrm{a}, \mathrm{b}\}^{*}$
- $\mathrm{a} \cdot \mathrm{bb}=\mathrm{abb}$

Length matters

Definition

The length $|w|$ of a word $w=a_{0} a_{1} \cdots a_{n-1}$ is n.

Example

- $|\varepsilon|=0,|a|=1,|a b b b a|=5$.

Length matters

Definition

The length $|w|$ of a word $w=a_{0} a_{1} \cdots a_{n-1}$ is n.
For each letter a, we have $|w|_{a}=\#\{$ number of a 's in $w\}$.

Example

- $|\varepsilon|=0,|a|=1,|a b b b a|=5$.
- \mid abbba $\left.\right|_{\mathrm{a}}=2,|a b b b a|_{\mathrm{b}}=3,|a b b b a|_{c}=0$.

Length matters

Definition

The length $|w|$ of a word $w=a_{0} a_{1} \cdots a_{n-1}$ is n.
For each letter a, we have $|w|_{a}=\#\{$ number of a 's in $w\}$.

Example

- $|\varepsilon|=0,|a|=1,|a b b b a|=5$.
- \mid abbba $\left.\right|_{\mathrm{a}}=2,|a b b b a|_{\mathrm{b}}=3,|a b b b a|_{c}=0$.

Proposition

For every word $w \in \mathcal{A}^{*}$ we have

$$
|w|=\sum_{a \in \mathcal{A}}|w|_{a}
$$

Of beginnings, endings and everything in between

Definition

Let $w=p f s \in \mathcal{A}^{*}$ with $p, f, s \in \mathcal{A}^{*}$.

- f is a factor of w,
- p is a prefix of w (proper prefix is $p \neq w$),
- s is a suffix of w (proper suffix if $s \neq w$),
- if $p, s \in \mathcal{A}^{+}, f$ is an internal factor of w.

Example

$$
w=\text { nejblbější }
$$

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}$,
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=$ aba $^{*}=\{a b, a b a$, abaa, abaaa, abaaa,$\ldots\}$,
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\}$.

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.
The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}$,
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=$ aba $^{*}=\{a b, a b a$, abaa, abaaa, abaaa,$\ldots\}$,
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\}$.
- $\mathcal{L}(\mathrm{abba})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{abb}, \mathrm{bba}, \mathrm{abba}\}$.

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.
The language of a word w is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}$,
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=$ aba $^{*}=\{a b, a b a$, abaa, abaaa, abaaa,$\ldots\}$,
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\}$.
- $\mathcal{L}(\mathrm{abba})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{abb}, \mathrm{bba}, \mathrm{abba}\}$.

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.
The language of a word w is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in L_{1}$ but $\mathrm{ab} \notin L_{1}$
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=$ aba $^{*}=\{a b, a b a$, abaa, abaaa, abaaa,$\ldots\}$,
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\}$.
- $\mathcal{L}(\mathrm{abba})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{abb}, \mathrm{bba}, \mathrm{abba}\}$.

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.
The language of a word w is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in L_{1}$ but $\mathrm{ab} \notin L_{1}$
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=$ aba $^{*}=\{a b, a b a, ~ a b a a, ~ a b a a a, ~ a b a a a, \ldots\}$,
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\}$.
- $\mathcal{L}(\mathrm{abba})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{abb}, \mathrm{bba}, \mathrm{abba}\}$.

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.
The language of a word w is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in L_{1}$ but $\mathrm{ab} \notin L_{1}$
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=$ aba* $^{*}=\{a b, a b a$, abaa, abaaa, abaaa, $\ldots\}, \quad$ X \quad aba $\in L_{3}$ but $b \notin L_{3}$
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\}$.
- $\mathcal{L}(\mathrm{abba})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{abb}, \mathrm{bba}, \mathrm{abba}\}$.

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.
The language of a word w is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in L_{1}$ but $\mathrm{ab} \notin L_{1}$
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=\mathrm{aba}^{*}=\{\mathrm{ab}$, aba, abaa, abaaa, abaaa, $\ldots\}, \quad$ X \quad aba $\in L_{3}$ but $\mathrm{b} \notin L_{3}$
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\} . \quad$ x $\quad \mathrm{ab} \in L_{4}$ but a $\notin L_{4}$
- $\mathcal{L}(\mathrm{abba})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{abb}, \mathrm{bba}, \mathrm{abba}\}$.

Languages

Definition

A (finite or infinite) subset of \mathcal{A}^{*} is called a language.
The language of a word w is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

Example

- $L_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in L_{1}$ but $\mathrm{ab} \notin L_{1}$
- $L_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $L_{3}=\mathrm{aba}^{*}=\{\mathrm{ab}$, aba, abaa, abaaa, abaaa, $\ldots\}, \quad$ X \quad aba $\in L_{3}$ but $\mathrm{b} \notin L_{3}$
- $L_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{\mathrm{b}}=1\right\} . \quad$ x \quad ab $\in L_{4}$ but a $\notin L_{4}$
- $\mathcal{L}(\mathrm{abba})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \mathrm{abb}, \mathrm{bba}, \mathrm{abba}\}$. \quad by construction

Factor complexity

The factor complexity function of a word w is the $\operatorname{map} \mathcal{C}_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

Example

$$
w=\mathrm{abaccb}
$$

n	0	1	2	3	4	5	6	7	8	9	10	\ldots
$\mathcal{C}_{w}(n)$	1	3	5	4	3	2	1	0	0	0	0	\ldots

$\mathcal{L}(w)=\{\varepsilon, \underbrace{\mathrm{a}, \mathrm{b}, \mathrm{c}}_{3}, \underbrace{\mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{cb}, \mathrm{cc}}_{5}, \underbrace{\mathrm{aba}, \mathrm{acc}, \mathrm{bac}, \mathrm{ccb}}_{4}, \underbrace{\mathrm{abac}, \mathrm{accb}, \mathrm{bacc}}_{3}, \underbrace{\mathrm{abacc}, \mathrm{baccb}}_{2}, w\}$

Special factors

Definition

An element u of a language L (resp. a factor u of a word w) is right-special if $u a, u b \in L$ (resp. $u a, u b \in \mathcal{L}(w)$) for two different letters a, b.
Similar definition for left-special.
A factor bispecial if it is both left- and right-special.

Example

Let $w=\mathrm{abaccb}$

- a is right-special, since $\mathrm{ab}, \mathrm{ac} \in \mathcal{L}(w)$;
- b is left-special, since $\mathrm{ab}, \mathrm{cb} \in \mathcal{L}(w)$;
- c is bispecial since it is both left-special and right-special ($\mathrm{ac}, \mathrm{cc}, \mathrm{cb} \in \mathcal{L}(w)$).

Powers

Definition

The $n^{t h}$-power of a word w is defined recursively as

$$
w^{0}=\varepsilon, \quad w^{n}=w^{n-1} w \text { for every integer }{ }^{a} n>0
$$

When $n=2$ (resp. $n=3$) we call it a square (resp. a cube).

${ }^{a}$ What if n is not an integer? Wait for Lubka's and Daniela's talks later.

Example

- If $w=$ aba then

$$
w^{0}=\varepsilon, \quad w^{1}=\mathrm{aba}, \quad w^{2}=\text { abaaba }, \quad w^{3}=\text { abaabaaba }, \quad \ldots
$$

Powers

Definition

The $n^{t h}$-power of a word w is defined recursively as

$$
w^{0}=\varepsilon, \quad w^{n}=w^{n-1} w \text { for every integer }{ }^{a} n>0
$$

When $n=2$ (resp. $n=3$) we call it a square (resp. a cube).
A word w is primitive if, whenever $w=u^{k}$ then $k=1$ and $w=u$.
${ }^{\text {a }}$ What if n is not an integer? Wait for Lubka's and Daniela's talks later.

Example

- If $w=$ aba then

$$
w^{0}=\varepsilon, \quad w^{1}=\mathrm{aba}, \quad w^{2}=\mathrm{abaaba}, \quad w^{3}=\text { abaabaaba }, \quad \ldots
$$

- $a, b, a b$, babba are primitive, while aaa, abab are NOT.

Conjugated words

Definition

Two words $w, w^{\prime} \in \mathcal{A}^{+}$are conjugated, denoted $w \equiv w^{\prime}$, if there exist $x, y \in \mathcal{A}^{+}$s.t. $w=x y$ and $w^{\prime}=y x$.
The class of conjugacy of w is $[w]=\left\{w^{\prime} \mid w^{\prime} \equiv w\right\}$

Example

- $\mathrm{aba} \equiv \mathrm{aab}, \quad \mathrm{abab} \equiv \mathrm{baba}$.
- $[\mathrm{aba}]=\{\mathrm{aab}, \mathrm{aba}, \mathrm{baa}\}, \quad[\mathrm{abab}]=\{\mathrm{abab}, \mathrm{baba}\}$.

Oredered alphabets

Definition

Let us consider a total order $<$ on \mathcal{A}.
This order can be extended to \mathcal{A}^{*}, and it is called lexicographical order, by setting

$$
\begin{array}{lll}
& & \begin{array}{l}
v=u s \\
\text { or } \\
u=p a s, v=p b t
\end{array}
\end{array} \begin{aligned}
& \\
& u<v, s, t \in \mathcal{A}^{*} \\
&
\end{aligned} \quad \Longleftrightarrow a, b \in \mathcal{A}, a<b
$$

Example

If $\mathcal{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{a}<\mathrm{b}<\mathrm{c}$, then

$$
\mathrm{a}<\mathrm{aab}<\mathrm{ab}<\mathrm{aba}<\mathrm{b}<\mathrm{bac}<\mathrm{bb} .
$$

Lyndon words

Definition [R. Lyndon (1954), А. И. Ширшов (1953)]
A word $w \in \mathcal{A}^{+}$is a Lyndon word (or правильное слово) if for all $p, s \in \mathcal{A}^{+}$s.t. $w=p s$ one has one of the three following equivalent conditions:

1. $w<s p$,
2. $w<s$,
3. $p<s$.

Example

a, b, ab, aab, ababb are Lyndon words, while abab and ba are NOT.

Lyndon words

Definition [R. Lyndon (1954), А. И. Ширшов (1953)]

A word $w \in \mathcal{A}^{+}$is a Lyndon word (or правильное слово) if for all $p, s \in \mathcal{A}^{+}$s.t. $w=p s$ one has one of the three following equivalent conditions:

1. $w<s p$,
2. $w<s$,
3. $p<s$.

Example

$a, b, a b, a a b, a b a b b$ are Lyndon words, while $a b a b$ and ba are NOT.

Proposition

A word w is Lyndon word iff w is primitive and smaller than all its conjugates.

Lyndon factorization

Theorem [Lyndon (1954)]

Each word $w \in \mathcal{A}^{+}$can be factorized in a unique way as $w=\ell_{1} \ell_{2} \cdots \ell_{n}$, with ℓ_{i} Lyndon word for every i and $\ell_{1} \geq \ell_{2} \geq \cdots \geq \ell_{n}$.

Example

- aacab
- bc.bc.a
- b.abb.ab.a
- ab.a.a
- b.aaac.a

$$
\begin{gathered}
\text { Do nekonečna a ještě dál } \\
\text { (see also Viola's talk just next) }
\end{gathered}
$$

Definition

An infinite word is a sequence $\mathbf{w}=a_{0} a_{1} a_{2} \cdots$, with a_{i} letters.
The set of all (right-)infinite words over \mathcal{A} is denoted by $\mathcal{A}^{\mathbb{N}}$.

Example

- $\boldsymbol{w}=$ abbaaaaaaaaaaaaaaa $\cdots \in\{a, b\}^{\mathbb{N}}$;

Do nekonečna a ještě dál (see also Viola's talk just next)

Definition

An infinite word is a sequence $\mathbf{w}=a_{0} a_{1} a_{2} \cdots$, with a_{i} letters.
The set of all (right-)infinite words over \mathcal{A} is denoted by $\mathcal{A}^{\mathbb{N}}$.
We can naturally extend the notions of prefix, suffix, factor, etc.

Example

- $\boldsymbol{w}=$ abbaaaaaaaaaaaaaaa $\cdots \in\{a, b\}^{N}$;
- $a b$ is a proper prefix,
- \mathbf{w} is a prefix;
- baa is an internal factor,
- baaaaaaa... is a suffix;
- $a^{\omega}=$ aaaaa \cdots;
- $\mathcal{C}_{\mathrm{w}}(n)=4$ for every $n \geq 2$ (Prove it!).

Recurrence and uniformly recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.

Example (Fibonacci, see later)

$$
\mathbf{f}=\text { abaababaabaababaababaabaababa } \cdots
$$

Recurrence and uniformly recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.

Example (Fibonacci, see later)

$$
\mathbf{f}=\underbrace{\text { abaa }}_{4} \text { ba baab } \underbrace{\text { aaba }}_{4} \underbrace{}_{4} \text { baababaaba } \underbrace{}_{4} \text { abab } a \cdots
$$

Recurrence and uniformly recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.

Proposition

Uniformly recurrence \Longrightarrow Recurrence.

Recurrence and uniformly recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.

Proposition

Uniformly recurrence \Longrightarrow Recurrence.

Example (counter-example)

$$
x=\text { a.b.aa.ab.ba.bb.aaa.aab.aba.abb.baa } \cdot \text {. }
$$

is recurrent, but a^{n} is never a factor of b^{m}.

Morphisms

Definition

A morphism is a map $\psi: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ such that $\psi(u v)=\psi(u) \psi(v)$ for every $u, v \in \mathcal{A}^{*}$.

Example

$$
\psi_{1}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow 010 \\
\mathrm{~b} \rightarrow 1
\end{array}, \quad \psi_{2}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{~b}
\end{array}\right.\right.
$$

Morphisms

Definition

A morphism is a map $\psi: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ such that $\psi(u v)=\psi(u) \psi(v)$ for every $u, v \in \mathcal{A}^{*}$.
A substitution is a morphism $\psi: \mathcal{A} \rightarrow \mathcal{A}$ such that there exists a letter $a \in \mathcal{A}$ with $\psi(a)=$ as and $\lim _{n \rightarrow \infty}\left|\psi^{n}(a)\right|=\infty$. The word $\psi^{\omega}(a)$ is a fixed point of the substitution.

Example

$$
\begin{gathered}
\psi_{1}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow 010 \\
\mathrm{~b} \rightarrow 1
\end{array}, \quad \psi_{2}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{~b}
\end{array}\right.\right. \\
\psi_{2}^{\omega}(\mathrm{a})=\mathrm{abbbbbbbbbbbbbbbbbbb} \cdots=\mathrm{ab}^{\omega} .
\end{gathered}
$$

Two important fixed points 1/2 Thue-Morse

The Thue-Morse word is defined as a fixed point

$$
x=01101001100101101001011001101001100101100110100 \cdots
$$

of the morphism

$$
\theta:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 10
\end{array}\right.
$$

Two important fixed points 1/2 Thue-Morse

The Thue-Morse word is defined as a fixed point

$$
x=01101001100101101001011001101001100101100110100 \cdots
$$

of the morphism

$$
\theta:\left\{\begin{array}{l}
0 \mapsto 01 \\
1 \mapsto 10
\end{array}\right.
$$

Definition

A morphism ψ is a k-uniform if $|\psi(a)|=k$ for every letter a.

Two important fixed points 2/2 Fibonacci

The Fibonacci word is defined as the fixed point

$$
\mathbf{f}=\varphi^{\omega}(\mathrm{a})=\text { abaababaabaababa } \cdots
$$

of the morphism

$$
\varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}\right.
$$

The lengths of the prefixes $\left|\varphi^{n}(\mathrm{a})\right|_{n}=0,1,2,3,5,8, \ldots$ are the Fibonacci numbers ${ }^{1}$.

[^0]
Sturmian words

(More about Sturmian words and Sturmian morphisms in Edita's talk on Sunday)

Definition

An infinite word \mathbf{w} is Sturmian if it has $n+1$ distinct factors of length n for every $n \geq 0$.

Example (Fibonacci)

$$
\mathbf{f}=\text { abaababaabaababa } \cdots
$$

$$
\mathcal{L}(f)=\{\underbrace{\varepsilon}_{1}, \underbrace{a, b}_{2}, \underbrace{\text { aa, ab, ba }}_{3}, \underbrace{\text { aab, aba, baa, bab }}_{4}, \underbrace{\text { aaba, abaa, abab, baab, baba }}_{5}, \ldots\}
$$

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if

1. it has $(k-1) n+1$ distinct factors of length n for every $n \geq 0$;
2. for each lenght only one factor is right special; and
3. its set of factors is closed under reversal.

Example (Tribonacci: $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$)

$\mathbf{t}=$ abacabaabacababacabaabaca \cdots

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if

1. it has $(k-1) n+1$ distinct factors of length n for every $n \geq 0$;
2. for each lenght only one factor is right special; and
3. its set of factors is closed under reversal.

Example (Tribonacci: $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$)

$\mathbf{t}=$ abacabaabacababacabaabaca \cdots

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if

1. it has $(k-1) n+1$ distinct factors of length n for every $n \geq 0$;
2. for each lenght only one factor is right special; and
3. its set of factors is closed under reversal.

Example (Tribonacci: $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$)

$\mathbf{t}=$ abacabaabacababacabaabaca \cdots

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

$$
\begin{gathered}
\text { Palindromes } \\
\text { (see Viola's talk for that too) }
\end{gathered}
$$

Definition

A palindrome is a finite word w that is equal to its reversal \widetilde{w}.

Example

- kayak
- blb, krk, oko
- nepochopen

$$
\begin{gathered}
\text { Palindromes } \\
\text { (see Viola's talk for that too) }
\end{gathered}
$$

Definition

A palindrome is a finite word w that is equal to its reversal \widetilde{w}.

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat

$$
\begin{gathered}
\text { Palindromes } \\
\text { (see Viola's talk for that too) }
\end{gathered}
$$

Definition

A palindrome is a finite word w that is equal to its reversal \widetilde{w}.

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev

$$
\begin{gathered}
\text { Palindromes } \\
\text { (see Viola's talk for that too) }
\end{gathered}
$$

Definition

A palindrome is a finite word w that is equal to its reversal \widetilde{w}.

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej

Palindromes
(see Viola's talk for that too)

Definition

A palindrome is a finite word w that is equal to its reversal \widetilde{w}.

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej
- Ital platí

Rich words

Theorem [Droubay, Justin, Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

Rich words

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}\{$ pizza $\}=\{\varepsilon, \mathrm{a}, \mathrm{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=6=|\mathrm{w}|+1
$$

Rich words

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}\{$ pizza $\}=\{\varepsilon, \mathrm{a}, \mathbf{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=6=|\mathrm{w}|+1
$$

- $\mathcal{P}\{$ ananas $\}=\{\varepsilon, \mathrm{a}, \mathrm{n}, \mathrm{s}$, ana, nan, anana $\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=7=|\mathrm{w}|+1
$$

Rich words

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}\{$ pizza $\}=\{\varepsilon, \mathrm{a}, \mathrm{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=6=|\mathrm{w}|+1
$$

- $\mathcal{P}\{$ ananas $\}=\{\varepsilon, \mathrm{a}, \mathrm{n}, \mathrm{s}$, ana, nan, anana $\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=7=|\mathrm{w}|+1
$$

- $\mathcal{P}\{$ hawaiianpizza $\}=\{\varepsilon, a, h, i, n, p, w, z, i i, z z, a w a, ~ a i i a\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=12<13=|\mathrm{w}|+1
$$

Rich words and rich sets

An infinite word \mathbf{w} is rich if all its finite prefixes are rich. A factorial set is rich if all its elements are rich.

Rich words and rich sets

An infinite word \mathbf{w} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words [Droubay, Justin, Pirillo (2001)]
$\mathbf{f}=\varphi^{\omega}(\mathrm{a})=$ abaababaabaababaababaabaababaabaababaababaab \cdots

$$
\text { where } \varphi=\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}\right.
$$

Rich words and rich sets

An infinite word \mathbf{w} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words [Droubay, Justin, Pirillo (2001)]
- Symmetric regular interval exchange sets [Baláži, Masáková, Pelantová (2007)]

Rich words and rich sets

An infinite word \mathbf{w} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words
[Droubay, Justin, Pirillo (2001)]
- Symmetric regular interval exchange sets [Baláži, Masáková, Pelantová (2007)]
- Recurrent dendric sets closed under reversal [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
$\mathcal{E}(\varepsilon)$

$$
\mathcal{L}(f)=\{\varepsilon, \mathrm{a}, \mathrm{~b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \text { aab, aba, baa, bab, } \ldots\}
$$

Rich words and rich sets

An infinite word \mathbf{w} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words
[Droubay, Justin, Pirillo (2001)]
- Symmetric regular interval exchange sets
[Baláži, Masáková, Pelantová (2007)]
- Recurrent dendric sets closed under reversal [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
- Complementary-symmetric Rote words [Blondin-Massé, Brlek, Labbé, Vuillon (2011)]
- Languages closed under reversal with factor complexity $\mathcal{C}(n)=2 n+1$ [Balková, Pelantová, Starosta (2009)]
- etc.

[^0]: ${ }^{1}$ See Jan's talk on Saturday.

