## A friendly introduction to Combinatorics on Words

Francesco Dolce


Janov nad Nisou, 17. května 2024

## In the beginning was the Word

## In the beginning was the Word

- strč, prst, skrz, krk



## In the beginning was the Word

- strč, prst, skrz, krk
- ACGA, TACGGACATTA, CATATACG


As, for instance, on Veronika's talk on Monday.

## In the beginning was the Word

- strč, prst, skrz, krk
- ACGA, TACGGACATTA, CATATACG
- 01, 100010, 0100101



## In the beginning was the Word

- strč, prst, skrz, krk
- ACGA, TACGGACATTA, CATATACG
- 01, 100010, 0100101
- $\triangle \circ \boldsymbol{\phi} \diamond \boldsymbol{\wedge}$



## Let's start with the $A B C$

## Definition

- $\mathcal{A}$ (finite) is an alphabet.
- $a \in \mathcal{A}$ is a letter.
- $\mathcal{A}^{*}$ is the free monoid and $A^{+}=\mathcal{A}^{*} \backslash \varepsilon$ the free semigroup
- $w \in \mathcal{A}^{*}$ is a (finite) word.


## Example

- $\varepsilon, \mathrm{a}, \mathrm{bba}, \mathrm{abba} \in\{\mathrm{a}, \mathrm{b}\}^{*}$
- $\mathrm{a} \cdot \mathrm{bb}=\mathrm{abb}$


## Lenght matters

## Definition

The length $|w|$ of a word $w=a_{0} a_{1} \cdots a_{n-1}$ is $n$.

## Example

- $|\varepsilon|=0, \quad|a|=1, \quad|a b b b a|=5$.


## Lenght matters

## Definition

The length $|w|$ of a word $w=a_{0} a_{1} \cdots a_{n-1}$ is $n$.
For each letter $a$, we have $|w|_{a}=\#\left\{a^{\prime} s\right.$ in $\left.w\right\}$.

## Example

- $|\varepsilon|=0, \quad|a|=1, \quad|a b b b a|=5$.
- $|a b b b a|_{\mathrm{a}}=2, \quad|a b b b a|_{\mathrm{b}}=3, \quad|a b b b a|_{c}=0$.


## Lenght matters

## Definition

The length $|w|$ of a word $w=a_{0} a_{1} \cdots a_{n-1}$ is $n$.
For each letter $a$, we have $|w|_{a}=\#\{a$ 's in $w\}$.

## Example

- $|\varepsilon|=0, \quad|a|=1, \quad|a b b b a|=5$.
- $|a b b b a|_{\mathrm{a}}=2, \quad|a b b b a|_{\mathrm{b}}=3, \quad|a b b b a|_{c}=0$.


## Proposition

For every word $w \in \mathcal{A}^{*}$ we have

$$
\sum_{a \in \mathcal{A}}|w|_{a}=?
$$

## Lenght matters

## Definition

The length $|w|$ of a word $w=a_{0} a_{1} \cdots a_{n-1}$ is $n$.
For each letter $a$, we have $|w|_{a}=\#\{a$ 's in $w\}$.

## Example

- $|\varepsilon|=0, \quad|a|=1, \quad|a b b b a|=5$.
- $|a b b b a|_{\mathrm{a}}=2, \quad|a b b b a|_{\mathrm{b}}=3, \quad|a b b b a|_{\mathrm{c}}=0$.


## Proposition

For every word $w \in \mathcal{A}^{*}$ we have

$$
\sum_{a \in \mathcal{A}}|w|_{a}=|w|
$$

## The start, the end, and everything in between

## Definition

Let $w=p f s \in \mathcal{A}^{*}$ with $p, f, s \in \mathcal{A}^{*}$.

- $f$ is a factor of $w$,
- $p$ is a prefix of $w$,
- $s$ is a suffix of $w$,
- if $p, s \in \mathcal{A}^{+}, f$ is an internal factor of $w$.


## Example

$$
w=\text { nejblbĕjší }
$$

## The start, the end, and everything in between

## Definition

Let $w=p f s \in \mathcal{A}^{*}$ with $p, f, s \in \mathcal{A}^{*}$.

- $f$ is a factor of $w$,
- $p$ is a prefix of $w$,
- $s$ is a suffix of $w$,
- if $p, s \in \mathcal{A}^{+}, f$ is an internal factor of $w$.


## Example

$$
w=\text { nejblbější }
$$

## Example

The factors of abaa are :

## The start, the end, and everything in between

## Definition

Let $w=p f s \in \mathcal{A}^{*}$ with $p, f, s \in \mathcal{A}^{*}$.

- $f$ is a factor of $w$,
- $p$ is a prefix of $w$,
- $s$ is a suffix of $w$,
- if $p, s \in \mathcal{A}^{+}, f$ is an internal factor of $w$.


## Example

$$
w=\text { nejblbější }
$$

## Example

The factors of abaa are : $\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aba}, \mathrm{baa}, w=\mathrm{abaa}$.

## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}$,
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{\mathrm{aa}, \mathrm{aba}, \mathrm{abba}, \mathrm{abbba}, \mathrm{abbba}, \ldots\}$,
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}$,


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}$,
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{$ aa, aba, abba, abbba, abbba, $\ldots\}$,
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}$,
- $\mathcal{L}(\mathrm{abaa})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aba}, \mathrm{baa}, w\}$


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}$,
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{$ aa, aba, abba, abbba, abbba, $\ldots\}$,
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}$,
- $\mathcal{L}(\mathrm{abaa})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aba}, \mathrm{baa}, w\}$


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}$,
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{$ aa, aba, abba, abbba, abbba, $\ldots\}$,
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}$,
- $\mathcal{L}(\mathrm{abaa})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aba}, \mathrm{baa}, w\}$


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in \mathcal{L}_{1}$ but $\mathrm{ab} \notin \mathcal{L}_{1}$
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{$ aa, aba, abba, abbba, abbba, $\ldots\}$,
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}$,
- $\mathcal{L}($ abaa $)=\{\varepsilon, a, b, a a, ~ a b, b a, ~ a b a, ~ b a a, w\}$


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in \mathcal{L}_{1}$ but $\mathrm{ab} \notin \mathcal{L}_{1}$
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{$ aa, aba, abba, abbba, abbba, $\ldots\}$,
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}$,
- $\mathcal{L}($ abaa $)=\{\varepsilon, a, b, a a, ~ a b, b a, ~ a b a, ~ b a a, w\}$


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad$ X $\quad$ aba $\in \mathcal{L}_{1}$ but $\mathrm{ab} \notin \mathcal{L}_{1}$
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{\mathrm{aa}, \mathrm{aba}, \mathrm{abba}, \mathrm{abbba}, \mathrm{abbba}, \ldots\}, \quad$ X $\quad$ aba $\in \mathcal{L}_{3}$ but $\mathrm{b} \notin \mathcal{L}_{3}$
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}$,
- $\mathcal{L}($ abaa $)=\{\varepsilon, a, b, a a, ~ a b, b a, ~ a b a, ~ b a a, w\}$


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad X \quad$ aba $\in \mathcal{L}_{1}$ but $\mathrm{ab} \notin \mathcal{L}_{1}$
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{\mathrm{aa}, \mathrm{aba}, \mathrm{abba}, \mathrm{abbba}, \mathrm{abbba}, \ldots\}, \quad$ X $\quad$ aba $\in \mathcal{L}_{3}$ but $\mathrm{b} \notin \mathcal{L}_{3}$
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}, \quad$ x $\quad$ ab $\in \mathcal{L}_{4}$ but a $\notin \mathcal{L}_{4}$
- $\mathcal{L}(\mathrm{abaa})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aba}, \mathrm{baa}, w\}$


## Languages

## Definition

A (finite or infinite) subset of $\mathcal{A}^{*}$ is called a language.
The language of a word $w$ is the set $\mathcal{L}(w)$ of all its factors.
A language is factorial if it contains the factors of every of its elements.

## Example

- $\mathcal{L}_{0}=\{\varepsilon\}$,
- $\mathcal{L}_{1}=\{\mathrm{a}, \mathrm{b}, \mathrm{aba}, \mathrm{bb}\}, \quad$ X $\quad$ aba $\in \mathcal{L}_{1}$ but $\mathrm{ab} \notin \mathcal{L}_{1}$
- $\mathcal{L}_{2}=\left\{w \in \mathcal{A}^{*}:|w|<10\right\}$,
- $\mathcal{L}_{3}=a b^{*} a=\{$ aa, aba, abba, abbba, abbba, $\ldots\}, \quad$ X aba $\in \mathcal{L}_{3}$ but $\mathrm{b} \notin \mathcal{L}_{3}$
- $\mathcal{L}_{4}=\left\{w \in \mathcal{A}^{*}:|w|_{b}=1\right\}, \quad$ x $\quad$ ab $\in \mathcal{L}_{4}$ but a $\notin \mathcal{L}_{4}$
- $\mathcal{L}(\mathrm{abaa})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aba}, \mathrm{baa}, w\} \quad \checkmark$ by construction


## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
w=\text { abaccb } \\
\begin{array}{c|l|l|l|l|l}
n & 0 & 1 & 2 & 3 & 4 \\
5 & 5 & 6 & 7 & 8 & 9 \\
\cdots
\end{array} \\
\hline p_{w}(n) & & & & & & & & & & &
\end{array}
$$

$$
\mathcal{L}(w)=\{
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
c & w=a b a c c b \\
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
\hline p_{w}(n) & 1 & & & & & & & & & &
\end{array}
$$

$$
\mathcal{L}(w)=\{\varepsilon,
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{gathered}
w=\text { abaccb } \\
\mathcal{L}(w)=\{\varepsilon, \underbrace{n}_{3} \left\lvert\, \begin{array}{l|l|l|l|l|l|l|l|l|l|l}
\text { a, b, } c
\end{array}\right.
\end{gathered}
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{gathered}
w=\mathrm{abaccb} \\
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
p_{w}(n) & 1 & 3 & 5 & & & & & & & & \\
\mathcal{L}(w)=\{\varepsilon, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{cb}, \mathrm{cc}}_{5},
\end{array}
\end{gathered}
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{gathered}
c=a b a c c b \\
n
\end{gathered} \left\lvert\, \begin{array}{c|c|c|c|c|c|c|c|c|c|c} 
\\
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\ldots \\
\hline p_{w}(n) & 1 & 3 & 5 & 4 & & & & & & \\
\end{array}\right.
$$

$$
\mathcal{L}(w)=\{\varepsilon, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{cb}, \mathrm{cc}}_{5}, \underbrace{\mathrm{aba}, \mathrm{acc}, \mathrm{bac}, \mathrm{ccb}}_{4},
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{gathered}
c=a b a c c b \\
n
\end{gathered} \left\lvert\, \begin{array}{c|c|c|c|c|c|c|c|c|c|c} 
\\
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\ldots \\
\hline p_{w}(n) & 1 & 3 & 5 & 4 & 3 & & & & & \\
\end{array}\right.
$$

$$
\mathcal{L}(w)=\{\varepsilon, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{cb}, \mathrm{cc}}_{5}, \underbrace{\mathrm{aba}, \mathrm{acc}, \mathrm{bac}, \mathrm{ccb}}_{4}, \underbrace{\mathrm{abac}, \mathrm{accb}, \mathrm{bacc}}_{3},
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{gathered}
w=\mathrm{abaccb} \\
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
p_{w}(n) & 1 & 3 & 5 & 4 & 3 & 2 & & & & & \\
\mathcal{L}(w)=\{\varepsilon, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, & \underbrace{\mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{cb}, \mathrm{cc}}_{5}, & \underbrace{\mathrm{aba}, \mathrm{acc}, \mathrm{bac}, \mathrm{ccb}}_{4}, & \underbrace{\mathrm{abac}, \mathrm{accb}, \mathrm{bacc}}_{3}, \underbrace{\mathrm{abacc}, \mathrm{baccb}}_{2},
\end{array}
\end{gathered}
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{gathered}
w=\mathrm{abaccb} \\
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
p_{w}(n) & 1 & 3 & 5 & 4 & 3 & 2 & 1 & & & & \\
\mathcal{L}(w)=\{\varepsilon, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, & \underbrace{\mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{cb}, \mathrm{cc}}_{5}, & \underbrace{\mathrm{aba}, \mathrm{acc}, \mathrm{bac}, \mathrm{ccb}}_{4}, & \underbrace{\mathrm{abac}, \mathrm{accb}, \mathrm{bacc}}_{3}, \underbrace{\mathrm{abacc}, \mathrm{baccb}}_{2}, w\}
\end{array}
\end{gathered}
$$

## Factor complexity

## Definition

The factor complexity function of a word $w$ is the map $p_{w}(n): \mathcal{L}(w) \rightarrow \mathbb{N}$ counting the distinct factors of any length.

## Example

$$
\begin{gathered}
w=\mathrm{abaccb} \\
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots \\
p_{w}(n) & 1 & 3 & 5 & 4 & 3 & 2 & 1 & 0 & 0 & 0 & \cdots
\end{array} \\
\mathcal{L}(w)=\{\varepsilon, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{cb}, \mathrm{cc}}_{5}, \underbrace{\mathrm{aba}, \mathrm{acc}, \mathrm{bac}, \mathrm{ccb}}_{4}, \underbrace{\mathrm{abac}, \mathrm{accb}, \mathrm{bacc}}_{4}, \underbrace{\mathrm{abacc}, \mathrm{baccb}}_{3}, w\}
\end{gathered}
$$

## Special factors

## Definition

An element $u$ of a language $\mathcal{L}$ is right-special if $u a, u b \in \mathcal{L}$ for two distinct letters $a, b$.
Similar definition for left-special.
A factor is bispecial if it is both left- and right-special.
An ordinary factor is a factor that is not bispecial.

## Example

Let $w=$ abaccb.

- $a$ is right-special, since $a b, a c \in \mathcal{L}(w)$;
- b is left-special, since $\mathrm{ab}, \mathrm{cb} \in \mathcal{L}(w)$;
- c is bispecial, since it is both left-special and right-special ( $\mathrm{ac}, \mathrm{cc}, \mathrm{cb} \in \mathcal{L}(w)$ ).
Infinite words



## Definition

An infinite word is a sequence $\mathbf{w}=a_{0} a_{1} a_{2} \cdots$, with $a_{i}$ letters.
The set of all (right-)infinite words over $\mathcal{A}$ is denoted $\mathcal{A}^{\mathbb{N}}$.

## Example

- $\mathbf{w}=$ aabaaaaaaaaaaaaaa. $\cdots \in\{a, b\}^{\mathbb{N}}$;
Infinite words



## Definition

An infinite word is a sequence $\mathbf{w}=a_{0} a_{1} a_{2} \cdots$, with $a_{i}$ letters.
The set of all (right-)infinite words over $\mathcal{A}$ is denoted $\mathcal{A}^{\mathbb{N}}$.
We can naturally extend the notions of prefix, suffix, factor, etc.

## Example

- $\mathbf{w}=$ aabaaaaaaaaaaaaaa. $\cdots \in\{a, b\}^{\mathbb{N}}$;
- aab is a proper prefix,
- $\mathbf{w}$ is a prefix,
- baa is an internal factor,
- abaaaaaa $\cdot \cdot=a b a^{\omega}$ is a suffix,
Infinite words



## Definition

An infinite word is a sequence $\mathbf{w}=a_{0} a_{1} a_{2} \cdots$, with $a_{i}$ letters.
The set of all (right-)infinite words over $\mathcal{A}$ is denoted $\mathcal{A}^{\mathbb{N}}$.
We can naturally extend the notions of prefix, suffix, factor, etc.

## Example

- $\mathbf{w}=$ aabaaaaaaaaaaaaaa $\cdots \in\{a, b\}^{\mathbb{N}}$;
- aab is a proper prefix,
- $\mathbf{w}$ is a prefix,
- baa is an internal factor,
- abaaaaaa $\cdots=a b a^{\omega}$ is a suffix,
- $p_{\mathrm{w}}(n)=4$ for every $n \geq 3$ (Exercise!)


## Periodic words

## Definition

An infinite word of the form $u v^{\omega}$, with $u \in \mathcal{A}^{*}, v \in \mathcal{A}^{+}$is (eventually) periodic. If $u=\varepsilon$, it is purely periodic.

We can also extend the factor complexity to infinite words.

## Periodic words

## Definition

An infinite word of the form $u v^{\omega}$, with $u \in \mathcal{A}^{*}, v \in \mathcal{A}^{+}$is (eventually) periodic. If $u=\varepsilon$, it is purely periodic.

We can also extend the factor complexity to infinite words.
Theorem [Morse, Hedlund (1938))]
An infinite word $\mathbf{w}$ is eventually periodic iff for some $n$ we have $p_{w}(n)=p_{w}(n+1)$.

## Periodic words

## Definition

An infinite word of the form $u v^{\omega}$, with $u \in \mathcal{A}^{*}, v \in \mathcal{A}^{+}$is (eventually) periodic. If $u=\varepsilon$, it is purely periodic.

We can also extend the factor complexity to infinite words.

## Theorem [Morse, Hedlund (1938))]

An infinite word $\mathbf{w}$ is eventually periodic iff for some $n$ we have $p_{w}(n)=p_{w}(n+1)$. Proof.


## Periodic words

## Definition

An infinite word of the form $u v^{\omega}$, with $u \in \mathcal{A}^{*}, v \in \mathcal{A}^{+}$is (eventually) periodic. If $u=\varepsilon$, it is purely periodic.

We can also extend the factor complexity to infinite words.

## Theorem [Morse, Hedlund (1938))]

An infinite word $\mathbf{w}$ is eventually periodic iff for some $n$ we have $p_{\mathrm{w}}(n)=p_{\mathrm{w}}(n+1)$. Proof.

$$
\text { (u1) } u_{1} a_{1}=b_{1} v_{1}
$$





Want to check whether this proof is correct?
See Štěpán's talk later!

## Periodic words

## Definition

An infinite word of the form $u v^{\omega}$, with $u \in \mathcal{A}^{*}, v \in \mathcal{A}^{+}$is (eventually) periodic. If $u=\varepsilon$, it is purely periodic.

We can also extend the factor complexity to infinite words.

## Theorem [Morse, Hedlund (1938))]

An infinite word $\mathbf{w}$ is eventually periodic iff for some $n$ we have $p_{\mathrm{w}}(n)=p_{\mathrm{w}}(n+1)$. Proof.



Want to check whether this proof is correct?
See Štěpán's talk later!


Can a (not necessarly periodic) word have repeated factors?
More on Daniela's talk tomorrow !

## Morphisms

## Definition

A morphism is a map $\psi: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ such that $\psi(u v)=\psi(u) \psi(v)$ for every $u, v \in \mathcal{A}^{*}$.

## Example

$$
\psi_{1}:\left\{\begin{array}{l}
\mathrm{a} \mapsto 010 \\
\mathrm{~b} \mapsto 1
\end{array}, \quad \psi_{2}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{~b}
\end{array} \quad \psi_{3}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}\right.\right.\right.
$$

## Morphisms

## Definition

A morphism is a map $\psi: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ such that $\psi(u v)=\psi(u) \psi(v)$ for every $u, v \in \mathcal{A}^{*}$.
A substitution is a morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ s.t there exists a letter $a \in \mathcal{A}$ with

- $\psi(a)=a s$ and
- $\lim _{n \rightarrow \infty}\left|\psi^{n}(a)\right|=\infty$.

The word $\lim _{n \rightarrow \infty} \psi^{n}(a)$ is a fixed point of the substitution.

## Example

$$
\psi_{1}:\left\{\begin{array}{l}
\mathrm{a} \mapsto 010 \\
\mathrm{~b} \mapsto 1
\end{array}, \quad \psi_{2}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{~b}
\end{array} \quad \psi_{3}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}\right.\right.\right.
$$

## Morphisms

## Definition

A morphism is a map $\psi: \mathcal{A}^{*} \rightarrow \mathcal{B}^{*}$ such that $\psi(u v)=\psi(u) \psi(v)$ for every $u, v \in \mathcal{A}^{*}$.
A substitution is a morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ s.t there exists a letter $a \in \mathcal{A}$ with

- $\psi(a)=a s$ and
- $\lim _{n \rightarrow \infty}\left|\psi^{n}(a)\right|=\infty$.

The word $\lim _{n \rightarrow \infty} \psi^{n}(a)$ is a fixed point of the substitution.

## Example

$$
\psi_{1}:\left\{\begin{array}{l}
\mathrm{a} \mapsto 010 \\
\mathrm{~b} \mapsto 1
\end{array}, \quad \psi_{2}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{~b}
\end{array} \quad \psi_{3}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}\right.\right.\right.
$$

A substitution $\psi$ is primitive if there is a $k$ such that $b \in \mathcal{L}\left(\psi^{k}(a)\right)$ for every $a, b \in \mathcal{A}$.


## Thue-Morse (and many others)

The Thue-Morse word is defined as the fixed point

$$
\text { x = abbabaabbaababbabaababbaabbabaabbaababbaabbabaa } \cdots
$$

of the morphism

$$
\tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.
$$

## Thue-Morse (and many others)

The Thue-Morse word is defined as the fixed point

$$
\text { x = abbabaabbaababbabaababbaabbabaabbaababbaabbabaa } \cdots
$$

of the morphism

$$
\tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.
$$

## Definition

A morphism $\psi$ is $k$-uniform if $|\psi(a)|=k$ for every letter $a$.

## Thue-Morse (and many others)

The Thue-Morse word is defined as the fixed point

$$
\text { x = abbabaabbaababbabaababbaabbabaabbaababbaabbabaa } \cdots
$$

of the morphism

$$
\tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array} .\right.
$$

## Definition

A morphism $\psi$ is $k$-uniform if $|\psi(a)|=k$ for every letter $a$.


Do you want to know more about this sequence?
Maaany occasions to do so : see Herman's talk later, Samuel's one tomorrow, Martina's one on Monday, and probably on others too!

## Fibonacci

The Fibonacci word is defined as the fixed point

$$
\mathbf{f}=\varphi^{\omega}(\mathrm{a})=\text { abaababaabaababa } \cdots
$$

of the morphism

$$
\varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array} .\right.
$$

The lengths of the prefixes $\left|\varphi^{n}(\mathrm{a})\right|$, i.e., $1,2,3,5,8, \ldots$ are the Fibonacci numbers.


## S-adic words

## Definition

An infinite word $\mathbf{w}$ is said to be $S$-adic if there is that

$$
\mathbf{w}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}\left(a_{n+1}\right)
$$

The pair $(\mathbf{s}, \mathbf{a})$ is called an $S$-adic representation of $\mathbf{w}$.

## Example

$$
(\mathbf{s}, \mathbf{a})=((\varphi, \tau, \varphi, \tau, \ldots),(\mathrm{a}, \mathrm{a}, \mathrm{a}, \ldots)) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}, \quad \tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.\right.
$$

S-adic words

## Definition

An infinite word $\mathbf{w}$ is said to be $S$-adic if there is a sequence of morphisms $\mathbf{s}=\left(\sigma_{n}: \mathcal{A}{ }^{*} \rightarrow \mathcal{A}^{*}\right)_{n}$ and a sequence of letters $\mathbf{a}=\left(a_{n} \in \mathcal{A}\right)_{n}$ such that

$$
\mathbf{w}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}\left(a_{n+1}\right)
$$

The pair $(\mathbf{s}, \mathbf{a})$ is called an $S$-adic representation of $\mathbf{w}$.

## Example

$$
(\mathbf{s}, \mathbf{a})=((\varphi, \tau, \varphi, \tau, \ldots),(\mathrm{a}, \mathrm{a}, \mathrm{a}, \ldots)) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}, \quad \tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.\right.
$$

$\varphi(\mathrm{a})=\mathrm{ab}$

## S-adic words

## Definition

An infinite word $\mathbf{w}$ is said to be $S$-adic if there is a sequence of morphisms $\mathbf{s}=\left(\sigma_{n}: \mathcal{A}{ }^{*} \rightarrow \mathcal{A}^{*}\right)_{n}$ and a sequence of letters $\mathbf{a}=\left(a_{n} \in \mathcal{A}\right)_{n}$ such that

$$
\mathbf{w}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}\left(a_{n+1}\right)
$$

The pair $(\mathbf{s}, \mathbf{a})$ is called an $S$-adic representation of $\mathbf{w}$.

## Example

$$
(\mathbf{s}, \mathbf{a})=((\varphi, \tau, \varphi, \tau, \ldots),(\mathrm{a}, \mathrm{a}, \mathrm{a}, \ldots)) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}, \quad \tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.\right.
$$

$\varphi(\mathrm{a})=\mathrm{ab}$
$\varphi \circ \tau(\mathrm{a})=\varphi(\mathrm{ab})=\mathrm{aba}$

## S-adic words

## Definition

An infinite word $\mathbf{w}$ is said to be $S$-adic if there is a sequence of morphisms $\mathbf{s}=\left(\sigma_{n}: \mathcal{A}{ }^{*} \rightarrow \mathcal{A}^{*}\right)_{n}$ and a sequence of letters $\mathbf{a}=\left(a_{n} \in \mathcal{A}\right)_{n}$ such that

$$
\mathbf{w}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}\left(a_{n+1}\right)
$$

The pair $(\mathbf{s}, \mathbf{a})$ is called an $S$-adic representation of $\mathbf{w}$.

## Example

$$
(\mathbf{s}, \mathbf{a})=((\varphi, \tau, \varphi, \tau, \ldots),(\mathrm{a}, \mathrm{a}, \mathrm{a}, \ldots)) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}, \quad \tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.\right.
$$

$\varphi(\mathrm{a})=\mathrm{ab}$
$\varphi \circ \tau(\mathrm{a})=\varphi(\mathrm{ab})=\mathrm{aba}$
$\varphi \circ \tau \circ \varphi(\mathrm{a})=\varphi(\tau(\mathrm{ab}))=\varphi(\mathrm{abba})=\mathrm{abaaab}$

## S-adic words

## Definition

An infinite word $\mathbf{w}$ is said to be $S$-adic if there is
a sequence of morphisms $\mathbf{s}=\left(\sigma_{n}: \mathcal{A}{ }^{*} \rightarrow \mathcal{A}^{*}\right)_{n}$ and a sequence of letters $\mathbf{a}=\left(a_{n} \in \mathcal{A}\right)_{n}$ such that

$$
\mathbf{w}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}\left(a_{n+1}\right) .
$$

The pair $(\mathbf{s}, \mathbf{a})$ is called an $S$-adic representation of $\mathbf{w}$.

## Example

$$
(\mathbf{s}, \mathbf{a})=((\varphi, \tau, \varphi, \tau, \ldots),(\mathrm{a}, \mathrm{a}, \mathrm{a}, \ldots)) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}, \quad \tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.\right.
$$

$$
\varphi(\mathrm{a})=\mathrm{ab}
$$

$$
\varphi \circ \tau(\mathrm{a})=\varphi(\mathrm{ab})=\mathrm{aba}
$$

$$
\varphi \circ \tau \circ \varphi(\mathrm{a})=\varphi(\tau(\mathrm{ab}))=\varphi(\mathrm{abba})=\mathrm{abaaab}
$$

$$
\varphi \circ \tau \circ \varphi \circ \tau(\mathrm{a})=\varphi(\tau(\varphi(\mathrm{ab})))=\varphi(\tau(\mathrm{aba}))=\varphi(\mathrm{abbaab})=\text { abaaababa }
$$

## S-adic words

## Definition

An infinite word $\mathbf{w}$ is said to be $S$-adic if there is a sequence of alphabets $\left(\mathcal{A}_{n}\right)_{n}$, a sequence of morphisms $\mathbf{s}=\left(\sigma_{n}: \mathcal{A}_{n+1}{ }^{*} \rightarrow \mathcal{A}_{n}{ }^{*}\right)_{n}$ and a sequence of letters $\mathbf{a}=\left(a_{n} \in \mathcal{A}_{n}\right)_{n}$ such that

$$
\mathbf{w}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}\left(a_{n+1}\right) .
$$

The pair $(\mathbf{s}, \mathbf{a})$ is called an $S$-adic representation of $\mathbf{w}$.

## Example

## S-adic words

## Definition

An infinite word $\mathbf{w}$ is said to be $S$-adic if there is a sequence of alphabets $\left(\mathcal{A}_{n}\right)_{n}$, a sequence of morphisms $\mathbf{s}=\left(\sigma_{n}: \mathcal{A}_{n+1}{ }^{*} \rightarrow \mathcal{A}_{n}{ }^{*}\right)_{n}$ and a sequence of letters $\mathbf{a}=\left(a_{n} \in \mathcal{A}_{n}\right)_{n}$ such that

$$
\mathbf{w}=\lim _{n \rightarrow \infty} \sigma_{0} \sigma_{1} \cdots \sigma_{n}\left(a_{n+1}\right) .
$$

The pair $(\mathbf{s}, \mathbf{a})$ is called an $S$-adic representation of $\mathbf{w}$.

## Example

$$
(\mathrm{s}, \mathrm{a})=((\varphi, \tau, \varphi, \tau, \ldots),(\mathrm{a}, \mathrm{a}, \mathrm{a}, \ldots)) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}, \quad \tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{ba}
\end{array}\right.\right.
$$

The pair ( $\mathbf{s}, \mathbf{a}$ ) is (purely) periodic if $\left(\sigma_{m+n}, a_{m+n}\right)=\left(\sigma_{m}, a_{m}\right)$ for all $m$.
It is primitive if for all $r \geq 0$ there is $r^{\prime}>r$ s.t. all letters of $\mathcal{A}_{r}$ occur in $\sigma_{r} \sigma_{r+1} \cdots \sigma_{r^{\prime}}(a)$ for all $a \in \mathcal{A}_{r^{\prime}+1}$.

## Sturmian words

## Definition

An infinite word $\mathbf{w}$ is Sturmian if it has $n+1$ distinct factors of length $n$ for every $n \geq 0$.

## Example

$$
\mathbf{f}=\text { abaababaabaababa } \cdots
$$

$$
\mathcal{L}(f)=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}}_{2}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}}_{3}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}}_{4}, \underbrace{\text { aaba, abaa, abab, baab, baba}}_{5}, \ldots\}
$$

## Arnoux-Rauzy words

## Definition

An infinite word $\mathbf{w}$ over an alphabet of $k$ letters is an Arnoux-Rauzy word if :

1. it has $(k-1) n+1$ distinct factors of length $n$ for every $n \geq 0$;
2. for each length only one factor is right special ; and
3. its set of factors is closed under reversal.

## Example (Tribonacci : $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$ )

$\mathbf{t}=$ abacabaabacababacabaabaca $\cdots$

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\text { aab, aba, aca, baa, bab, bac, cab}}_{7}, \ldots\}
$$

Arnoux-Rauzy words

## Definition

An infinite word $\mathbf{w}$ over an alphabet of $k$ letters is an Arnoux-Rauzy word if :

1. it has $(k-1) n+1$ distinct factors of length $n$ for every $n \geq 0$;
2. for each length only one factor is right special ; and
3. its set of factors is closed under reversal.

## Example (Tribonacci : $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$ )

$$
\mathbf{t}=\text { abacabaabacababacabaabaca } \cdots
$$

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

Arnoux-Rauzy words

## Definition

An infinite word $\mathbf{w}$ over an alphabet of $k$ letters is an Arnoux-Rauzy word if :

1. it has $(k-1) n+1$ distinct factors of length $n$ for every $n \geq 0$;
2. for each length only one factor is right special ; and
3. its set of factors is closed under reversal.

## Example (Tribonacci : $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$ )

$$
\mathbf{t}=\text { abacabaabacababacabaabaca } \cdots
$$

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )


$\mathcal{E}(b)$


## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )


$\mathcal{E}(b)$


## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )


$\mathcal{E}(b)$


## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )


$\mathcal{E}(b)$


## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )



$$
\mathcal{E}(a)
$$

$$
\mathcal{E}(b)
$$



## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )


## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )


$\mathcal{E}(b)$


## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$ )


$\mathcal{E}(b)$


## Dendric words

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

## Definition

A language $\mathcal{L}$ is (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.
Sturmian words (and Arnoux-Rauzy) are dendric.

## Recurrence and uniforme recurrence

## Definition

A language $\mathcal{L}$ is recurrent if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $u w v \in \mathcal{L}$.

## Example (Fibonacci)

$$
\mathbf{f}=\text { abaababaabaababaababaabaababa } \cdots
$$

## Recurrence and uniforme recurrence

## Definition

A language $\mathcal{L}$ is recurrent if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $u w v \in \mathcal{L}$.
$\mathcal{L}$ is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that $u$ is a factor of every word of length $n$ in $\mathcal{L}$.

## Example (Fibonacci)

## Recurrence and uniforme recurrence

## Definition

A language $\mathcal{L}$ is recurrent if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $u w v \in \mathcal{L}$.
$\mathcal{L}$ is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that $u$ is a factor of every word of length $n$ in $\mathcal{L}$.

## Proposition

Uniformly recurrence $\quad \Longrightarrow \quad$ Recurrence.

## Recurrence and uniforme recurrence

## Definition

A language $\mathcal{L}$ is recurrent if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $u w v \in \mathcal{L}$.
$\mathcal{L}$ is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that $u$ is a factor of every word of length $n$ in $\mathcal{L}$.

## Proposition

Uniformly recurrence $\quad \Longrightarrow \quad$ Recurrence.

## Example (counter-example)

$$
\text { x = a.b.aa.ab.ba.bb.aaa.aab.aba.abb.baa } \cdot \text {. }
$$

is recurrent, but $a^{n}$ is never a factor of $b^{m}$.

## Recurrence and uniforme recurrence

## Definition

A language $\mathcal{L}$ is recurrent if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $u w v \in \mathcal{L}$.
$\mathcal{L}$ is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that $u$ is a factor of every word of length $n$ in $\mathcal{L}$.

## Proposition

Uniformly recurrence $\quad \Longrightarrow \quad$ Recurrence.

## Example (counter-example)

$$
\text { x = a.b.aa.ab.ba.bb.aaa.aab.aba.abb.baa } \cdot \cdots
$$

is recurrent, but $\mathrm{a}^{n}$ is never a factor of $\mathrm{b}^{m}$.

What if we want a word "starting" and "ending" with $u$ ?
(see Herman's talk just after that!)

## Palindromes

## Definition

A palindrome is a finite word $w$ that is equal to its reversal $\widetilde{w}$.

## Example

- kayak
- blb, krk, oko
- nepochopen


## Palindromes

## Definition

A palindrome is a finite word $w$ that is equal to its reversal $\widetilde{w}$.

## Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat



## Palindromes

## Definition

A palindrome is a finite word $w$ that is equal to its reversal $\widetilde{w}$.

## Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev



## Palindromes

## Definition

A palindrome is a finite word $w$ that is equal to its reversal $\widetilde{w}$.

## Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej



## Palindromes

## Definition

A palindrome is a finite word $w$ that is equal to its reversal $\widetilde{w}$.

## Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej
- Madam I'm Adam



## Palindromes

## Definition

A palindrome is a finite word $w$ that is equal to its reversal $\widetilde{w}$.

## Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej
- Madam I'm Adam
- 135797531

- Signate, signate, mere me tangis et angis


## Rich words

Theorem [Droubay, Justin, Pirillo (2001)]
A word of length $n$ has at most $n+1$ palindrome factors.

A word with maximal number of palindromes is rich.

## Rich words

## Theorem [Droubay, Justin, Pirillo (2001)]

A word of length $n$ has at most $n+1$ palindrome factors.

A word with maximal number of palindromes is rich.

- $\mathcal{P}$ (ananas $)=\{\varepsilon, a, n, s$, ana, nan, anana $\}$

$$
\# \mathcal{P}(w)=7=|w|+1
$$



## Rich words

## Theorem [Droubay, Justin, Pirillo (2001)]

A word of length $n$ has at most $n+1$ palindrome factors.

A word with maximal number of palindromes is rich.

- $\mathcal{P}$ (ananas $)=\{\varepsilon, \mathrm{a}, \mathrm{n}, \mathrm{s}$, ana, nan, anana $\}$

$$
\# \mathcal{P}(w)=7=|w|+1
$$

- $\mathcal{P}($ pizza $)=\{\varepsilon, \mathrm{a}, \mathrm{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}(w)=6=|w|+1
$$

## Rich words

## Theorem [Droubay, Justin, Pirillo (2001)]

A word of length $n$ has at most $n+1$ palindrome factors.

A word with maximal number of palindromes is rich.

- $\mathcal{P}$ (ananas $)=\{\varepsilon, \mathrm{a}, \mathrm{n}, \mathrm{s}$, ana, nan, anana $\}$

$$
\# \mathcal{P}(w)=7=|w|+1
$$

- $\mathcal{P}($ pizza $)=\{\varepsilon, \mathrm{a}, \mathrm{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}(w)=6=|w|+1
$$

- $\mathcal{P}$ (hawaiipizza) $=\{\varepsilon, \mathrm{a}, \mathrm{h}, \mathrm{i}, \mathrm{p}, \mathrm{z}, \mathrm{ii}, \mathrm{zz}, \mathrm{awa}\}$

$$
\# \mathcal{P}(w)=9<12=|w|+1
$$



## Rich words

## Theorem [Droubay, Justin, Pirillo (2001)]

A word of length $n$ has at most $n+1$ palindrome factors.

A word with maximal number of palindromes is rich.

- $\mathcal{P}$ (ananas $)=\{\varepsilon, \mathrm{a}, \mathrm{n}, \mathrm{s}$, ana, nan, anana $\}$

$$
\# \mathcal{P}(w)=7=|w|+1
$$

- $\mathcal{P}($ pizza $)=\{\varepsilon, \mathrm{a}, \mathrm{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}(w)=6=|w|+1
$$

- $\mathcal{P}$ (hawaiipizza) $=\{\varepsilon, \mathrm{a}, \mathrm{h}, \mathrm{i}, \mathrm{p}, \mathrm{z}, \mathrm{ii}, \mathrm{zz}, \mathrm{awa}\}$

$$
\# \mathcal{P}(w)=9<12=|w|+1
$$



An infinite word (resp. factorial set) is rich if all its prefixes (resp. elements) are rich.


More on that on Lubka's talk tomorrow.

## Děkuji za pozornost!



