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In the beginning was the Word

• strč, prst, skrz, krk

• ACGA, TACGGACATTA, CATATACG

• 01, 100010, 0100101

• ♥♥♣ ♦ ♠♥ ♠
• . . .

As, for instance, on Veronika’s talk on Monday.
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Let’s start with the ABC

Definition

• A (finite) is an alphabet.

• a ∈ A is a letter.

• A∗ is the free monoid and A+ = A∗ \ ε the free semigroup

• w ∈ A∗ is a (finite) word.

Example

• ε, a, bba, abba ∈ {a, b}∗

• a · bb = abb
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Lenght matters

Definition

The length |w | of a word w = a0a1 · · · an−1 is n.

For each letter a, we have |w |a = #{a’s in w}.

Example

• |ε| = 0, |a| = 1, |abbba| = 5.

• |abbba|a = 2, |abbba|b = 3, |abbba|c = 0.

Proposition

For every word w ∈ A∗ we have ∑
a∈A

|w |a =
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Francesco Dolce (ČVUT) Introduction on Words TIGR CoW 17.05.24 4 / 21



The start, the end, and everything in between

Definition

Let w = pfs ∈ A∗ with p, f , s ∈ A∗.
• f is a factor of w ,

• p is a prefix of w ,

• s is a suffix of w ,

• if p, s ∈ A+, f is an internal factor of w .

Example

w = nejblbějšı́

Example

The factors of abaa are : ε, a, b, aa, ab, ba, aba, baa, w = abaa.
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Languages

Definition

A (finite or infinite) subset of A∗ is called a language.

The language of a word w is the set L(w) of all its factors.

A language is factorial if it contains the factors of every of its elements.

Example

• L0 = {ε},

X

• L1 = {a, b, aba, bb},

7 aba ∈ L1 but ab /∈ L1

• L2 = {w ∈ A∗ : |w | < 10},

X

• L3 = ab∗a = {aa, aba, abba, abbba, abbba, . . .},

7 aba ∈ L3 but b /∈ L3

• L4 = {w ∈ A∗ : |w |b = 1},

7 ab ∈ L4 but a /∈ L4

• L(abaa) = {ε, a, b, aa, ab, ba, aba, baa, w}

X by construction
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Factor complexity

Definition

The factor complexity function of a word w is the map pw (n) : L(w) → N counting the
distinct factors of any length.

Example

w = abaccb

n 0 1 2 3 4 5 6 7 8 9 · · ·
pw (n)

1 3 5 4 3 2 1 0 0 0 · · ·

L(w) = {

ε, a, b, c︸ ︷︷ ︸
3

, ab, ac, ba, cb, cc︸ ︷︷ ︸
5

, aba, acc, bac, ccb︸ ︷︷ ︸
4

, abac, accb, bacc︸ ︷︷ ︸
3

, abacc, baccb︸ ︷︷ ︸
2

,w

}
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Francesco Dolce (ČVUT) Introduction on Words TIGR CoW 17.05.24 7 / 21



Factor complexity

Definition

The factor complexity function of a word w is the map pw (n) : L(w) → N counting the
distinct factors of any length.

Example

w = abaccb

n 0 1 2 3 4 5 6 7 8 9 · · ·
pw (n) 1 3 5 4 3

2 1 0 0 0 · · ·

L(w) = {ε, a, b, c︸ ︷︷ ︸
3

, ab, ac, ba, cb, cc︸ ︷︷ ︸
5

, aba, acc, bac, ccb︸ ︷︷ ︸
4

, abac, accb, bacc︸ ︷︷ ︸
3

,

abacc, baccb︸ ︷︷ ︸
2

,w

}
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Special factors

Definition

An element u of a language L is right-special if ua, ub ∈ L for two distinct letters a, b.

Similar definition for left-special.

A factor is bispecial if it is both left- and right-special.
An ordinary factor is a factor that is not bispecial.

Example

Let w = abaccb.

• a is right-special, since ab, ac ∈ L(w) ;

• b is left-special, since ab, cb ∈ L(w) ;

• c is bispecial, since it is both left-special and right-special (ac, cc, cb ∈ L(w)).
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Infinite words

Definition

An infinite word is a sequence w = a0a1a2 · · · , with ai letters.

The set of all (right-)infinite words over A is denoted AN.

We can naturally extend the notions of prefix, suffix, factor, etc.

Example

• w = aabaaaaaaaaaaaaaaa · · · ∈ {a, b}N ;

• aab is a proper prefix,

• w is a prefix,

• baa is an internal factor,

• abaaaaaa · · · = abaω is a suffix,

• pw(n) = 4 for every n ≥ 3 (Exercise !)
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Francesco Dolce (ČVUT) Introduction on Words TIGR CoW 17.05.24 9 / 21



Infinite words

Definition

An infinite word is a sequence w = a0a1a2 · · · , with ai letters.

The set of all (right-)infinite words over A is denoted AN.

We can naturally extend the notions of prefix, suffix, factor, etc.

Example

• w = aabaaaaaaaaaaaaaaa · · · ∈ {a, b}N ;

• aab is a proper prefix,

• w is a prefix,

• baa is an internal factor,

• abaaaaaa · · · = abaω is a suffix,

• pw(n) = 4 for every n ≥ 3 (Exercise !)
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Periodic words

Definition

An infinite word of the form uvω, with u ∈ A∗, v ∈ A+ is (eventually) periodic.
If u = ε, it is purely periodic.

We can also extend the factor complexity to infinite words.

Theorem [Morse, Hedlund (1938))]

An infinite word w is eventually periodic iff for some n we have pw(n) = pw(n + 1).
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If u = ε, it is purely periodic.

We can also extend the factor complexity to infinite words.

Theorem [Morse, Hedlund (1938))]

An infinite word w is eventually periodic iff for some n we have pw(n) = pw(n + 1).
Proof.

ε ...
· · ·

u1

u2

...

uk

u1a1 = b1v1

u2a2 = b2v2

u3a3 = b3v3

Want to check whether this proof
is correct ?
See Štěpán’s talk later !
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u1a1 = b1v1

u2a2 = b2v2

u3a3 = b3v3

Want to check whether this proof
is correct ?
See Štěpán’s talk later !
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Theorem [Morse, Hedlund (1938))]

An infinite word w is eventually periodic iff for some n we have pw(n) = pw(n + 1).
Proof.

ε ...
· · ·

u1

u2

...

uk

u1a1 = b1v1

u2a2 = b2v2

u3a3 = b3v3

Want to check whether this proof
is correct ?
See Štěpán’s talk later !

Can a (not necessarly periodic) word have repeated factors ?
More on Daniela’s talk tomorrow !
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Morphisms
Definition

A morphism is a map ψ : A∗ → B∗ such that ψ(uv) = ψ(u)ψ(v) for every u, v ∈ A∗.

A substitution is a morphism ψ : A∗ → A∗ s.t there exists a letter a ∈ A with

• ψ(a) = as and

• lim
n→∞

|ψn(a)| =∞.

The word limn→∞ ψ
n(a) is a fixed point of the substitution.

Example

ψ1 :

{
a 7→ 010

b 7→ 1
, ψ2 :

{
a 7→ ab

b 7→ b
ψ3 :

{
a 7→ ab

b 7→ a

A substitution ψ is primitive if there is a k such that
b ∈ L(ψk(a)) for every a, b ∈ A.
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Thue-Morse (and many others)

The Thue-Morse word is defined as the fixed point

x = abbabaabbaababbabaababbaabbabaabbaababbaabbabaa · · ·

of the morphism

τ :

{
a 7→ ab

b 7→ ba
.

Definition

A morphism ψ is k-uniform if |ψ(a)| = k for every letter a.

Do you want to know more about this sequence ?
Maaany occasions to do so : see Herman’s talk later, Samuel’s one
tomorrow, Martina’s one on Monday, and probably on others too !
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Fibonacci

The Fibonacci word is defined as the fixed point

f = ϕω(a) = abaababaabaababa · · ·

of the morphism

ϕ :

{
a 7→ ab

b 7→ a
.

The lengths of the prefixes |ϕn(a)|, i.e., 1, 2, 3, 5, 8, . . . are the Fibonacci numbers.
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S-adic words

Definition

An infinite word w is said to be S-adic if there is

a sequence of alphabets (An)n,

a sequence
of morphisms s = (σn : A

n+1

∗ → A

n

∗)n and a sequence of letters a = (an ∈ A

n

)n such
that

w = lim
n→∞

σ0σ1 · · ·σn(an+1).

The pair (s, a) is called an S-adic representation of w.

Example

(s, a) =
(
(ϕ, τ, ϕ, τ, . . .), (a, a, a, . . .)

)
where ϕ :

{
a 7→ ab

b 7→ a
, τ :

{
a 7→ ab

b 7→ ba
.
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(
(ϕ, τ, ϕ, τ, . . .), (a, a, a, . . .)

)
where ϕ :

{
a 7→ ab

b 7→ a
, τ :

{
a 7→ ab

b 7→ ba
.

The pair (s, a) is (purely) periodic if (σm+n, am+n) = (σm, am) for all m.

It is primitive if for all r ≥ 0 there is r ′ > r s.t. all letters of Ar occur in σrσr+1 · · ·σr′(a)
for all a ∈ Ar′+1.
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Sturmian words

Definition

An infinite word w is Sturmian if it has n + 1 distinct factors of length n for every n ≥ 0.

Example

f = abaababaabaababa · · ·

L(f) = { ε︸︷︷︸
1

, a, b︸︷︷︸
2

, aa, ab, ba︸ ︷︷ ︸
3

, aab, aba, baa, bab︸ ︷︷ ︸
4

, aaba, abaa, abab, baab, baba︸ ︷︷ ︸
5

, . . .}
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Arnoux-Rauzy words

Definition

An infinite word w over an alphabet of k letters is an Arnoux-Rauzy word if :

1. it has (k − 1)n + 1 distinct factors of length n for every n ≥ 0 ;

2. for each length only one factor is right special ; and

3. its set of factors is closed under reversal.

Example (Tribonacci : ψ : a 7→ ab, b 7→ ac, c 7→ a)

t = abacabaabacababacabaabaca · · ·

L(t) = { ε︸︷︷︸
1

, a, b, c︸ ︷︷ ︸
3

, aa, ab, ac, ba, ca︸ ︷︷ ︸
5

, aab, aba, aca, baa, bab, bac, cab︸ ︷︷ ︸
7

, . . .}
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Dendric words

The extension graph of a word w ∈ L is the undirected bipartite graph E(w) with
vertices L(w) t R(w) and edges B(w), where

L(w) = {u ∈ A | uw ∈ L}
R(w) = {v ∈ A |wv ∈ L}
B(w) = {(u, v) ∈ A×A | uwv ∈ L}

Example (Fibonacci, L = {ε, a, b, aa, ab, ba, aab, aba, baa, bab, . . .})

E(ε) E(a) E(b)

a

b

a

b

a

b

a

b

a a
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Dendric words

The extension graph of a word w ∈ L is the undirected bipartite graph E(w) with
vertices L(w) t R(w) and edges B(w), where

L(w) = {u ∈ A | uw ∈ L}
R(w) = {v ∈ A |wv ∈ L}
B(w) = {(u, v) ∈ A×A | uwv ∈ L}

Definition

A language L is (purely) dendric if the graph E(w) is a tree for any w ∈ L.

Sturmian words (and Arnoux-Rauzy) are dendric.
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Recurrence and uniforme recurrence

Definition

A language L is recurrent if for every u, v ∈ L, there is a w ∈ L such that uwv ∈ L.

L is uniformly recurrent if for every u ∈ L there exists an n ∈ N such that u is a factor
of every word of length n in L.

Example (Fibonacci)

f = abaababaabaababaababaabaababa · · ·

What if we want a word ”starting” and ”ending” with u ?
(see Herman’s talk just after that !)
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Palindromes
Definition

A palindrome is a finite word w that is equal to its reversal w̃ .

Example

• kayak

• blb, krk, oko

• nepochopen

• Taco Cat

• V elipse sṕı lev

• Jelenovi pivo nelej

• Madam I’m Adam

• 135797531

• Signate, signate, mere me tangis et angis

• . . .
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Rich words
Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is rich.

• P(ananas) = {ε, a, n, s, ana, nan, anana}
#P(w) = 7 = |w |+ 1 X

• P(pizza) = {ε, a, i, p, z, zz}
#P(w) = 6 = |w |+ 1 X

• P(hawaiipizza) = {ε, a, h, i, p, z, ii, zz, awa}
#P(w) = 9 < 12 = |w |+ 1 7

An infinite word (resp. factorial set) is rich if all its prefixes (resp. elements) are rich.

More on that on Lubka’s talk tomorrow.
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Francesco Dolce (ČVUT) Introduction on Words TIGR CoW 17.05.24 20 / 21



Rich words
Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is rich.

• P(ananas) = {ε, a, n, s, ana, nan, anana}
#P(w) = 7 = |w |+ 1 X

• P(pizza) = {ε, a, i, p, z, zz}
#P(w) = 6 = |w |+ 1 X

• P(hawaiipizza) = {ε, a, h, i, p, z, ii, zz, awa}
#P(w) = 9 < 12 = |w |+ 1 7

An infinite word (resp. factorial set) is rich if all its prefixes (resp. elements) are rich.

More on that on Lubka’s talk tomorrow.
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Děkuji za pozornost !
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