A friendly introduction to Combinatorics on Words

 $Francesco \ \mathrm{Dolce}$

Janov nad Nisou, 17. května 2024

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

■ ▶ 《 볼 ▶ 《 볼 ▶ 볼 ~ つ Q @ TIGR CoW 17.05.24 1/21

• • • • • • • •

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

• strč, prst, skrz, krk

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

- strč, prst, skrz, krk
- ACGA, TACGGACATTA, CATATACG

As, for instance, on Veronika's talk on Monday.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 2/21

- strč, prst, skrz, krk
- ACGA, TACGGACATTA, CATATACG •
- 01, 100010, 0100101 •

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

ヨト・イヨト TIGR CoW 17.05.24 2/21

э

- strč, prst, skrz, krk
- ACGA, TACGGACATTA, CATATACG
- 01, 100010, 0100101
- \$\$\$
- . . .

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Let's start with the ABC

Definition

- \mathcal{A} (finite) is an alphabet.
- $a \in \mathcal{A}$ is a letter.
- \mathcal{A}^* is the free monoid and $\mathcal{A}^+ = \mathcal{A}^* \setminus \varepsilon$ the free semigroup
- $w \in \mathcal{A}^*$ is a (finite) word.

Example

- $\varepsilon, \mathtt{a}, \mathtt{bba}, \mathtt{abba} \in \{\mathtt{a}, \mathtt{b}\}^*$
- $a \cdot bb = abb$

Francesco Dolce (ČVUT)

Definition

The length |w| of a word $w = a_0 a_1 \cdots a_{n-1}$ is n.

Example

• $|\varepsilon| = 0$, |a| = 1, |abbba| = 5.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 4/21

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Definition

The length |w| of a word $w = a_0 a_1 \cdots a_{n-1}$ is *n*. For each letter *a*, we have $|w|_a = \#\{a' \text{ s in } w\}$.

Example

- $|\varepsilon| = 0$, |a| = 1, |abbba| = 5.
- $|abbba|_a = 2$, $|abbba|_b = 3$, $|abbba|_c = 0$.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 4/21

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ・ つへつ

Definition

The length |w| of a word $w = a_0 a_1 \cdots a_{n-1}$ is *n*. For each letter *a*, we have $|w|_a = \#\{a' \text{ s in } w\}$.

Example

•
$$|\varepsilon| = 0$$
, $|a| = 1$, $|abbba| = 5$.

•
$$|abbba|_a = 2$$
, $|abbba|_b = 3$, $|abbba|_c = 0$.

Proposition

For every word $w \in \mathcal{A}^*$ we have

$$\sum_{a\in\mathcal{A}}|w|_a=?$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

The length |w| of a word $w = a_0 a_1 \cdots a_{n-1}$ is *n*. For each letter *a*, we have $|w|_a = \#\{a' \text{ s in } w\}$.

Example

•
$$|\varepsilon| = 0$$
, $|a| = 1$, $|abbba| = 5$.

•
$$|abbba|_a = 2$$
, $|abbba|_b = 3$, $|abbba|_c = 0$.

Proposition

For every word $w \in \mathcal{A}^*$ we have

$$\sum_{a\in\mathcal{A}}|w|_a=|w|$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 回 > < の Q (~ TIGR CoW 17.05.24 4 / 21

The start, the end, and everything in between

Definition

- Let $w = pfs \in \mathcal{A}^*$ with $p, f, s \in \mathcal{A}^*$.
 - f is a factor of w,
 - p is a prefix of w,
 - s is a suffix of w,
 - if $p, s \in A^+$, f is an internal factor of w.

Example

w = nejblbější

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

The start, the end, and everything in between

Definition

- Let $w = pfs \in \mathcal{A}^*$ with $p, f, s \in \mathcal{A}^*$.
 - f is a factor of w,
 - p is a prefix of w,
 - s is a suffix of w,
 - if $p, s \in A^+$, f is an internal factor of w.

Example

w = nejblbější

Example

The factors of abaa are :

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < つ < ⊂ TIGR CoW 17.05.24 5/21

The start, the end, and everything in between

Definition

- Let $w = pfs \in \mathcal{A}^*$ with $p, f, s \in \mathcal{A}^*$.
 - f is a factor of w,
 - p is a prefix of w,
 - s is a suffix of w,
 - if $p, s \in A^+$, f is an internal factor of w.

Example

w = nejblbější

Example

The factors of abaa are : ε , a, b, aa, ab, ba, aba, baa, w = abaa.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < つ < ⊂ TIGR CoW 17.05.24 5/21

Definition

A (finite or infinite) subset of \mathcal{A}^* is called a *language*.

Example

- $\mathcal{L}_0 = \{\varepsilon\}$,
- $\mathcal{L}_1 = \{a, b, aba, bb\},\$
- $\mathcal{L}_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},$
- $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, ...\},$

•
$$\mathcal{L}_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \},$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 6 / 21

イロト 不同 トイヨト イヨト 二日

Definition

- A (finite or infinite) subset of A^* is called a *language*.
- The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

Example

- $\mathcal{L}_0 = \{\varepsilon\}$,
- $\mathcal{L}_1 = \{a, b, aba, bb\},\$
- $\mathcal{L}_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},$
- $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, ...\},$

•
$$\mathcal{L}_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}$$

• $\mathcal{L}(abaa) = \{\varepsilon, a, b, aa, ab, ba, aba, baa, w\}$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

A (finite or infinite) subset of A^* is called a *language*.

The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

Example

- $\mathcal{L}_0 = \{\varepsilon\}$,
- $\mathcal{L}_1 = \{a, b, aba, bb\},\$
- $\mathcal{L}_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},$
- $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, ...\},$

•
$$\mathcal{L}_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}$$

• $\mathcal{L}(abaa) = \{\varepsilon, a, b, aa, ab, ba, aba, baa, w\}$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

A (finite or infinite) subset of A^* is called a *language*.

The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

Example

•
$$\mathcal{L}_0 = \{\varepsilon\},$$

• $\mathcal{L}_1 = \{a, b, aba, bb\},\$

•
$$\mathcal{L}_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},$$

• $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, ...\},$

•
$$\mathcal{L}_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}$$

• $\mathcal{L}(abaa) = \{\varepsilon, a, b, aa, ab, ba, aba, baa, w\}$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

A (finite or infinite) subset of A^* is called a *language*.

The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

Example

•
$$\mathcal{L}_0 = \{\varepsilon\},$$

- $\mathcal{L}_1 = \{ \mathtt{a}, \mathtt{b}, \mathtt{aba}, \mathtt{bb} \}$, \checkmark $\texttt{aba} \in \mathcal{L}_1 \ \texttt{but} \ \mathtt{ab} \notin \mathcal{L}_1$
- $\mathcal{L}_2 = \{ w \in \mathcal{A}^* : |w| < 10 \},$
- $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, ...\},$

•
$$\mathcal{L}_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}$$

• $\mathcal{L}(abaa) = \{\varepsilon, a, b, aa, ab, ba, aba, baa, w\}$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

A (finite or infinite) subset of A^* is called a *language*.

The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

Example

•
$$\mathcal{L}_0 = \{\varepsilon\},$$

- $\mathcal{L}_1 = \{ \mathtt{a}, \mathtt{b}, \mathtt{aba}, \mathtt{bb} \}$, \checkmark $\texttt{aba} \in \mathcal{L}_1 \ \texttt{but} \ \mathtt{ab} \notin \mathcal{L}_1$
- $\mathcal{L}_2 = \{ w \in \mathcal{A}^* \; : \; |w| < 10 \},$
- $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, ...\},$

•
$$\mathcal{L}_4 = \{ w \in \mathcal{A}^* : |w|_b = 1 \}$$

• $\mathcal{L}(abaa) = \{\varepsilon, a, b, aa, ab, ba, aba, baa, w\}$

Francesco Dolce (ČVUT)

Definition

A (finite or infinite) subset of A^* is called a *language*.

The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

Example

FRANCESCO DOLCE (ČVUT)

Definition

A (finite or infinite) subset of A^* is called a *language*.

The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

Example

•
$$\mathcal{L}_0 = \{\varepsilon\}$$
,

- $\mathcal{L}_1 = \{a, b, aba, bb\},$ \bigstar $aba \in \mathcal{L}_1 \text{ but } ab \notin \mathcal{L}_1$
- $\mathcal{L}_2 = \{ w \in \mathcal{A}^* \; : \; |w| < 10 \},$
- $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, \dots\}$, \bigstar $aba \in \mathcal{L}_3$ but $b \notin \mathcal{L}_3$
- $\mathcal{L}_4 = \{ w \in \mathcal{A}^* \ : \ |w|_b = 1 \}$, X ab $\in \mathcal{L}_4$ but a $\notin \mathcal{L}_4$
- $\mathcal{L}(abaa) = \{\varepsilon, a, b, aa, ab, ba, aba, baa, w\}$

Francesco Dolce (ČVUT)

Definition

A (finite or infinite) subset of A^* is called a *language*.

The language of a word w is the set $\mathcal{L}(w)$ of all its factors.

A language is *factorial* if it contains the factors of every of its elements.

Example

•
$$\mathcal{L}_0 = \{\varepsilon\}, \qquad \checkmark$$

- $\mathcal{L}_1 = \{ \mathtt{a}, \mathtt{b}, \mathtt{aba}, \mathtt{bb} \}$, \checkmark $\texttt{aba} \in \mathcal{L}_1 \ \texttt{but} \ \mathtt{ab} \notin \mathcal{L}_1$
- $\mathcal{L}_2 = \{ w \in \mathcal{A}^* \; : \; |w| < 10 \},$
- $\mathcal{L}_3 = ab^*a = \{aa, aba, abba, abbba, abbba, \dots\}$, \bigstar $aba \in \mathcal{L}_3$ but $b \notin \mathcal{L}_3$
- $\mathcal{L}_4 = \{ w \in \mathcal{A}^* \ : \ |w|_b = 1 \}$, X $ab \in \mathcal{L}_4$ but $a \notin \mathcal{L}_4$
- $\mathcal{L}(abaa) = \{\varepsilon, a, b, aa, ab, ba, aba, baa, w\}$ by construction

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

The factor complexity function of a word w is the map $p_w(n): \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

w = abaccb1 2 3 4 5 6 7 8 9 n 0 . . . $p_w(n)$ $\mathcal{L}(w) = \{$ }

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

イロト イヨト イヨト イヨト TIGR CoW 17.05.24 7/21

Definition

The factor complexity function of a word w is the map $p_w(n) : \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

Example

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ○ TIGR CoW 17.05.24 7/21

Definition

The factor complexity function of a word w is the map $p_w(n) : \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

Example

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで TIGR CoW 17.05.24 7/21

Definition

The factor complexity function of a word w is the map $p_w(n): \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

イロト イヨト イヨト イヨト TIGR CoW 17.05.24 7/21

э

Definition

The factor complexity function of a word w is the map $p_w(n) : \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

Example

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ○ TIGR CoW 17.05.24 7/21

Definition

The factor complexity function of a word w is the map $p_w(n) : \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

イロト イヨト イヨト TIGR CoW 17.05.24 7/21

Definition

The factor complexity function of a word w is the map $p_w(n) : \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

Example

$$w = abaccb$$

$$\frac{n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \cdots}{p_w(n) | 1 | 3 | 5 | 4 | 3 | 2 | | | | | | | |}$$

$$\mathcal{L}(w) = \{\varepsilon, \underbrace{a, b, c}_{3}, \underbrace{ab, ac, ba, cb, cc}_{5}, \underbrace{aba, acc, bac, ccb}_{4}, \underbrace{abac, accb, bacc}_{3}, \underbrace{abacc, baccb}_{2}, \}$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ○ TIGR CoW 17.05.24 7/21

Definition

The factor complexity function of a word w is the map $p_w(n) : \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

$$w = abaccb$$

$$\frac{n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \cdots}{p_w(n) | 1 | 3 | 5 | 4 | 3 | 2 | 1 | | | | | | |}$$

$$\mathcal{L}(w) = \{\varepsilon, \underbrace{a, b, c}_{3}, \underbrace{ab, ac, ba, cb, cc}_{5}, \underbrace{aba, acc, bac, ccb}_{4}, \underbrace{abac, accb, bacc}_{3}, \underbrace{abacc, baccb}_{2}, w\}$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

イロト イヨト イヨト イヨト TIGR CoW 17.05.24 7/21

Definition

The factor complexity function of a word w is the map $p_w(n) : \mathcal{L}(w) \to \mathbb{N}$ counting the distinct factors of any length.

Example

$$w = abaccb$$

$$\frac{n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | \cdots}{p_w(n) | 1 | 3 | 5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 | 0 | \cdots}$$

$$\mathcal{L}(w) = \{\varepsilon, \underbrace{a, b, c}_{3}, \underbrace{ab, ac, ba, cb, cc}_{5}, \underbrace{aba, acc, bac, ccb}_{4}, \underbrace{abac, accb, bacc}_{3}, \underbrace{abacc, baccb}_{2}, w\}$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の < ○ TIGR CoW 17.05.24 7/21

Special factors

Definition

An element u of a language \mathcal{L} is *right-special* if $ua, ub \in \mathcal{L}$ for two distinct letters a, b.

Similar definition for left-special.

A factor is *bispecial* if it is both left- and right-special. An *ordinary* factor is a factor that is not bispecial.

Example

Let w = abaccb.

- a is right-special, since $ab, ac \in \mathcal{L}(w)$;
- b is left-special, since $ab, cb \in \mathcal{L}(w)$;
- c is bispecial, since it is both left-special and right-special $(ac, cc, cb \in \mathcal{L}(w))$.

Francesco Dolce (ČVUT)

Infinite words

Definition

An *infinite word* is a sequence $\mathbf{w} = a_0 a_1 a_2 \cdots$, with a_i letters.

The set of all (right-)infinite words over \mathcal{A} is denoted $\mathcal{A}^{\mathbb{N}}$.

Example

• $\mathbf{w} = aabaaaaaaaaaaaaaaa \cdots \in \{a, b\}^{\mathbb{N}};$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

Infinite words

Definition

An *infinite word* is a sequence $\mathbf{w} = a_0 a_1 a_2 \cdots$, with a_i letters.

The set of all (right-)infinite words over \mathcal{A} is denoted $\mathcal{A}^{\mathbb{N}}$.

We can naturally extend the notions of prefix, suffix, factor, etc.

Example

- $\mathbf{w} = aabaaaaaaaaaaaaaa \cdots \in \{a, b\}^{\mathbb{N}}$;
- aab is a proper prefix,
- w is a prefix,
- baa is an internal factor,
- abaaaaaa $\cdots = aba^{\omega}$ is a suffix,

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Infinite words

Definition

An *infinite word* is a sequence $\mathbf{w} = a_0 a_1 a_2 \cdots$, with a_i letters.

The set of all (right-)infinite words over \mathcal{A} is denoted $\mathcal{A}^{\mathbb{N}}$.

We can naturally extend the notions of prefix, suffix, factor, etc.

Example

- $\mathbf{w} = aabaaaaaaaaaaaaaa \cdots \in \{a, b\}^{\mathbb{N}}$;
- aab is a proper prefix,
- w is a prefix,
- baa is an internal factor,
- abaaaaaa $\cdots = aba^{\omega}$ is a suffix,
- $p_w(n) = 4$ for every $n \ge 3$ (Exercise!)

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

An infinite word of the form uv^{ω} , with $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$ is (eventually) periodic. If $u = \varepsilon$, it is purely periodic.

We can also extend the *factor complexity* to infinite words.

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

Definition

An infinite word of the form uv^{ω} , with $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$ is (eventually) periodic. If $u = \varepsilon$, it is purely periodic.

We can also extend the *factor complexity* to infinite words.

Theorem [Morse, Hedlund (1938))]

An infinite word **w** is eventually periodic iff for some *n* we have $p_w(n) = p_w(n+1)$.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

イロト 不同 トイヨト イヨト 二日

TIGR CoW 17.05.24

10/21

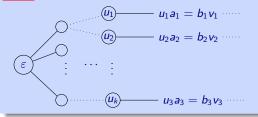
Definition

An infinite word of the form uv^{ω} , with $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$ is (eventually) periodic. If $u = \varepsilon$, it is purely periodic.

We can also extend the *factor complexity* to infinite words.

Theorem [Morse, Hedlund (1938))]

An infinite word **w** is eventually periodic iff for some *n* we have $p_w(n) = p_w(n+1)$. **Proof.**



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 10 / 21

イロト イボト イヨト イヨト 二日

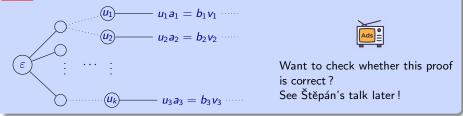
Definition

An infinite word of the form uv^{ω} , with $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$ is (eventually) periodic. If $u = \varepsilon$, it is purely periodic.

We can also extend the *factor complexity* to infinite words.

Theorem [Morse, Hedlund (1938))]

An infinite word **w** is eventually periodic iff for some *n* we have $p_w(n) = p_w(n+1)$. **Proof.**



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < つ < ⊂ TIGR CoW 17.05.24 10 / 21

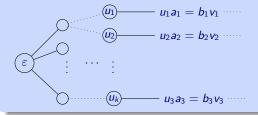
Definition

An infinite word of the form uv^{ω} , with $u \in \mathcal{A}^*$, $v \in \mathcal{A}^+$ is (eventually) periodic. If $u = \varepsilon$, it is purely periodic.

We can also extend the *factor complexity* to infinite words.

Theorem [Morse, Hedlund (1938))]

An infinite word **w** is eventually periodic iff for some *n* we have $p_w(n) = p_w(n+1)$. <u>Proof.</u>



Want to check whether this proof is correct ? See Štěpán's talk later !

Can a (not necessarly periodic) word have repeated factors? More on Daniela's talk tomorrow!

Francesco Dolce (ČVUT)

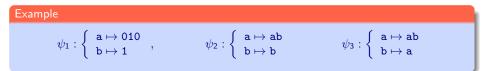
INTRODUCTION ON WORDS

TIGR CoW 17.05.24 10/21

Morphisms

Definition

A morphism is a map $\psi : \mathcal{A}^* \to \mathcal{B}^*$ such that $\psi(uv) = \psi(u)\psi(v)$ for every $u, v \in \mathcal{A}^*$.



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Morphisms

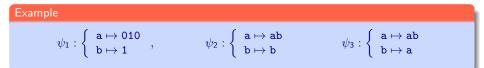
Definition

A morphism is a map $\psi : \mathcal{A}^* \to \mathcal{B}^*$ such that $\psi(uv) = \psi(u)\psi(v)$ for every $u, v \in \mathcal{A}^*$.

A substitution is a morphism $\psi: \mathcal{A}^* \to \mathcal{A}^*$ s.t there exists a letter $a \in \mathcal{A}$ with

- $\psi(a) = as$ and
- $\lim_{n\to\infty} |\psi^n(a)| = \infty.$

The word $\lim_{n\to\infty} \psi^n(a)$ is a *fixed point* of the substitution.



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Morphisms

Definition

A morphism is a map $\psi : \mathcal{A}^* \to \mathcal{B}^*$ such that $\psi(uv) = \psi(u)\psi(v)$ for every $u, v \in \mathcal{A}^*$.

A substitution is a morphism $\psi: \mathcal{A}^* \to \mathcal{A}^*$ s.t there exists a letter $a \in \mathcal{A}$ with

- $\psi(a) = as$ and
- $\lim_{n\to\infty} |\psi^n(a)| = \infty.$

The word $\lim_{n\to\infty} \psi^n(a)$ is a *fixed point* of the substitution.

Example $\psi_1: \left\{ \begin{array}{cc} a \mapsto 010 \\ b \mapsto 1 \end{array} \right.$ $\psi_2: \left\{ \begin{array}{cc} a \mapsto ab \\ b \mapsto b \end{array} \right.$ $\psi_3: \left\{ \begin{array}{cc} a \mapsto ab \\ b \mapsto a \end{array} \right.$

A substitution ψ is *primitive* if there is a k such that $b \in \mathcal{L}(\psi^k(a))$ for every $a, b \in \mathcal{A}$.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Thue-Morse (and many others)

The Thue-Morse word is defined as the fixed point

of the morphism

$$au: \left\{ egin{array}{c} \mathtt{a}\mapsto\mathtt{a}\mathtt{b}\ \mathtt{b}\mapsto\mathtt{b}\mathtt{a} \end{array}
ight..$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つ Q (* TIGR CoW 17.05.24 12 / 21

Thue-Morse (and many others)

The Thue-Morse word is defined as the fixed point

of the morphism

$$au: \left\{ egin{array}{c} \mathtt{a}\mapsto\mathtt{a}\mathtt{b}\ \mathtt{b}\mapsto\mathtt{b}\mathtt{a} \end{array}
ight.$$

Definition

A morphism ψ is *k*-uniform if $|\psi(a)| = k$ for every letter *a*.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つ Q C TIGR CoW 17.05.24 12/21

Thue-Morse (and many others)

The Thue-Morse word is defined as the fixed point

of the morphism

$$au: \left\{ egin{array}{c} \mathtt{a}\mapsto\mathtt{a}\mathtt{b}\ \mathtt{b}\mapsto\mathtt{b}\mathtt{a} \end{array}
ight.$$

Definition

A morphism ψ is *k*-uniform if $|\psi(a)| = k$ for every letter *a*.

Do you want to know more about this sequence? Maaany occasions to do so : see Herman's talk later, Samuel's one tomorrow, Martina's one on Monday, and probably on others too!

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少への TIGR CoW 17.05.24 12/21

Fibonacci

The Fibonacci word is defined as the fixed point

$$\mathbf{f} = arphi^{\omega}(\mathtt{a}) = \mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}\mathtt{b}\mathtt{a}$$

of the morphism

$$arphi: \left\{ egin{array}{c} \mathtt{a}\mapsto\mathtt{a}\mathtt{b}\ \mathtt{b}\mapsto\mathtt{a} \end{array}
ight.$$

The lengths of the prefixes $|\varphi^n(\mathbf{a})|$, i.e., 1,2,3,5,8,... are the *Fibonacci numbers*.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

An infinite word **w** is said to be *S*-adic if there is a sequence of morphisms $\mathbf{s} = (\sigma_n : \mathcal{A} \quad * \to \mathcal{A} \; *)_n$ and a sequence of letters $\mathbf{a} = (a_n \in \mathcal{A} \;)_n$ such that

$$\mathbf{v} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n(\mathbf{a}_{n+1}).$$

The pair (s, a) is called an *S*-adic representation of w.

Example

$$(\mathbf{s}, \mathbf{a}) = ((\varphi, \tau, \varphi, \tau, \ldots), (\mathbf{a}, \mathbf{a}, \mathbf{a}, \ldots)) \quad \text{where} \quad \varphi : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} , \quad \tau : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{ba} \end{array} \right. \right.$$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

<ロ > < 部 > < 書 > < 書 > < 書 > こ > < つ Q (*) TIGR CoW 17.05.24 14 / 21

Definition

An infinite word **w** is said to be *S*-adic if there is a sequence of morphisms $\mathbf{s} = (\sigma_n : \mathcal{A} \quad * \to \mathcal{A} \; *)_n$ and a sequence of letters $\mathbf{a} = (a_n \in \mathcal{A} \;)_n$ such that

$$\mathbf{w} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1}).$$

The pair (s, a) is called an *S*-adic representation of **w**.

Example

$$(\mathbf{s}, \mathbf{a}) = ((\varphi, \tau, \varphi, \tau, \ldots), (\mathbf{a}, \mathbf{a}, \mathbf{a}, \ldots)) \quad \text{where} \quad \varphi : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{a}\mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array}, \quad \tau : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{a}\mathbf{b} \\ \mathbf{b} \mapsto \mathbf{b}\mathbf{a} \end{array} \right\}.$$

 $\varphi(a) = ab$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

<ロ > < 部 > < 書 > < 書 > < 書 > こ > < つ Q (*) TIGR CoW 17.05.24 14 / 21

Definition

An infinite word **w** is said to be *S*-adic if there is a sequence of morphisms $\mathbf{s} = (\sigma_n : \mathcal{A} \quad * \to \mathcal{A} \; *)_n$ and a sequence of letters $\mathbf{a} = (a_n \in \mathcal{A} \;)_n$ such that

$$\mathbf{w} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1}).$$

The pair (s, a) is called an *S*-adic representation of w.

Example

$$(\mathbf{s}, \mathbf{a}) = ((\varphi, \tau, \varphi, \tau, \ldots), (\mathbf{a}, \mathbf{a}, \mathbf{a}, \ldots)) \quad \text{where} \quad \varphi : \begin{cases} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{a} \end{cases}, \quad \tau : \begin{cases} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{ba} \end{cases}.$$

 $arphi(\mathtt{a}) = \mathtt{a}\mathtt{b} \ arphi \circ au(\mathtt{a}) = arphi(\mathtt{a}\mathtt{b}) = \mathtt{a}\mathtt{b}\mathtt{a}$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

14/21

TIGR CoW 17.05.24

Definition

An infinite word **w** is said to be *S*-adic if there is a sequence of morphisms $\mathbf{s} = (\sigma_n : \mathcal{A} \quad * \to \mathcal{A} \; *)_n$ and a sequence of letters $\mathbf{a} = (a_n \in \mathcal{A} \;)_n$ such that

$$\mathbf{w} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1}).$$

The pair (s, a) is called an *S*-adic representation of w.

Example

$$(\mathbf{s}, \mathbf{a}) = ((\varphi, \tau, \varphi, \tau, \ldots), (\mathbf{a}, \mathbf{a}, \mathbf{a}, \ldots)) \quad \text{where} \quad \varphi : \begin{cases} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{a} \end{cases}, \quad \tau : \begin{cases} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{ba} \end{cases}.$$

 $egin{array}{lll} arphi(\mathbf{a}) = \mathbf{a}\mathbf{b} \ arphi \circ \tau(\mathbf{a}) = arphi(\mathbf{a}\mathbf{b}) = \mathbf{a}\mathbf{b}\mathbf{a} \ arphi \circ \tau \circ arphi(\mathbf{a}) = arphi(\tau(\mathbf{a}\mathbf{b})) = arphi(\mathbf{a}\mathbf{b}\mathbf{b}\mathbf{a}) = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{a}\mathbf{b} \end{array}$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

An infinite word **w** is said to be *S*-adic if there is a sequence of morphisms $\mathbf{s} = (\sigma_n : \mathcal{A} \quad * \to \mathcal{A} \; *)_n$ and a sequence of letters $\mathbf{a} = (a_n \in \mathcal{A} \;)_n$ such that

$$\mathbf{w} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1}).$$

The pair (s, a) is called an *S*-adic representation of w.

Example

$$(\mathbf{s}, \mathbf{a}) = \left((arphi, au, arphi, au, \ldots), (\mathbf{a}, \mathbf{a}, \mathbf{a}, \ldots)
ight)$$
 where $arphi : \left\{ egin{array}{c} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \ \mathbf{b} \mapsto \mathbf{a} \end{array}, \quad au : \left\{ egin{array}{c} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \ \mathbf{b} \mapsto \mathbf{b} \mathbf{a} \end{array}
ight\}$

 $\begin{aligned} \varphi(\mathbf{a}) &= \mathbf{a}\mathbf{b} \\ \varphi \circ \tau(\mathbf{a}) &= \varphi(\mathbf{a}\mathbf{b}) = \mathbf{a}\mathbf{b}\mathbf{a} \\ \varphi \circ \tau \circ \varphi(\mathbf{a}) &= \varphi(\tau(\mathbf{a}\mathbf{b})) = \varphi(\mathbf{a}\mathbf{b}\mathbf{b}\mathbf{a}) = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{a}\mathbf{b} \\ \varphi \circ \tau \circ \varphi \circ \tau(\mathbf{a}) &= \varphi(\tau(\varphi(\mathbf{a}\mathbf{b}))) = \varphi(\tau(\mathbf{a}\mathbf{b}\mathbf{a})) = \varphi(\mathbf{a}\mathbf{b}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}) = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a} \\ &= \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b} = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a} \\ &= \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24

14/21

Definition

An infinite word **w** is said to be *S*-adic if there is a sequence of alphabets $(\mathcal{A}_n)_n$, a sequence of morphisms $\mathbf{s} = (\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$ and a sequence of letters $\mathbf{a} = (a_n \in \mathcal{A}_n)_n$ such that

$$\mathbf{v} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (a_{n+1}).$$

The pair (s, a) is called an *S*-adic representation of w.

Example

$$(\mathbf{s}, \mathbf{a}) = ((\varphi, \tau, \varphi, \tau, \ldots), (\mathbf{a}, \mathbf{a}, \mathbf{a}, \ldots)) \quad \text{where} \quad \varphi : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{a} \end{array}, \quad \tau : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{ba} \end{array} \right. \right.$$

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < つ < ⊂ TIGR CoW 17.05.24 14/21

Definition

An infinite word **w** is said to be *S*-adic if there is a sequence of alphabets $(\mathcal{A}_n)_n$, a sequence of morphisms $\mathbf{s} = (\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$ and a sequence of letters $\mathbf{a} = (a_n \in \mathcal{A}_n)_n$ such that

$$\mathbf{w} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1}).$$

The pair (s, a) is called an *S*-adic representation of w.

Example

$$(\mathbf{s}, \mathbf{a}) = ((\varphi, \tau, \varphi, \tau, \ldots), (\mathbf{a}, \mathbf{a}, \mathbf{a}, \ldots)) \quad \text{where} \quad \varphi : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} , \quad \tau : \left\{ \begin{array}{c} \mathbf{a} \mapsto \mathbf{ab} \\ \mathbf{b} \mapsto \mathbf{ba} \end{array} \right.$$

The pair (s, a) is (purely) periodic if $(\sigma_{m+n}, a_{m+n}) = (\sigma_m, a_m)$ for all m. It is primitive if for all $r \ge 0$ there is r' > r s.t. all letters of \mathcal{A}_r occur in $\sigma_r \sigma_{r+1} \cdots \sigma_{r'}(a)$ for all $a \in \mathcal{A}_{r'+1}$.

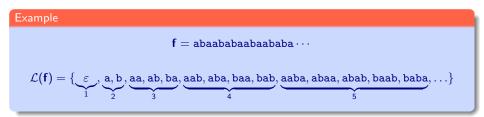
Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Sturmian words

Definition

An infinite word **w** is *Sturmian* if it has n + 1 distinct factors of length *n* for every $n \ge 0$.



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

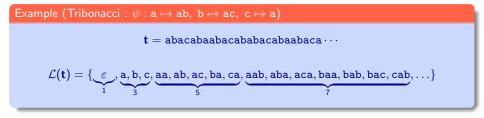
< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < つ < ⊂ TIGR CoW 17.05.24 15 / 21

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if :

- 1. it has (k-1)n+1 distinct factors of length n for every $n \ge 0$;
- $\mathcal{2}$. for each length only one factor is right special; and
- 3. its set of factors is closed under reversal.



Francesco Dolce (ČVUT)

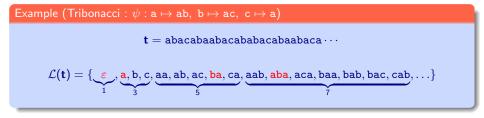
INTRODUCTION ON WORDS

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if :

- 1. it has (k-1)n+1 distinct factors of length n for every $n \ge 0$;
- 2. for each length only one factor is right special; and
- 3. its set of factors is closed under reversal.



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if :

- 1. it has (k-1)n+1 distinct factors of length n for every $n \ge 0$;
- $\mathcal{2}$. for each length only one factor is right special; and
- 3. its set of factors is closed under reversal.

Example (Tribonacci : ψ : $\mathbf{a} \mapsto \mathbf{ab}$, $\mathbf{b} \mapsto \mathbf{ac}$, $\mathbf{c} \mapsto \mathbf{a}$) \mathbf{t} = abacabaabacabaabacabaabacabaabacaa \cdots $\mathcal{L}(\mathbf{t}) = \{\underbrace{\varepsilon}_{1}, \underbrace{\mathbf{a}, \mathbf{b}, \mathbf{c}}_{3}, \underbrace{\mathbf{aa}, \mathbf{ab}, \mathbf{ac}, \mathbf{ba}, \mathbf{ca}}_{5}, \underbrace{\mathbf{ab}, \mathbf{aba}, \mathbf{aca}, \mathbf{baa}, \mathbf{bab}, \mathbf{bac}, \mathbf{cab}}_{7}, \ldots\}$

Francesco Dolce (ČVUT)

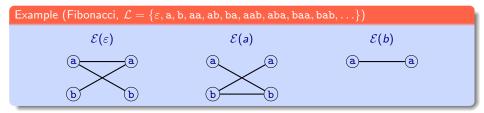
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

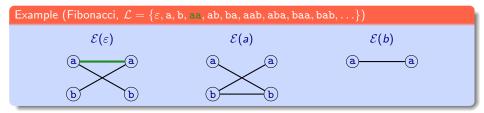
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

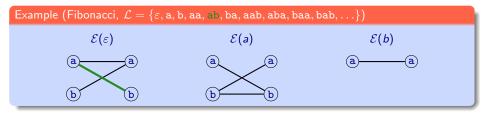
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

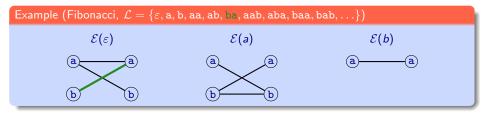
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

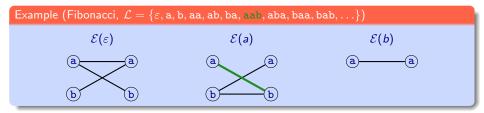
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

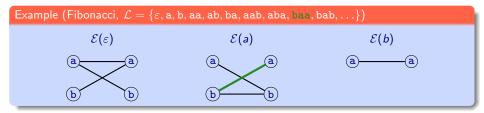
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

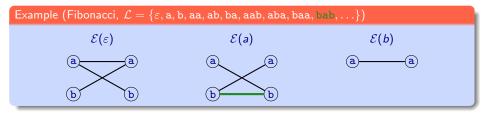
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

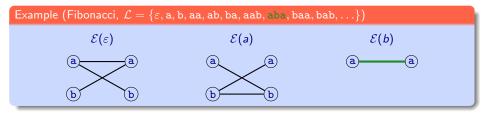
INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

Definition

A language \mathcal{L} is (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.

Sturmian words (and Arnoux-Rauzy) are dendric.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

TIGR CoW 17.05.24

17/21

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $uwv \in \mathcal{L}$.

Example (Fibonacci)

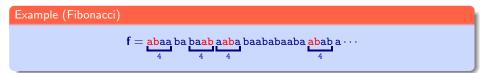
Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $uwv \in \mathcal{L}$.

 \mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L} .



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = 少へで TIGR CoW 17.05.24 18/21

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $uwv \in \mathcal{L}$.

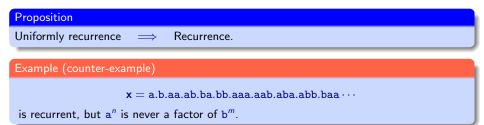
 \mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L} .

Proposition		
Uniformly recurrence	\implies	Recurrence.

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $uwv \in \mathcal{L}$.

 \mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L} .



Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

18/21

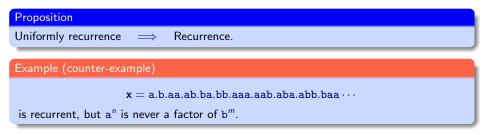
TIGR CoW 17.05.24

Recurrence and uniforme recurrence

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$, there is a $w \in \mathcal{L}$ such that $uwv \in \mathcal{L}$.

 \mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L} .



What if we want a word "starting" and "ending" with u? (see Herman's talk just after that!)

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

18/21

TIGR CoW 17.05.24

Definition

A *palindrome* is a finite word w that is equal to its reversal \widetilde{w} .

Example

- kayak
- blb, krk, oko
- nepochopen

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (C TIGR CoW 17.05.24 19 / 21

Definition

A *palindrome* is a finite word w that is equal to its reversal \widetilde{w} .

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat

TIGR CoW 17.05.24

3

19/21

イロト イヨト イヨト

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

Definition

A *palindrome* is a finite word w that is equal to its reversal \widetilde{w} .

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev

イロト イヨト イヨト イヨト

TIGR CoW 17.05.24

3

19/21

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

Definition

A palindrome is a finite word w that is equal to its reversal \widetilde{w} .

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej

イロト イヨト イヨト イヨト

TIGR CoW 17.05.24

3

19/21

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

Definition

A *palindrome* is a finite word w that is equal to its reversal \widetilde{w} .

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej
- Madam I'm Adam

イロト イヨト イヨト イヨト

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 19 / 21

3

Definition

A palindrome is a finite word w that is equal to its reversal \widetilde{w} .

Example

- kayak
- blb, krk, oko
- nepochopen
- Taco Cat
- V elipse spí lev
- Jelenovi pivo nelej
- Madam I'm Adam
- 135797531
- Signate, signate, mere me tangis et angis
- . . .

イロン 不同 とくほう 不良 とうほ

FRANCESCO DOLCE (ČVUT)

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 19 / 21

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is rich.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ TIGR CoW 17.05.24 20 / 21

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is rich.

• $\mathcal{P}(ananas) = \{\varepsilon, a, n, s, ana, nan, anana\}\$ $\#\mathcal{P}(w) = 7 = |w| + 1 \qquad \checkmark$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is rich.

• $\mathcal{P}(ananas) = \{\varepsilon, a, n, s, ana, nan, anana\}\$ $\#\mathcal{P}(w) = 7 = |w| + 1 \qquad \checkmark$

•
$$\mathcal{P}(pizza) = \{\varepsilon, a, i, p, z, zz\}$$

 $\#\mathcal{P}(w) = 6 = |w| + 1$

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is rich.

• $\mathcal{P}(ananas) = \{\varepsilon, a, n, s, ana, nan, anana\}\$ $\#\mathcal{P}(w) = 7 = |w| + 1 \qquad \checkmark$

•
$$\mathcal{P}(pizza) = \{\varepsilon, a, i, p, z, zz\}$$

 $\#\mathcal{P}(w) = 6 = |w| + 1$

• $\mathcal{P}(\text{hawaiipizza}) = \{\varepsilon, a, h, i, p, z, ii, zz, awa\}$ $\#\mathcal{P}(w) = 9 < 12 = |w| + 1 \qquad \checkmark$

INTRODUCTION ON WORDS

TIGR CoW 17.05.24 20 / 21

化口水 化塑料 化医水化医水合 医

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is rich.

• $\mathcal{P}(ananas) = \{\varepsilon, a, n, s, ana, nan, anana\}$ $\#\mathcal{P}(w) = 7 = |w| + 1 \quad \checkmark$

•
$$\mathcal{P}(pizza) = \{\varepsilon, a, i, p, z, zz\}$$

 $\#\mathcal{P}(w) = 6 = |w| + 1$

• $\mathcal{P}(\text{hawaiipizza}) = \{\varepsilon, a, h, i, p, z, ii, zz, awa\}$ $\#\mathcal{P}(w) = 9 < 12 = |w| + 1 \qquad \checkmark$

An infinite word (resp. factorial set) is rich if all its prefixes (resp. elements) are rich.

More on that on Lubka's talk tomorrow.

Francesco Dolce (ČVUT)

INTRODUCTION ON WORDS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

TIGB CoW 17.05.24

20/21

Děkuji za pozornost!

