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Abstract

A square is a word of the form uu. In this contribution we investigate the square
complexity of a (finite or infinite) word w, that is the number of distinct squares
appearing as factors in w. We introduce the notion of square defect and state
an identity, inspired by the well-known Brlek-Reutenauer identity for palindromes,
relating the number of factors with the number of distinct squares in a word. This
identity is established for finite words and for some classes of infinite words such as
periodic words and strict standard episturmian ones.

The study of squares, as well as other patterns in a word, is one among the many
fundamental topics in combinatorics on words. It was first conjectured by Fraenkel and
Simpson in [7] that the number of distinct square factors of a finite word w, which is
denoted by S(w), is bounded by its length |w|. In the same article, they proved that
S(w) < 2|w|. This upper bound was first improved by Ilie in [8] who showed that the
number of distinct squares is asymptotically bounded by 2|w| − Θ(log |w|) and later
by Deza, Franek and Thierry in [6] who showed that S(w) ≤ b11/6c |w|. In a recent
article [9], Thierry showed that S(w) ≤ 1.5|w|. Here we show that S(w) is actually
bounded by length of w plus one minus the number of distinct letters appearing in w
(Theorem 1). Such an upper bound is not only an improvement of the one conjectured
by Fraenkel and Simpson, but it is also sharp for small words.

Let |Alph(w)| denote the number of distinct letters appearing in a finite word w.

Theorem 1 ([2] Brlek and Li, 2022) Let w be a finite word.

S(w) ≤ |w| − |Alph(w)|+ 1.

The proof of the previous theorem is established by using some fundamental properties
of Rauzy graphs. Recall that for any finite word w of length k and for any integer n such
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that 1 ≤ n ≤ k, the Rauzy graph Γn(w) is the oriented graph defined as follows: the
set of vertices is Lw(n) and the set of edges is Lw(n + 1); an edge e ∈ Lw(n + 1) starts
at the vertex u and ends at the vertex v, if u is a prefix and v is a suffix of e. Let
Γ(w) = ∪kn=1Γn(w). Here we define the notion of small circuit as follows: a circuit in the
graph Γn(w) is called small if its size is no larger than n.

Theorem 1 is proved in two steps: first, the number of small circuits in Γn(w) is
bounded by |Lw(n+ 1)| − |Lw(n)|+ 1 for all n satisfying 1 ≤ n ≤ |w|, and consequently,
the total number of distinct small circuits in Γ(w) is bounded by |w|−|Alph(w)|; then an
injection is established from the set of non-empty square factors of w to the set of small
circuits in Γ(w).

Example and notation 2 Let p be a primitive word and let [p] be the conjugacy class
of p. For any positive integer n ≥ |p| − 1, let us define

[p]n =
{
q

n
|p| |q ∈ [p]

}
,

where q
n
|p| is a rational power of q. For example, let p = aba, then [p]4 = {abaa, baab, aaba}

and [p]2 = {ab, ba, aa}. Let C(p, n) denote the circuit whose vertex set is [p]n and the
edge set is [p]n+1.

Let us consider the word u = abaaabaaaabaaba, the Rauzy graph Γ4(u) is as follows:

aaab aaba

baaa abaa

baabaaaa

aaaab

abaaa

baaab

aaaba

aabaa

baaaa abaab

baaba

In this graph, there are three circuits: C(aaaab, 4), C(aaab, 4) and C(aab, 4). Two of
them are small, they are C(aaab, 4) and C(aab, 4), while C(aaaab, 4) is not small. We can
check that in this graph, |Lu(5)| = 10, |Lu(4)| = 8 and the total number of small circuits
in this graph, which will be denoted by S4(u), is 2. Thus, S4(u) ≤ |Lu(5)|−|Lu(4)|+1. ut

Example 3 Let us consider the word w = baababaababbbabbabbbab. We can check that
|w| = 22 and there are 14 squares in w:

ε, aa, bb, abab, baba, abaaba, bbabba, babbab, abbabb, babbbabb,
bbabbbab, baababaaba, aababaabab, babbbabbabbbab.

The nonempty squares can be sent injectively to the small circuits listed as follows:
C(a, 1), C(b, 1), C(ab, 2), C(ab, 3), C(aba, 3), C(abb, 3), C(abb, 4),
C(abb, 5), C(babb, 4), C(babb, 5), C(baaba, 5), C(baaba, 6), C(babbbab, 7). ut
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The square defect of a (finite or infinite) word is defined similarly to the palindromic
defect [3]:

Definition 4 The square defect of a finite word w is the number Ds(w) satisfying

Ds(w) = |w|+ 1− S(w).

Let w be an infinite word, then the square defect of w is defined as

Ds(w) = sup{Ds(u) | u ∈ Fac(w)},

where Fac(w) is the set of factors of w.

It is clear from Theorem 1 that the square defect of a finite word is always positive;
while the behavior of the square defect of an infinite word is less known.

We continue our study on the number of squares by proving the following results.

Proposition 5 The square defect of any infinite periodic word is infinite.

Proposition 6 Any infinite word with finitely many squares has an infinite square defect.

It is still an open question whether Proposition 6 remains true also when considering
a generic infinite word. However, we conjecture that this is the case.

In [5] Brlek and Reutenauer proved the following identity linking the palindromic
defect Dp(w) with the factor and palindromic complexities Cw and Pw:

2Dp(w) =

|w|∑
n=0

Cw(n+ 1)− Cw(n) + 2− Pw(n+ 1)− Pw(n) (1)

It is proved that this identity holds for several examples of infinite words including
periodic ones, the Thue-Morse word, all Sturmian ones, the Oldenburger exponent tra-
jectory [5], as well as for languages closed by reversal [1] Later, this identity was extended
to σ-palindromes where σ is an involution, also known as anti-palindromes [4].

In this contribution, we consider a similar identity using the square defect of a word.
Let us define the identity:

2Ds(w) =

|w|∑
n=0

Cw(n+ 1)− Cw(n) + 2− Sw(n+ 1)− Sw(n). (3)

It is easy to prove that Identity (3) holds for any finite word as well as any infinite
periodic word.

We also investigate Identity (3) for the class of strict standard episturmian words.
Recall that an infinite word s ∈ Aω is standard episturmian if there exists an infinite word
∆(s) = ∆1∆2 · · · with ∆i ∈ A, called the directive word of s, such that the sequence of
palindromic prefixes (ui)i≥1 of s is obtained as u1 = ε and

un+1 = (un∆n)(+) for n ≥ 1,
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where w(+) of a finite word w is the (unique) shortest palindrome having w as a prefix.
A word s over the k-letter alphabet A = {a1, . . . , ak} is strict standard episturmian if it
has a directive word of the form

∆(s) = ad11 a
d2
2 · · · a

dk
k a

dk+1

1 · · · ad2kk a
d2k+1

1 · · ·

with di > 0 for all i.

Theorem 7 The right hand side of Identity (3) is infinite for every strict standard epis-
turmian word.

We conjecture that Identity (3) is satisfied by every infinite word.
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