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Abstract. We prove that for every strict standard episturmian word
that is fixed by a morphism it is possible to construct a one-dimensional
cellular automaton such that the word is represented in a chosen column
in its space-time diagram.
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1 Introduction

In this contribution we prove the following result.

Theorem 1. A stric epistandard word that is a fixed point of a morphism can be
represented as a column in the space-time diagram of a one-dimensional cellular
automaton.

This can be seen as a generalization of a similar result concerning Sturmian
words with a quadratic slope [3]. For this purpouse, instead of the notion of
continued fraction expansion used in [3] – that is well defined in the binary
case, but more complicated to deal with in case of larger alphabets – we use a
slightly modified notion of directive word, as well as an infinite family of prefixes
associated to it.

2 Episturmian words

We refer to [7] for all undefined terms. Aperiodic infinite words with the lowest
possible factor complexity, i.e., such that Cw(n) = n + 1 for all n ∈ N, are
called Sturmian words (for other equivalent definitions see [1]). It follows from
the definition that all Sturmian words are defined over a binary alphabet, e.g.,
{0, 1}. Episturmian words are a generalization of these words to larger alphabets
(we refer to [5] for a survery on episturmian words).

If both sequences 0w and 1w are Sturmian, we call w a standard Sturmian
word. It is known that for every Sturmian word there exists a standard one
having the same set of factors. In [4] , Droubay, Justin and Pirillo generalize
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the work of de Luca [2] and define a standard episturmian word, also called an
epistandard word, as a word obtained by iterative palindromic closure: An infinite
word w is epistandard iff there exists an infinite word ∆ = a1a2 · · · over A, and
an infinite sequence (un)n≥1 in A∗ such that u1 = ε, and un+1 = (unan)

(+) for
every positive n, where u(+) is the shortest palindrome having u as a prefix. The
word ∆ is called the directive word of w. In analogy with the binary case, for
every episturmian word there exists an epistandard word having the same set of
factors (such word is unique, except for the periodic case).

An episturmian (resp., epistandard) word is called strict if every letter occurs
infinitely often in its directive word. In this case, the factor complexity is Cw(n) =
(d− 1)n+ 1, with d the size of the alphabet.

Example 1. The d-bonacci word is the strict epistandard word over the alphabet
{0, 1, . . . , (d− 1)}, defined as fixed point of the morphism i 7→ 0(i+ 1) for
0 ≤ i < d − 1 and (d− 1) 7→ 0. Its directive sequence is the periodic word
∆ = (01 · · · (d− 1))

ω. For d = 2 and d = 3 we obtain respectively the well-known
Fibonacci word f = 0100101001001010010100100 · · · and the Tribonacci word
t = 0102010010201010201001020 · · · .

In the following, we consider the directive sequences in their multiplicative
form, i.e., in the form ∆ = ae11 a

e2
2 · · · where ai ̸= ai+1 and ei > 0 for every

positive integer i. In other words, we cluster the runs of each letter.
For every letter a ∈ A let us consider the morphism ψa : a 7→ a; b 7→ ab for

b ̸= a. Given an epistandard word w with directive sequence ∆ = ae11 a
e2
2 · · · ,

we define the morphisms σn = ψe1
a1
ψe2
a2

· · ·ψen
an

and the prefixes wn = σn(an+1),
where σ0 = id. Note that these prefixes are different from the palindromic ones
seen above. Indeed, we have un = wn−2wn−3 · · ·w0 (see [6]).

Let ℓ(k) be the last occurrence in ∆ of the run of ak+1 before the k−th run.
Notice that ℓ(k) is defined only starting from the second run of the letter ak in
∆.

Example 2. Let us consider the infinite aperiodic sequence∆ = 011203140516 · · ·
over the alphabet {0, 1}. Then we have ai = 0 when i is odd, and ai = 1 when i
is even. It is easy to see that ℓ(0) and ℓ(1) are not defined, and that ℓ(n) = n−2
for every n ≥ 2.

Example 3. Let us consider the periodic sequence∆ = (012 · · · (d− 1))
ω over the

alphabet {0, 1, . . . (d− 1)}. Then ak = (k− 1) (mod d) for every positive integer
k and ℓ(k) is defined only for k ≥ d, in which case it is equal to ℓ(k) = k − d.

Proposition 1 ([10]). Let w be an epistandard word with directive sequence
∆ = ae11 a

e2
2 · · · . The prefix wk is given by wk =

(∏k
i=1 w

ek−i+1

k−i

)
ak+1 if the letter

ak+1 is not a factor of wk, and by wk =
(∏k−ℓ(k)−1

i=1 w
ek−i+1

k−i

)
wℓ(k) otherwise.

Example 4. Let w be the d-bonacci word defined in Example 1. According
to Proposition 1 the prefixes wk are obtained as wk =

(∏k
i=0 w

1
k−i

)
(k− 1)
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for 0 ≤ k < d (e.g., w0 = 0, w1 = 0 · 1, w2 = 01 · 0 · 2, etc.) and wn =
w1

n−1 · · ·w1
n−d+1wn−d for k > d.

An epistandard word w is called regular if its directive word ∆ is regular,
i.e., if the runs of the letters in ∆ appear in lexicographic (circular) order (see,
e.g., [10]). Note that not every regular word is periodic (see Example 2), and not
every periodic word is regular (e.g., ∆ = (abac)

ω).

Example 5. Let w be a regular epistandard word with periodic directive word
∆ = ae11 a

e2
2 · · · of period p = md, where d the cardinality of the alphabet. Then,

wk = wek
k−1 · · ·w

e1
0 ak+1 for 1 ≤ k < d and wk = wek

k−1 · · ·w
ek−d+2

k−d+1wk−d for k ≥ d.

The following result is a main ingredient to prove Theorem 1.

Theorem 2 ([4]). A strict epistandard word is the fixed point of a morphism
if and only if its directive sequence ∆ is periodic.

3 Cellular automata

In the following we use the terminology developed by Mazoyer and Terrier in [9]
and Marcovici, Stoll and Tahay in [8].

Definition 1. A one-dimensional cellular automaton (CA) is a dynamical sys-
tem (AZ, T ), where A is a finite set, and where the map T : AZ → AZ is defined
by a local rule acting uniformly and synchronously on the configuration space.
More precisely, there exists an integer r ∈ N called the radius of the CA, and a
local rule τ : A2r+1 → A such that for every x = (ak)k∈Z and for every k ∈ Z,
we have T (x)k = τ((ak+i)−r≤i≤r).

When the alphabet A is understood, we call cellular automaton just the map
T . The elements of AZ are called configurations. A cellular automaton can be
visualized by using a space-time diagram which is a 2-dimensional grid where
each cell contains an element of the set A and is represented by a space coordinate
and a time coordinate.

In a space-time diagram it is also possible to “transmit information” through
signals, by connecting two cells (m,n) and (m′, n + t) through a monotonous
path; we call slope of the signal the number t

m′−m (see [9] for a formal definition).
When m = m′, we call such a signal a vertical signal or a signal of infinite slope.
We suppose that a signal stops whenever a new signal starts. Signals are usually
“porous”, i.e., they do not interact between each other. In some case, however,
we also need to consider “concrete” signals, called walls. Intuitively, a wall is
a vertical signal such that whenever a given signal hit it, this signal "bounces"
back. When two signals meet, we can mark the cell at the intersection, i.e., assign
to it a letter from the alphabet A, and define new signals starting from it.

Given a letter z ∈ A we define the class of cellular automata

S =
{
(Tn(x)0)n≥0 ∈ AN : T is a z-quiescent CA on AZ and x is finite

}
,

where T is z-quiescent if T (zZ) = zZ = · · · zzz · · · , and a configuration x =
(ak)k∈Z is finite if the set {k ∈ Z : ak ̸= z} is finite.
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4 Construction of the automaton

We say that a CA recognizes an infinite word w = a1a2 · · · if this word appears
vertically in the zero column, i.e., if (Tn(w)0)n>0 = w. To prove our main result
we proceed in two steps.

1. First, we construct a CA recognizing the infinite word 1{|wn|}n≥0
coding the

lengths of the prefixes wn of our epistandard word w.
2. Then, we construct a CA that recognizes w, by constructing at each step

the prefix wk using the previous prefixes.

The automaton in the first step above can be constructed using a modified
version of the following result.

Proposition 2 ([9]). Let (Sn)n≥0 be an integer sequence defined by Sn+p =
p−1∑
i=0

αiSn+i, where p, αi ∈ N. Then 1{Sn}n≥0
∈ S.

To construct the automaton in second step we first show that it is possible
to "copy-paste" a letter in a cell of a CA in the same column and in a chosen
row above. We then use this construction to copy at each step the right number
of copies of each of the k − ℓ(k) prefixes of wk, according to the formula in
Proposition 1.

Note that in both steps, the hypothesis of periodicity of the sequence ∆ is
essential to guarantee that the cellular automaton is defined over a finite set A.
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