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Abstract. We study aperiodic balanced sequences over finite alphabets.
A sequence v of this type is fully characterised by a Sturmian sequence
u and two constant gap sequences y and y′. We study the language
of v, with focus on return words to its factors. We provide a uniform
lower bound on the asymptotic critical exponent of all sequences v aris-
ing by y and y′. It is a counterpart to the upper bound on the least
critical exponent of v conjectured and partially proved recently in works
of Baranwal, Rampersad, Shallit and Vandomme. We deduce a method
computing the exact value of the asymptotic critical exponent of v pro-
vided the associated Sturmian sequence u has a quadratic slope. The
method is used to compare the critical and the asymptotic critical ex-
ponent of balanced sequences over an alphabet of size d ≤ 10 which are
conjectured by Rampersad et al. to have the least critical exponent.
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1 Introduction

An infinite sequence over a finite alphabet is balanced if, for any two of its factors
u and v of the same length, the number of occurrences of each letter in u and v
differs by at most 1. Over a binary alphabet aperiodic balanced sequences coin-
cide with Sturmian sequences, as shown by Hedlund and Morse [13]. Hubert [14]
provided a construction of balanced sequences. It consists in colouring of entries
of a Sturmian sequence u by two constant gap sequences y and y′. In this pa-
per we study combinatorial properties of balanced sequences. We first show that
such sequences belong to the class of eventually dendric sequences introduced in
[5]. We give formulæ for the factor complexity and the number of return words
to each factor. The main goal of this paper is to develop a method computing
the asymptotic critical exponent of a given balanced sequence. Our work can be
understood as a continuation of research on balanced sequences with the least
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critical exponent initiated by Rampersad, Shallit and Vandomme [19]. The re-
lation between factor complexity and critical exponent for binary and ternary
sequences was studied as well in [20]

Finding the least critical exponent of sequences is a classical problem. The
answer is known as Dejean’s conjecture [8], and the proof was provided step
by step by many people. The least critical exponent was determined also for
some particular classes of sequences: by Carpi and de Luca [6] for Sturmian
sequences, and by Currie, Mol and Rampersad [7] for binary rich sequences.
Recently, Rampersad, Shallit and Vandomme [19] found balanced sequences with
the least critical exponent over alphabets of size 3 and 4 and also conjectured
that the least critical exponent of balanced sequences over a d-letter alphabet
with d ≥ 5 is d−2

d−3 . Their conjecture was confirmed for d ≤ 8 [3,4].
Here we focus on the asymptotic critical exponent of balanced sequences. We

show that the asymptotic critical exponent depends on the slope of the associated
Sturmian sequence and, unlike the critical exponent, on the length of the minimal
periods of y and y′, but not on y and y′ themselves. We also give a lower bound
on the asymptotic critical exponent. We provide an algorithm computing the
exact value of the asymptotic critical exponent for balanced sequences originated
in Sturmian sequences with a quadratic slope (in this case the continued fraction
of the slope is eventually periodic).

2 Preliminaries

An alphabet A is a finite set of symbols called letters. A word over A of length
n is a string u = u0u1 · · ·un−1, where ui ∈ A for all i ∈ {0, 1, . . . , n − 1}. The
length of u is denoted by |u|. The set of all finite words over A together with the
operation of concatenation forms a monoid, denoted A∗. Its neutral element is
the empty word ε and we denote A+ = A∗\{ε}. If u = xyz for some x, y, z ∈ A∗,
then x is a prefix of u, z is a suffix of u and y is a factor of u. We sometimes
use the notation yz = x−1u. To any word u over A with cardinality #A = d,
we assign its Parikh vector V (u) ∈ Nd defined as (V (u))a = |u|a for all a ∈ A,
where |u|a is the number of letters a occurring in u.

A sequence over A is an infinite string u = u0u1u2 · · · , where ui ∈ A for
all i ∈ N. A sequence u is eventually periodic if u = vwww · · · = v(w)ω for
some v ∈ A∗ and w ∈ A+. It is periodic if u = wω. If u is not eventually
periodic, then it is aperiodic. A factor of u = u0u1u2 · · · is a word y such that
y = uiui+1ui+2 · · ·uj−1 for some i, j ∈ N, i ≤ j. We usually denote y = u[i,j).
The number i is called an occurrence of the factor y in u. In particular, if i = j,
the factor y is the empty word ε and any index i is its occurrence. If i = 0, the
factor y is a prefix of u. If each factor of u has infinitely many occurrences in u,
the sequence u is recurrent. Moreover, if for each factor the distances between
its consecutive occurrences are bounded, u is uniformly recurrent.

The language L(u) of a sequence u is the set of all its factors. We also define
L(u)+ = L(u) \ {ε}. A factor w of u is right special if wa,wb are in L(u) for at
least two distinct letters a, b ∈ A. Analogously, we define a left special factor. A
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factor is bispecial if it is both left and right special. The factor complexity of a
sequence u is the mapping Cu : N→ N defined by Cu(n) = #{w ∈ L(u) : |w| =
n}. The first difference of the factor complexity is su(n) = Cu(n + 1) − Cu(n).
Aperiodic sequences with the lowest possible factor complexity, i.e., such that
Cu(n) = n+ 1 for all n ∈ N, are called Sturmian sequences (for other equivalent
definitions see [2]). Clearly, all Sturmian sequences are defined over a binary
alphabet, e.g., {a, b}. If both sequences au and bu are Sturmian, then u is called
a standard Sturmian sequence. It is well-known that for any Sturmian sequence
there exists a unique standard Sturmian sequence with the same language. For
other facts about Sturmian sequences see [18].

A sequence u over the alphabet A is balanced if for every letter a ∈ A and
every pair of factors u, v ∈ L(u) with |u| = |v|, we have ||u|a − |v|a| ≤ 1.
The class of Sturmian sequences and the class of aperiodic balanced sequences
coincide over a binary alphabet (see [13]). Vuillon [22] provides a survey on some
previous work on balanced sequences.

A morphism over A is a mapping ψ : A∗ → A∗ such that ψ(uv) = ψ(u)ψ(v)
for all u, v ∈ A∗. The morphism ψ can be naturally extended to sequences by
setting ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · .

Consider a factor w of a recurrent sequence u = u0u1u2 · · · . Let i < j
be two consecutive occurrences of w in u. Then the word uiui+1 · · ·uj−1 is a
return word to w in u. The set of all return words to w in u is denoted by
Ru(w). If u is uniformly recurrent, the set Ru(w) is finite for each prefix w. The
opposite is true if u is recurrent. In this case u can be written as a concatenation
u = rd0rd1rd2 · · · of return words to w. The derived sequence of u to w is the
sequence du(w) = d0d1d2 · · · over the alphabet of cardinality #Ru(w). The
concept of derived sequences was introduced by Durand [11].

Given a sequence u over an alphabet A and w ∈ L(u), we define the sets
of left extensions, right extensions and bi-extensions of w in L(u) respectively
as Lu(w) = {a ∈ A : aw ∈ L(u)}, Ru(w) = {b ∈ A : wb ∈ L(u)} and
Bu(w) = {(a, b) ∈ A × A : awb ∈ L(u)}. The extension graph of w in L(u),
denoted Eu(w), is the undirected bipartite graph whose set of vertices is the
disjoint union of Lu(w) and Ru(w) and with edges the elements of Bu(w). A
sequence u (resp. a language L(u)) is said to be eventually dendric with threshold
m ≥ 0 if Eu(w) is a tree for every word w ∈ L(u) of length at least m. It is said
to be dendric if we can choose m = 0. Dendric languages were introduced in [5]
under the name of tree sets. It is known that Sturmian sequences are dendric.

Example 1. It is known that the sequence uf = abaababaabaababaababaa · · · ,
obtained as fixed point of the morphism f : a 7→ ab, b 7→ a, is Sturmian (see [18]).

3 Languages of balanced sequences

In 2000, Hubert [14] characterised balanced sequences over alphabets of higher
cardinality. A suitable tool for their description is the notion of constant gap.
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Definition 1. A sequence y over an alphabet A is a constant gap sequence if
for each letter a ∈ A appearing in y there is a positive integer d such that the
distance between successive occurrences of a in y is always d.

Obviously, any constant gap sequence is periodic. Given a constant gap se-
quence y, we denote its minimal period length by Per(y).

Example 2. The sequence y = (0102)ω is a constant gap sequence because the
distance between consecutive 0s is always 2, while the distance between consec-
utive 1s (resp. 2s) is always 4. Its minimal period is Per(y) = 4.

The sequence (011)ω is periodic but it is not a constant gap sequence.

The i-th shift of a constant gap sequence y = (y0y1 · · · yk−1)ω with minimal
period k ≥ 1 (and 0 ≤ i < k) is the sequence σi(y) = (yi · · · yk−1y0 · · · yi−1)ω.

Example 3. Let y be the sequence seen in Example 2. Then we have σ0(y) = y,
σ(y) = (1020)ω, σ2(y) = (0201)ω and σ3(y) = (2010)ω.

Theorem 1 ([14]). A recurrent aperiodic sequence v is balanced if and only if
v is obtained from a Sturmian sequence u over {a, b} by replacing the as in u
by a constant gap sequence y over some alphabet A, and replacing the bs in u
by a constant gap sequence y′ over some alphabet B disjoint from A.

Definition 2. Let u be a Sturmian sequence over the alphabet {a, b}, and y,y′

be two constant gap sequences over two disjoint alphabets A and B. The colouring
of u by y and y′, denoted v = colour(u,y,y′), is the sequence over A∪B obtained
by the procedure described in Theorem 1.

For v = colour(u,y,y′) we use the notation π(v) = u and π(v) = u for
any v ∈ L(v) and the corresponding u ∈ L(u). Symmetrically, given a word
u ∈ L(u), we denote by π−1(u) = {v ∈ L(v) : π(v) = u}. We say that u (resp.
u) is a projection of v (resp. v). The map π : L(v)→ L(u) is clearly a morphism.

Example 4. Let uf be as in Example 1. Let us take the constant gap sequences
y = (0102)ω and y′ = (34)ω over the alphabets A = {0, 1, 2} and B = {3, 4} re-
spectively. The sequence vf = colour(uf ,y,y

′) = 0310423014023041032401 · · ·
is balanced according to Theorem 1. One has π(vf ) = uf . Moreover, π(031) =
π(041) = aba, and π−1(aba) = {031, 032, 041, 042, 130, 140, 230, 240}.

Definition 3. An aperiodic sequence u over {a, b} has well distributed occur-
rences, or has the WDO property, if for every m ∈ N and for every w ∈ L(u)
one has {V (p) mod m : pw is a prefix of u} = Z2

m.

It is known that Sturmian sequences have the WDO property (see [1]).

Example 5. Let uf be as in Example 1 and let us consider m = 2 and w =
ab ∈ L(uf ). Then it is easy to check that V (ε) ≡ ( 0

0 ) mod 2, V (aba) ≡
( 0
1 ) mod 2, V (abaab) ≡ ( 1

0 ) mod 2 and V (abaababa) ≡ ( 1
1 ) mod 2, where

w, abaw, abaabw and abaababaw are prefixes of uf .
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Using the WDO property we can prove that, to study the language of ape-
riodic recurrent balanced sequences, it is enough to study standard Sturmian
sequences.

Proposition 1. Let u,u′ be two Sturmian sequences such that L(u) = L(u′),
y and y′ two constant gap sequences over disjoint alphabets and i, j ∈ N. Let
v = colour(u,y,y′), v′ = colour(u′,y,y′) and v′′ = colour(u, σi(y), σj(y′)).
Then L(v) = L(v′) = L(v′′).

Proof. Let v ∈ L(v) and w such that wv is a prefix of v. Then π(w)π(v) is a
prefix of u and |π(w)| is an occurrence of π(v) in u. Since π(v) ∈ L(u′), using
the WDO property, we can find p ∈ L(u′) such that pπ(v) is a prefix of u′ and
V (π(w)) = V (p) mod Per(y)Per(y′) . Thus v appears both in v at occurrence
|π(w)| and in v′ at occurrence |p|. Hence L(v) ⊂ L(v′). Using the same argument
we can prove the opposite inclusion.

Let p be a prefix of u such that V (p) =
(
i
j

)
mod Per(y)Per(y′). Denote

u′′ = p−1u. Then colour(u′′, σi(y), σj(y′)) gives the same sequence as the one
obtained by erasing the prefix of length |p| from v. Since L(u) = L(u′′), using
the same argument as before we have L(v′′) = L(v).

Corollary 1. Let v = colour(u,y,y′) and v ∈ L(v). For any i, j such that
0 ≤ i < Per(y) and 0 ≤ j < Per(y′), the word v′ obtained from π(v) by replacing
the as by σi(y) and the bs by σj(y′) is in π−1(π(v)), and thus in L(v).

Example 6. Let uf ,vf ,y and y′ be as in Example 4. Let v = 03104 ∈ L(vf ) and
let us denote u = π(v) = abaab. One can easily check that the word v′ = 24013

obtained from u by replacing the as by σ3(y) and the bs by σ(y′) is in L(vf ).

Note that, if v = colour(u,y,y′), there exists an m ∈ N such that every
factor v ∈ L(v) longer than m contains at least Per(y) letters in A and at least
Per(y′) letters in B. Indeed, it is enough to find m such that all factors of length
m in L(u) contain at least Per(y) as and at least Per(y′) bs.

Example 7. Let uf ,vf ,y and y′ be as in Example 4. Then, it easy to check that
all factors of length 7 in L(uf ) contain at least 4 as and 2 bs. Thus, all factors
of length 7 in L(vf ) contain at least four letters in A and at least two letters in
B. On the other hand, babaab ∈ L(uf ) has length 6 and contains only three as.

As we saw in Example 4, the set π−1(u), for a word u ∈ L(u), is not in general
a singleton. However, it is not difficult to prove that any long enough factor in
v is uniquely determined, between the words having the same projection in u,
by the first Per(y) letters in A and the first Per(y′) letters in B (the number of
needed letters can be reduced by studying the bispecial factors in y and y′).

Lemma 1. Let v = colour(u,y,y′) and u ∈ L(u) such that |u|a ≥ Per(y) and
|u|b ≥ Per(y′). Let a0, a1, . . . , aPer(y)−1 ∈ A, and b0, b1, . . . , bPer(y′)−1 ∈ B. There
exists at most one word in π−1(u) having a0, a1, . . . , aPer(y) − 1 (in this order)
as first letters in A and b0, b1, . . . , bPer(y′) (in this order) as first letters in B.
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Example 8. Let uf ,vf ,y and y′ be as in Example 4 and u = abaabaaba ∈
L(uf ). One has |u|a = 6 > Per(y) and |u|b = 3 > Per(y′). One can check that
the only word in π−1(u) having 0, 2, 0, 1 as first letters in A and 4, 3 as first
letters in B is 042031042, that is the word obtained from u by σ2(y) and σ(y′).
On the other hand, no word in L(v) can have 0, 0, 1, 2 (in this order) as first
letters in A or 3, 3 as first letters in B.

Putting together Corollary 1 and Lemma 1, we obtain the following result.

Lemma 2. Let v = colour(u,y,y′) and u ∈ L(u) be such that |u|a ≥ Per(y)
and |u|b ≥ Per(y′). Then #(π−1(u)) = Per(y)Per(y′).

Example 9. Let uf ,vf ,y,y
′ be as in Example 4 and u = abaabaab ∈ L(uf ). The

set π−1(u) = { 03104203, 03204103, 04103204, 04203104, 13024013, 14023014,
23014023, 24013024} has exactly 8 elements, according to Lemma 2.

The following result easily follows from Lemma 1 and the WDO property.

Lemma 3. Let v = colour(u,y,y′) and u ∈ L(u) be such that |u|a ≥ Per(y)
and |u|b ≥ Per(y′). Let v ∈ π−1(u). Then v is right special (resp. left special) if
and only if u is right special (resp. left special). Moreover, in this case the unique
two right (resp. left) extensions of v belong to different alphabets A and B.

Proposition 2. The language L(v) is eventually dendric.

Proof. Let m be a positive integer such that for every word w ∈ L(u) of length
at least m one has |w|a ≥ Per(y) and |w|b ≥ Per(y′). Let v ∈ L(v) and u = π(v),
and suppose that |v| ≥ m. It easily follows from Lemmata 1 and 3 that Ev(u)
is isomorphic to Eu(u) via the projection π. Since u is Sturmian, then L(u) is
dendric. Thus Ev(v) is a tree. Hence L(v) is eventually dendric of threshold m.

The following result easily follows from Lemma 2.

Proposition 3. Let v = colour(u,y,y′) and m be a positive integer such that
every word in L(u) of length m has at least Per(y) as and at least Per(y′) bs.
Then for any n ≥ m one has Cv(n) = Per(y)Per(y′)(n+ 1).

Example 10. Let uf ,vf ,y and y′ be as in Example 4. The language L(vf ) is
eventually dendric with threshold 7. The factor complexity of vf is defined by
Cvf

(n) = 8(n+ 1) for every n ≥ 7, according to Proposition 3.

Proposition 4. Let v = colour(u,y,y′) and v ∈ L(v) such that |π(v)|a ≥
Per(y) and |π(v)|b ≥ Per(y′). Then #(Rv(v)) = 1 + Per(y)Per(y′).

Proof. From Proposition 3 we have sv(n) = Per(y)Per(y′) for every n large
enough. The result thus follows from Proposition 2 and [10, Theorem 7.3].

Corollary 2. A recurrent aperiodic balanced sequence is uniformly recurrent.
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Proof. A recurrent language is uniformly recurrent if and only if the number
of return words to a given word in the language is finite. The result then just
follows from Proposition 4 and [10, Theorem 7.3].

Given a vector b =
(
b1
b2

)
∈ N2 and two periodic sequences y,y′, we use the

notation b mod Per(y,y′) :=
(
b1 mod Per(y)

b2 mod Per(y′)

)
.

Lemma 4. Let v = colour(u,y,y′), u ∈ L(u) with |u|a ≥ Per(y), |u|b ≥
Per(y′) and v, w ∈ L(v) such that π(v) = π(w) = u. Let i, j be occurrences
of v and w in v respectively and let us assume that i < j. Then v = w if and
only if V (u[i,j)) = ( 0

0 ) mod Per(y,y′).

Proof. By Lemma 1, v = w if and only if there exist 0 ≤ s < Per(y) and 0 ≤ t <
Per(y′) such that both v and w are obtained from u by replacing the as by σs(y)
and the bs by σt(y′). Furthermore, in this case we have V (u[0,i)) = V (u[0,j))
mod Per(y,y′), that is V (u[i,j)) = ( 0

0 ) mod Per(y,y′).

Lemma 5. Let v = colour(u,y,y′), u ∈ L(u) with |u|a ≥ Per(y), |u|b ≥
Per(y′) and v, w ∈ L(v) with π(v) = π(w) = u. Then π(Rv(v)) = π(Rv(w)).

Proof. Let r ∈ Rv(v). Then u is both a prefix and a suffix of π(rv). By Lemma 1
there exist a unique 0 ≤ s < Per(y) and a unique 0 ≤ t < Per(y′) such that
w is obtained from u by replacing the as by σs(y) and the bs by σt(y′). By
Corollary 1 the word obtained from π(rv) by replacing the as by σs(y) and the
bs by σt(y′) is in L(v) and has w as a prefix. This factor is equal to r′w and
it contains only two occurrences of w. Indeed, it follows from Lemma 4 that
π(r′) = π(r) is the unique non-empty prefix of π(rv) satisfying V (π(r)) = ( 0

0 )
mod Per(y,y′). Thus, r′ is a return word to w with π(r′) = π(r), which implies
π(Rv(v)) ⊂ π(Rv(w)). The opposite inclusion can be proved symmetrically.

4 Critical exponent and its relation to return words

Let z ∈ A+ be a prefix of a periodic sequence uω with u ∈ A+. We say that z
has fractional root u and the exponent e = |z|/|u|. We usually write z = ue. Let
us emphasise that a word z can have multiple exponents and fractional roots.

Definition 4. Given a sequence u and u ∈ L(u)+, we define the index of u in
u as indu(u) = sup{e ∈ Q : ue ∈ L(u)} . The critical exponent of a sequence u
is defined as E(u) = sup {indu(u) : u ∈ L(u)+}. Its asymptotic critical exponent
is defined as E∗(u) = lim

n→∞
(sup {indu(u) : u ∈ L(u), |u| ≥ n}).

Clearly, E(u) ≥ E∗(u). If u is eventually periodic, then both E(u) and E∗(u)
are infinite. If u is aperiodic and uniformly recurrent, then each factor of u has
finite index. Nevertheless, E∗(u) may be infinite. An example of such a sequence
is given by Sturmian sequences whose continued fraction expansions of their
slope have unbounded partial quotients (see [9]).
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Lemma 6. Let u,w be non-empty factors of a recurrent sequence u. If u ∈
Ru(w), then w = ue for some e ∈ Q. Moreover, if u is aperiodic and uniformly
recurrent, then u is a return word to a finite number of factors in u.

Proof. Since u ∈ Ru(w), w is a prefix of uw. Hence there exists z ∈ L(u) such
that uw = wz. A known result from equations on words implies that there
exist x, y ∈ L(u) and a non-negative integer i such that u = xy, z = yx and
w = (xy)ix. Thus, w is a prefix of uω = (xy)ω.

Let us now suppose that u is a return word to infinitely many factors. By the
previous argument, u is a fractional root of all those factors. This implies that
un ∈ L(u) for all n ∈ N. Thus, u is either periodic or not uniformly recurrent.

Lemma 7 ([12]). Let u be a uniformly recurrent aperiodic sequence and f ∈
L(u)+ such that indu(f) > 1. Then there exist a factor u ∈ L(u) and a bispecial

factor w in u such that |f | = |u|, indu(f) ≤ indu(u) = 1 + |w||u| and u ∈ Ru(w)+.

Proposition 5. Let u be a uniformly recurrent aperiodic sequence. Let (wn)n∈N
be a sequence of all bispecial factors ordered by their length. For every n ∈ N, let
vn be a shortest return word to wn in u. Then

E(u) = 1 + sup
n∈N

{
|wn|
|vn|

}
and E∗(u) = 1 + lim sup

n→∞

|wn|
|vn|

.

Proof. By Lemma 6, vnwn = venn for some exponent en ∈ Q and thus indu(vn) ≥
en = |vnwn|

|vn| = 1+ |wn|
|vn| . Hence E(u) ≥ 1+sup{ |wn|

|vn| } > 1. By the second statement

of the same lemma, lim
n→∞

|vn| =∞. Therefore, E∗(u) ≥ 1 + lim sup |wn|
|vn| ≥ 1.

To show the opposite inequality, let δ > 0 be such that E(u) − δ > 1. Thus
there exists f ∈ L(u) satisfying E(u) − δ < indu(f). Using Lemma 7, we find

u ∈ L(u) and a bispecial factor w such that indu(f) ≤ indu(u) = 1 + |w|
|u| , where

u ∈ Ru(w)+. Therefore, for some index m ∈ N, one has w = wm and |u| ≥ |vm|.
Altogether, for arbitrarily positive δ we have

E(u)− δ < indu(f) ≤ indu(u) = 1 +
|w|
|u|
≤ 1 +

|wm|
|vm|

≤ 1 + sup

{
|wn|
|vn|

}
.

Consequently, E(u) ≤ 1 + sup
{
|wn|
|vn|

}
.

If E∗(u) = 1, then the above proven inequality E∗(u) ≥ 1 + lim sup |wn|
|vn| ≥ 1

implies the second statement of the proposition. If E∗(u) > 1, then there exists
a sequence of factors f (n) ∈ L(u) with indu(f (n)) > 1 such that |f (n)| → ∞
and indu(f (n)) → E∗(u). For each n, we find the factor u(n) and the bispecial
factor w(n) with the properties given in Lemma 7 and we proceed analogously
as before.

5 Asymptotic critical exponent of balanced sequences

To describe the asymptotic critical exponent of a balanced sequence, we first list
important facts on Sturmian sequences. They are partially taken from [12], where
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they are used to compute the critical exponent of complementary symmetric Rote
sequences.

In the sequel, we use the characterisation of standard Sturmian sequences by
their directive sequences. To introduce them, we define two morphisms G : a→
ba, b→ b and D : a→ a, b→ ab.

Proposition 6 ([15]). For every standard Sturmian sequence u there exists
a unique sequence ∆ = ∆0∆1∆2 · · · ∈ {G,D}N of morphisms and a sequence
(u(n))n≥0 of standard Sturmian sequences such that u = ∆0∆1 · · ·∆n−1(u(n))
for every n ∈ N. Moreover, the sequence ∆ contains infinitely many letters G
and infinitely many letters D, i.e., for some sequence (ai)i≥1 of positive integers
we can write ∆ = Ga1Da2Ga3Da4 · · · or ∆ = Da1Ga2Da3Ga4 .

We call the sequence ∆ in Proposition 6 the directive sequence of u.
Let us fix the notation by adopting the following convention: To a stan-

dard Sturmian sequence u with directive sequence ∆ = Ga1Da2Ga3Da4 · · · , we
assign an irrational number θ ∈ (0, 1) having the continued fraction expansion
θ = [a0, a1, a2, a3, . . .] with a0 = 0. The frequencies of the letters in the Sturmian
sequence u are θ

1+θ (for the least frequent letter) and 1
1+θ (for the most frequent

letter). For every N ∈ N, we define the N th convergent to θ as pN
qN

and the N th

convergent to θ
1+θ as PN

QN
, where pN , qn, QN satisfy the following recurrence rela-

tion for all N ≥ 1: XN = aNXN−1+XN−2, but they differ in their initial values:
p−1 = 1, p0 = 0; q−1 = 0, q0 = 1; Q−1 = Q0 = 1. This implies pN + qN = QN for
all N ∈ N. Note that u has directive sequence Ga1Da2Ga3Da4 · · · if and only if
u after exchange of letters a↔ b has directive sequence Da1Ga2Da3Ga4 · · · .

By Vuillon’s result [21], every factor of any Sturmian sequence has exactly two
return words and its derived sequence is Sturmian as well. The Parikh vectors
of the bispecial factors in u and the corresponding return words can be easily
expressed using the convergents pN

qN
to θ. In the following proposition we order

the bispecial factors in the Sturmian sequence by their length.

Proposition 7 ([12]). Let θ = [a0, a1, a2, a3, . . .] be the irrational number asso-
ciated with a Sturmian sequence u and let us suppose that b is the most frequent
letter. Let b be the nth bispecial factor of u. Then there exists a unique pair
(N,m) ∈ N2 with 0 ≤ m < aN+1 such that n = m + a0 + a1 + a2 + · · · + aN .
The Parikh vectors of the most frequent return word r to b, of the least frequent

return word s to b and of b itself are V (r) = ( pNqN ) , V (s) =
(
mpN+pN−1

mqN+qN−1

)
and

V (b) = V (r) + V (s) − ( 1
1 ). The irrational number associated with the derived

sequence du(b) to b in u is θ′ = [0, aN+1 −m, aN+2, aN+3, . . .].

We will describe how to compute the asymptotic critical exponent of the
balanced sequence v = colour(u,y,y′) associated with a standard Sturmian
sequence u with θ having an eventually periodic continued fraction expansion.
Our main tool for computing E∗(v) is Proposition 5. Thus we need to find for
any bispecial factor of length |b| in v the length |v| of its shortest return word.

As stated in Lemma 2, if w is a bispecial factor of v and w is long enough,
then there exist Per(y)Per(y′) bispecial factors of the same length in v, all of
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them having the same projection in u, and this projection is bispecial in u. By
Lemma 5, the shortest return words to these bispecial factors of v have the
same length. Therefore, we can consider only one representative. In the sequel,
we denote by wn a bispecial factor of v such that bn = π(wn) is the nth bispecial
factor in the Sturmian sequence u, when these are ordered by length. We want to

compute E∗(v) = 1+lim sup |wn|
|vn| , where vn is a shortest return word to wn in v.

The fact that the continued fraction expansion of θ is eventually periodic enables
us to split the sequence (|wn|/|vn|) into a finite number of subsequences such
that each of them has a finite limit. The largest limit of these subsequences is the
searched E∗(v). To find a suitable partition of the index set N into a finite number
of subsets of indices describing subsequences, we define an equivalence on N. First
we fix our notation: θ = [a0, a1, a2, a3, . . . ] = [0, a1a2 . . . ah(z0z1 . . . zM−1)ω]. In
particular, ai = zj , if i > h and i− 1− h = j mod M .

Definition 5. To any n ∈ N we assign a unique pair (N,m) ∈ N2 as in Propo-
sition 7. Let (N1,m1) and (N2,m2) be assigned to the integers n1 and n2 respec-
tively. We say that n1 is equivalent to n2 and write n1 ∼ n2 if

m1 = m2, N1 = N2 mod M,( pN1−1
qN1−1

)
=
( pN2−1
qN2−1

)
mod Per(y,y′),

( pN1
qN1

)
=
( pN2
qN2

)
mod Per(y,y′).

Obviously, the above defined relation on N is an equivalence and there are
only finitely many equivalence classes, say C1, C2, . . . , CT . Now we can define
subsequences of the sequence (|wn|/|vn|): if #Ct =∞, then we insert |wn|/|vn|
into the tth subsequence for each n ∈ Ct. For each n ∈ N, up to a finite number
of exceptions, |wn|/|vn| belongs to a subsequence. The number of subsequences
is at most Z Per(y)2 Per(y′)2, where Z = z0 + z1 + · · ·+ zM−1. We obtain thus
the following algorithm computing the asymptotic critical exponent.

Algorithm for determining E∗(v), where v = colour(u,y,y′):

Input: θ = [0, a1a2 · · · ah(z0z1 · · · zM−1)ω], Per(y) and Per(y′).

Step 1. Find all infinite equivalence classes Ct introduced in Definition 5.

Step 2. For each class Ct

• insert |wn|/|vn| into the tth subsequence for each n ∈ Ct;
• find the limit et of the tth subsequence.

Output: E∗(v) = 1+ the maximum value among all limits et.

Proposition 5 and a thorough study of short return words provide a lower
bound on the asymptotic critical exponent.

Theorem 2. Let u be a Sturmian sequence, y,y′ two constant gap sequences
and v = colour(u,y,y′). Then E(v) ≥ E∗(v) ≥ 1 + 1

Per(y)Per(y′) . Moreover,

E∗(v) depends only on Per(y) and Per(y′) (not on the structure of y and y′).
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On one hand, the asymptotic critical exponent depends only on the length
of the periods of y and y′ and it does not depend on their structure, in contrast
to the critical exponent. On the other hand, the asymptotic critical exponent
depends on the preperiod of the continued fraction of θ, in contrast to the asymp-
totic critical exponent of the associated Sturmian sequence (see [16]).

Example 11. Let v be the balanced sequence given by the parameters θ =
[0, 2], Per(y) = 1 and Per(y′) = 2. One can check that E∗(v) = 3 +

√
2
.
= 4.41.

For the balanced sequence v′ given by the parameters θ = [0, 1, 2], Per(y) = 1

and Per(y′) = 2, one has E∗(v′) = 2 +
√
2
2

.
= 2.7.

We used a program implemented by our student Daniela Opočenská com-
puting the asymptotic critical exponent of balanced sequences xd defined in [19]
for d ∈ {3, 4, . . . , 10}. The authors of [19] conjectured that the least critical ex-
ponent over an alphabet of cardinality d equals d−2

d−3 and this is achieved on the

sequences xd. This conjecture was proved for d = 3 and d = 4 in [19]. 1 Later,
in [4,3] it is shown that xd are indeed the sequences with the least critical expo-
nent over alphabets of size 5 to 8. The balanced sequences xd and their critical
exponent are listed in Table 1.

The table is taken from [19] (instead of the slope α of a Sturmian sequence,
used in the original table, we use the parameter θ corresponding to the directive
sequence). We also added to the table a column containing the asymptotic critical
exponent. We see that E∗(xd) = E(xd) for d = 3, 4, 5, 6, 7. However E∗(x8) <
E(x8). Moreover, using the table we can deduce that there exists a balanced
sequence x over an 8-letter alphabet with E∗(x) < E∗(x8). The sequence x
uses the same pair y and y′ as x8. The parameter θ corresponding to x is
θ = [0, 2, 3, 2]. Since x8 and x9 have same θ and same lengths of constant gap
sequences, we have E∗(x) = E∗(x9) < E∗(x8). The method used for finding the
candidates with the least critical exponent cannot be applied to find a suitable
xd for a general d. The same is true for the least asymptotic critical exponent.
Indeed, even a proof that the candidates should be given by θ with an eventually
periodic continued fraction expansion is still missing.
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