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V. Berthé, C. De Felice, V. Delecroix,
J. Leroy, D. Perrin, C. Reutenauer, G. Rindone

Francesco Dolce (Paris-Est) Specular Sets Liège, 26 novembre 2015 1 / 27



Introduction

Generalization of links between Sturmian sets and Free groups to general
objects : Specular sets and Specular groups.
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Generalization of links between Sturmian sets and Free groups to general
objects : Specular sets and Specular groups.

Introduction of new concepts : parity of words (odd and even words),
mixed return words.

Framework allowing to handle linear involutions (generalization of interval
exchange transformations).

Adaptation of results holding for tree sets : “Maximal Bifix Decoding

Theorem”, “Finite Index Basis Theorem”, “Return Theorem”.
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Outline

Introduction

1. Specular groups

2. Specular sets

3. Codes and subgroups

Conclusions

Francesco Dolce (Paris-Est) Specular Sets Liège, 26 novembre 2015 3 / 27
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Specular Groups Groups and Subgroups

Given an involution θ : A → A (possibly with some fixed point), let us define

Gθ = 〈a ∈ A | a · θ(a) = 1 for every a ∈ A〉.

Gθ = Z
i ∗ (Z/2Z)j is a specular group of type (i , j), and Card (A) = 2i + j is its

symmetric rank.

Example

Let A = {a, b, c, d} and let θ be the involution which exchanges b, d and fixes a, c, i.e.,

Gθ = 〈a, b, c, d | a
2 = c

2 = bd = db = 1〉.

Gθ = Z ∗ (Z/2Z)2 is a specular group of type (1, 2) and symmetric rank 4.
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Specular Groups Groups and Subgroups

Theorem

Any subgroup of a specular group is specular.

Example

Let Gθ = Z ∗ (Z/2Z)2, then one has

Gθ

Z ∗ (Z/2Z) (Z/2Z)2

Z Z/2Z

1
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Specular Groups Reduced words

A word is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.

Any element of a specular group is represented by a unique reduced word.

Example

Let θ be the involution on the alphabet {a, b, c, d} that fixes a, c and exchanges b, d .

The θ-reduction of the word daaacbd is dac.
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Specular Groups Reduced words

A word is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.

Any element of a specular group is represented by a unique reduced word.

Example

Let θ be the involution on the alphabet {a, b, c, d} that fixes a, c and exchanges b, d .

The θ-reduction of the word d✁a✁aac✁b✁d is dac.
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Specular Groups Monoidal Basis

A subset of a group G is called symmetric if it is closed under taking inverses (under θ).

Example

The set X = {a, adc, b, cba, d} is symmetric, for θ : b ↔ d fixing a, c.
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Specular Groups Monoidal Basis

A subset of a group G is called symmetric if it is closed under taking inverses (under θ).

Example

The set X = {a, adc, b, cba, d} is symmetric, for θ : b ↔ d fixing a, c.

A set X in a specular group G is called a monoidal basis of G if :

• it is symmetric ;

• the monoid that it generates is G ;

• any product x1x2 · · · xm such that xkxk+1 6= 1 for every k is distinct of 1.

Example

The alphabet A is a monoidal basis of Gθ .

The symmetric rank of a specular group is the cardinality of any monoidal basis.
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Specular Sets Tree Sets and Specular Sets

Let S be a factorial over an alphabet A.
The extension graph of a word w ∈ S is the undirected bipartite graph G(w) with
vertices the disjoint union of

L(w) = {a ∈ A | aw ∈ S} and R(w) = {a ∈ A |wa ∈ S},

and edges the pairs E(w) = {(a, b) ∈ A× A | awb ∈ S}.

Example

The Fibonacci set is the set of factors of the Fibonacci word, i.e. the fixed point ϕω(a)
of the morphism ϕ : a 7→ ab, b 7→ a.

E(ε)

a

b

a

b

E(a)

a

b

a

b

E(b)

a a

Indeed one has S = {ε, a, b, aa, ab, ba, aab, aba, baa, bab, . . .}.
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Specular Sets Tree Sets and Specular Sets

A biextendable set S is called a tree set of characteristic c if for any nonempty w ∈ S ,
the graph E(w) is a tree (acyclic and connected) and if E(ε) is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.
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Specular Sets Tree Sets and Specular Sets

A biextendable set S is called a tree set of characteristic c if for any nonempty w ∈ S ,
the graph E(w) is a tree (acyclic and connected) and if E(ε) is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

Factors of an Arnoux-Rauzy word and regular interval exchange sets are both uniformly
recurrent tree sets of characteristic 1.

Example

The Tribonacci set is a tree set of characteristic 1.

E(ε)

a

b

c

c

b

a
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Specular Sets Tree Sets and Specular Sets

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and

- symmetric set

- of θ-reduced words

- which is a tree set of characteristic 2.
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Specular Sets Tree Sets and Specular Sets

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and

- symmetric set

- of θ-reduced words

- which is a tree set of characteristic 2.

Example

Let A = {a, b} and θ be the identity on A. The set of factors of (ab)ω is a specular set.

E(ε)

a

b a

b

Proposition [J. Cassaigne (1997)]

The factor complexity of a specular set is given by p0 = 1 and pn = n (Card (A) − 2) + 2.
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Specular Sets Doubling Maps and Linear Involutions

A doubling transducer is a transducer with set of states Q = {0, 1} on the input
alphabet Σ and the output alphabet A such that :

1. the input automaton is a group automaton, that is, every letter of Σ acts on Q as
a permutation,

2. the output labels of the edges are all distinct.

Example

0 1

α | a

α | b

Σ = {α}
A = {a, b}
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Specular Sets Doubling Maps and Linear Involutions

A doubling transducer is a transducer with set of states Q = {0, 1} on the input
alphabet Σ and the output alphabet A such that :

1. the input automaton is a group automaton, that is, every letter of Σ acts on Q as
a permutation,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ0, δ1 : Σ
∗ → A∗ are two maps such that

δi (u) = v is the path starting at the state i with input label u and output label v .

Example

0 1

α | a

α | b

Σ = {α}
A = {a, b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω
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Specular Sets Doubling Maps and Linear Involutions

A doubling transducer is a transducer with set of states Q = {0, 1} on the input
alphabet Σ and the output alphabet A such that :

1. the input automaton is a group automaton, that is, every letter of Σ acts on Q as
a permutation,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ0, δ1 : Σ
∗ → A∗ are two maps such that

δi (u) = v is the path starting at the state i with input label u and output label v .

The image of a set T by a doubling map is the set δ(T ) = δ0(T ) ∪ δ1(T ).

Example

0 1

α | a

α | b

Σ = {α}
A = {a, b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω

δ(αω) = (ab)ω ∪ (ba)ω
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Specular Sets Doubling Maps and Linear Involutions

Proposition

The image of a tree set of characteristic 1 closed under reversal by a doubling map is a
specular set.

Example

Two possible doublings of the Fibonacci set are :

• the set of factors of the two infinite sequences abaababa · · · and cdccdcdc · · · ,

0 1
a|a
b|b

a|c
b|d

• the set of factors of the two infinite sequences abcabcda · · · and cdacdabc · · · .

0 1

a|a

a|c

b|d b|b

Both are specular sets. Their factor complexity is 2n + 2.
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Specular Sets Doubling Maps and Linear Involutions

Theorem

The natural coding of a linear involution without connections is a specular set.

a b b−1

c c−1 a−1
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Specular Sets Doubling Maps and Linear Involutions

Theorem

The natural coding of a linear involution without connections is a specular set.

a b b−1

c c−1 a−1

ΣT (z) = a
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Specular Sets Doubling Maps and Linear Involutions

Theorem

The natural coding of a linear involution without connections is a specular set.

a b b−1

c c−1 a−1

ΣT (z) = a b−1 c b c−1· · ·
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Specular Sets Even and Odd Words

A letter is said to be even if its two occurences (as a element of L(ε) and of R(ε))
appear in the same tree of E(ε). Otherwise it is said to be odd.

Example

Doubling of Fibonacci set.

0 1

a|a

a|c

b|d b|b

E(ε)

a

b

b

c

c

d

d

a

The letters b, d are even, while the letters a, c are odd.

A word is said to be even if it has an even number of odd letters. Otherwise it is said to
be odd.
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Codes and Subgroups Maximal Bifix Decoding Theorem

A set X ⊂ A+ of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements.

Example

• {aa, ab, ba}

• {aa, ab, bba, bbb}

• {ac, bcc , bcbca}
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Codes and Subgroups Maximal Bifix Decoding Theorem

A set X ⊂ A+ of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements.

Example

• {aa, ab, ba}

• {aa, ab, bba, bbb}

• {ac, bcc , bcbca}

A bifix code X ⊂ S is S-maximal if it is not properly contained in a bifix code Y ⊂ S .

Example

Let S be the Fibonacci set. The set X = {aa, ab, ba} is an S-maximal bifix code.
It is not an A∗-maximal bifix code, indeed X ⊂ Y = X ∪ {bb}.
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Codes and Subgroups Maximal Bifix Decoding Theorem

A parse of a word w with respect to a bifix code X is a triple (q, x , p) with w = qxp and
such that q has no suffix in X , x ∈ X ∗ and p has no prefix in X .

Example

Let X = {aa, ab, ba} and w = abaaba. The two possible parses of w are

• (ε, ab aa ba, ε),

• (a, ba ab, a).
a b a a ba
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Codes and Subgroups Maximal Bifix Decoding Theorem

A parse of a word w with respect to a bifix code X is a triple (q, x , p) with w = qxp and
such that q has no suffix in X , x ∈ X ∗ and p has no prefix in X .

Example

Let X = {aa, ab, ba} and w = abaaba. The two possible parses of w are

• (ε, ab aa ba, ε),

• (a, ba ab, a).
a b a a ba

The S-degree of X is the maximal number of parses with respect to X of a word of S .

Example

• For the Fibonacci set S , the set X = {aa, ab, ba} has S-degree 2

• The set X = S ∩ An has S-degree n.
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Codes and Subgroups Maximal Bifix Decoding Theorem

The set of even words in a specular set S has the form X ∗ ∩ S , where X ⊂ S is a bifix
code called the even code.
The set X is the set of even words without a nonempty even prefix (or suffix).

Example

Doubling of Fibonacci set.

0 1

a|a

a|c

b|d b|b

E(ε)

a

b

b

c

c

d

d

a

The even code is X = {abc, ac, b, ca, cda, d}.

Proposition

The even code of a recurrent specular set S is an S-maximal bifix code of S-degree 2.
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Codes and Subgroups Maximal Bifix Decoding Theorem

Let S be a factorial set and X be a finite S-maximal bifix code.
A coding morphism for X is a morphism f : B∗ → A∗ which maps bijectively an
alphabet B onto X .

The set f −1(S) is called a maximal bifix decoding of S .
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Codes and Subgroups Maximal Bifix Decoding Theorem

Let S be a factorial set and X be a finite S-maximal bifix code.
A coding morphism for X is a morphism f : B∗ → A∗ which maps bijectively an
alphabet B onto X .

The set f −1(S) is called a maximal bifix decoding of S .

Maximal Bifix Decoding Theorem

The decoding of a uniformly recurrent specular set by the even code is a union of two
uniformly recurrent tree sets of characteristic 1.

Example

The set S = Fac ((ab)ω) is a specular set. Its even code is X = {ab, ba}.
Let us consider the coding morphism for X

f :

{

u 7→ ab

v 7→ ba

Then, f −1(S) = Fac (uω) ∪ Fac (vω).
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Codes and Subgroups Finite Index Basis Theorem

Finite Index Basis Theorem

Let S be a uniformly recurrent specular set and X ⊂ S a finite symmetric bifix code.
X is an S-maximal bifix code of S-degree d if and only if it is a monoidal basis of a
subgroup of index d .

Example

• S ∩ An.

• The even code is a monoidal basis of a subgroup of index 2 of Gθ called the even

subgroup.
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Codes and Subgroups Finite Index Basis Theorem

Finite Index Basis Theorem

Let S be a uniformly recurrent specular set and X ⊂ S a finite symmetric bifix code.
X is an S-maximal bifix code of S-degree d if and only if it is a monoidal basis of a
subgroup of index d .

Example

• S ∩ An.

• The even code is a monoidal basis of a subgroup of index 2 of Gθ called the even

subgroup.

The Finite Index Basis Theorem has also a converse.

Theorem

Let S be a recurrent and symmetric set of reduced words having factor complexity pn =
n (Card (A)− 2) + 2.
If S ∩ An is a monoidal basis of the subgroup 〈An〉 for all n ≥ 1, then S is a specular set.
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Codes and Subgroups Return Theorem

Let S be a factorial set of words and x ∈ S .
A (right) return word to x in S is a nonempty word u such that xu ∈ S ∩ A∗x , but has
no internal factor equal to x .

We denote by RS(w) the set of return words to x in S .

Example

Let S be the Fibonacci set. One has RS(aa) = {baa, babaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab · · ·

Remark. A recurrent set S is uniformly recurrent if and only if the set RS (w) is finite for
every w ∈ S .
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Codes and Subgroups Return Theorem

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a uniformly recurrent tree set of characteristic 1.
For every w ∈ S , the set RS(w) has exactly Card (A) elements.
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Codes and Subgroups Return Theorem

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a uniformly recurrent tree set of characteristic 1.
For every w ∈ S , the set RS(w) has exactly Card (A) elements.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a uniformly recurrent tree set of characteristic 1.
For every w ∈ S , the set RS(w) is a (tame) basis of the free group on A.
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Codes and Subgroups Return Theorem

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a uniformly recurrent tree set of characteristic 1.
For every w ∈ S , the set RS(w) has exactly Card (A) elements.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a uniformly recurrent tree set of characteristic 1.
For every w ∈ S , the set RS(w) is a (tame) basis of the free group on A.

Return Theorem

Let S be a uniformly recurrent specular set on the alphabet A.
For any w ∈ S , the set RS (w) is a basis of the even subgroup.

In particular, Card (RS(x)) = Card (A)− 1.
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Codes and Subgroups Return Theorem

Example

Let Gθ = 〈a, b, c, d | a2 = c2 = bd = 1〉 and S be the doubling of the Fibonacci set :

0 1

a|a

a|c

b|d b|b

E(ε)

a

b

b

c

c

d

d

a
The even code is X = {abc, ac, b, ca, cda, d},

while RS (a) = {bca, bcda, cda}.

Then,
〈

RS(a)
〉

= 〈X 〉, indeed :







cda = cda

abc = (cda)−1

b = (bcda)(abc)

ca = (b)−1(bca)
ac = (ca)−1

d = b−1
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Conclusions

• Introduction of specular groups and specular sets.

• Generalization within these sets of results holding for tree sets.
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Conclusions

• Introduction of specular groups and specular sets.

• Generalization within these sets of results holding for tree sets.

Further research directions

• Investigation about recurrence (uniformly recurrence and tree
condition, bifix decoding, . . . ).

• Interesting connection with G -full (or G -rich) words.

• Generalization towards larger classes of groups (virtually free).
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