# On morphisms preserving palindromic richness

 $Francesco \ {\rm Dolce}$ 



joint work with Edita  $\operatorname{Pelantov\acute{A}}$ 

Day of Short Talks on Combinatorics on Words One World CoW Seminar March 22nd, 2021

FRANCESCO DOLCE (ČVUT)

MORPHISMS PRESERVING PALINDROMIC RICHNESS 22 MAR. 2021

1/17



Goflowolfog

GOFLOWOLFOG, the spirit who eases traffic blockages so that you can continue your journey. GOFLOWOLFOG typically appears in the form of a shades-wearing cat riding a skateboard. He brings with him a wind, and a noise which sounds like "Neeeowww." [..] If nothing else, this act of summoning may take your mind off sources of stress.

[Phil Hine, Aspects of Evocation (1995)]

FRANCESCO DOLCE (ČVUT) MORPHISMS PRESERVING PALINDROMIC RICHNESS 22 MAR. 2021 2/17



Goflowolfog

GOFLOWOLFOG, the spirit who eases traffic blockages so that you can continue your journey. GOFLOWOLFOG typically appears in the form of a shades-wearing cat riding a skateboard. He brings with him a wind, and a noise which sounds like "Neeeowww." [..] If nothing else, this act of summoning may take your mind off sources of stress.

Naming the Spirit - several suggestions were made for an appropriate name, and Go FLOW was chosen. This name was made suitably 'barbaric' by mirroring it, so becoming GoFLOWOLFOG.

[Phil Hine, Aspects of Evocation (1995)]

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 2/17

A palindrome is a finite word w such that  $w = \widetilde{w}$ .

Theorem [Droubay, Justin, Pirillo (2001)]A word of length n has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

 $(\Box) + (\Box) + (\Xi) + (\Xi)$ 

A palindrome is a finite word w such that  $w = \widetilde{w}$ .

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length *n* has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

•  $\mathcal{P}\{\text{pizza}\} = \{\varepsilon, a, i, p, z, zz\}$  $\#\mathcal{P}\{w\} = 6 = |w| + 1 \quad \checkmark$ 



イロン 不同 とくほう 不良 とうほう

FRANCESCO DOLCE (ČVUT) MO

Morphisms preserving palindromic richness 22 Mar. 2021 3 / 17

A palindrome is a finite word w such that  $w = \widetilde{w}$ .

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length *n* has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

•  $\mathcal{P}\{\text{pizza}\} = \{\varepsilon, a, i, p, z, zz\}$  $\#\mathcal{P}\{w\} = 6 = |w| + 1 \qquad \checkmark$ 

• 
$$\mathcal{P}\{ananas\} = \{\varepsilon, a, n, s, ana, nan, anana\}$$
  
 $\#\mathcal{P}\{w\} = 7 = |w| + 1 \quad \checkmark$ 



FRANCESCO DOLCE (ČVUT)

Morphisms preserving palindromic richness 22 Mar. 2021 3 / 17

A palindrome is a finite word w such that  $w = \widetilde{w}$ .

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length *n* has at most n + 1 palindrome factors

A word with maximal number of palindromes is rich.

•  $\mathcal{P}\{pizza\} = \{\varepsilon, a, i, p, z, zz\}$  $\#\mathcal{P}\{w\} = 6 = |w| + 1 \qquad \checkmark$ 

• 
$$\mathcal{P}\{ananas\} = \{\varepsilon, a, n, s, ana, nan, anana\}$$
  
 $\#\mathcal{P}\{w\} = 7 = |w| + 1 \quad \checkmark$ 

•  $\mathcal{P}$ {hawaiianpizza} = { $\varepsilon$ , a, h, i, n, p, w, z, ii, zz, awa, aiia} # $\mathcal{P}$ {w} = 12 < 13 = |w| + 1 X

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 3/17

A D N A B N A B N A

An infinite word **u** is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

An infinite word **u** is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

#### Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

where  $\varphi = \left\{ egin{array}{c} \mathtt{a} o \mathtt{a}\mathtt{b} \\ \mathtt{b} o \mathtt{a} \end{array} 
ight.$ 

FRANCESCO DOLCE (ČVUT) MORPHISMS PRESERVING PALINDROMIC RICHNESS 22 MAR. 2021

4/17

イロト イヨト イヨト イヨト ヨー わへの

An infinite word  $\mathbf{u}$  is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

#### • Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

#### • Symmetric regular interval exchange sets

Baláži, Masáková, Pelantová (2007)



FRANCESCO DOLCE (ČVUT)

Morphisms preserving palindromic richness 22 Mar. 2021

4/17

An infinite word  $\mathbf{u}$  is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

#### Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

Symmetric regular interval exchange sets

Baláži, Masáková, Pelantová (2007)

• (Recurrent) dendric sets closed under reversal

Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)



An infinite word  $\mathbf{u}$  is *rich* if all its finite prefixes are rich. A factorial set is *rich* if all its elements are rich.

#### • Arnoux-Rauzy words

Droubay, Justin, Pirillo (2001)

Symmetric regular interval exchange sets

Baláži, Masáková, Pelantová (2007)

• (Recurrent) dendric sets closed under reversal

Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)

Complementary-symmetric Rote words

Blondin-Massé, Brlek, Labbé, Vuillon (2011)

• Languages closed under reversal with factor complexity C(n) = 2n + 1

Balková, Pelantová, Starosta (2009)

• etc.

Francesco Dolce (ČVUT)

Morphisms preserving palindromic richness 22 Mar. 2021

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017) ]

Let  $\mathcal{R}_q(n)$  denote the number of rich words for of length  $n \in \mathbb{N}$  over an alphabet of cardinality q.

- $\mathcal{R}_q(n)$  is superpolynomial;
- $\mathcal{R}_q(n)$  is subexponential.

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017) ]

Let  $\mathcal{R}_q(n)$  denote the number of rich words for of length  $n \in \mathbb{N}$  over an alphabet of cardinality q.

- $\mathcal{R}_q(n)$  is superpolynomial;
- $\mathcal{R}_q(n)$  is subexponential.

Can we construct new rich words from known ones?

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 5/17

- イボト・イラト - ラ

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017)]

Let  $\mathcal{R}_q(n)$  denote the number of rich words for of length  $n \in \mathbb{N}$  over an alphabet of cardinality q.

- *R<sub>q</sub>(n)* is superpolynomial;
- $\mathcal{R}_q(n)$  is subexponential.

Can we construct new rich words from known ones?

 $\varphi(aaabbba) = abababaaaab$ 

where  $\varphi: \left\{ \begin{array}{c} \mathtt{a} \to \mathtt{a}\mathtt{b} \\ \mathtt{b} \to \mathtt{a} \end{array} \right.$ 

FRANCESCO DOLCE (ČVUT)

MORPHISMS PRESERVING PALINDROMIC RICHNESS 22 MAR. 2021

5/17

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017) ]

Let  $\mathcal{R}_q(n)$  denote the number of rich words for of length  $n \in \mathbb{N}$  over an alphabet of cardinality q.

- $\mathcal{R}_q(n)$  is superpolynomial;
- $\mathcal{R}_q(n)$  is subexponential.

Can we construct new rich words from known ones?

#### Theorem [Vesti (2014)]

Let u be a finite rich word. There exist an infinite **aperiodic** rich word and an infinite **periodic** rich words such that u is a factor of both of them.

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 5/17

# Morphisms

A morphism is a map  $\varphi : \mathcal{A}^* \to \mathcal{A}^*$  such that  $\varphi(uv) = \varphi(u)\varphi(v)$  for all  $u, v \in \mathcal{A}^*$ .

A substitution is a morphism  $\varphi$  such that there exists  $a \in \mathcal{A}$  with  $\varphi(a) = av$  and  $\lim_{n \to \infty} |\varphi^n(a)| = \infty$ . The word  $\varphi^{\omega}(a)$  is a *fixed point* of the substitution.

A morphism  $\varphi$  is *primitive* if there exists  $k \in \mathbb{N}$  such that b is a factor of  $\varphi^k(a)$  for all  $a, b \in \mathcal{A}$ .

# 

(ロトイラトイミン モン モン シュン マヘル Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 6/17

# Conjugated morphisms

A morphism  $\varphi$  is right conjugate to a morphism  $\psi$  if there exists a word  $x \in A^*$ , called the conjugate word, such that  $\psi(a)x = x\varphi(a)$  for each  $a \in A$ .

The *rightmost conjugate* to  $\varphi$  is (when it exists) a right conjugate to  $\varphi$  that is the only right conjugate to itself. We denote it by  $\varphi_R$ .

Example (x = a)  

$$\varphi: \begin{cases} a \rightarrow bba \\ b \rightarrow a \end{cases}, \qquad \varphi_R: \begin{cases} a \rightarrow abb \\ b \rightarrow a \end{cases}$$

If  $\varphi$  has no rightmost conjugate, then it is called *cyclic* and there exists  $z \in A$  such that  $\varphi(a) \in z^*$  for each  $a \in A$ . A fixed point of a cyclic morphism if periodic.

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 7/17

A (0) A (

# Conjugated morphisms

A morphism  $\varphi$  is right conjugate to a morphism  $\psi$  if there exists a word  $x \in A^*$ , called the conjugate word, such that  $\psi(a)x = x\varphi(a)$  for each  $a \in A$ .

The *rightmost conjugate* to  $\varphi$  is (when it exists) a right conjugate to  $\varphi$  that is the only right conjugate to itself. We denote it by  $\varphi_R$ .

Example (x = a)  

$$\varphi: \begin{cases} a \rightarrow bba \\ b \rightarrow a \end{cases}, \qquad \varphi_R: \begin{cases} a \rightarrow abb \\ b \rightarrow a \end{cases}$$

If  $\varphi$  has no rightmost conjugate, then it is called *cyclic* and there exists  $z \in A$  such that  $\varphi(a) \in z^*$  for each  $a \in A$ . A fixed point of a cyclic morphism if periodic.

If  $\varphi$  and  $\psi$  are conjugates and **u** is a recurrent infinite word one has  $\mathcal{L}(\varphi(\mathbf{u})) = \mathcal{L}(\psi(\mathbf{u}))$ . Since the palindromic richness can be seen as a property of a language (and not of an infinite word itself) it is enough to examine richness for one of these languages.

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・ うへつ

The Arnoux-Rauzy monoid is generated by elementary Arnoux-Rauxy morphisms:

- permutations over  $\mathcal A$  and
- for each  $a \in \mathcal{A}$

$$\psi_a : \left\{ \begin{array}{l} a \to a \\ b \to ab \quad \text{if } b \neq a \end{array} \right. \quad \text{and} \quad \widetilde{\psi}_a : \left\{ \begin{array}{l} a \to a \\ b \to ba \quad \text{if } b \neq a \end{array} \right.$$

Example (Fibonacci and Tribonacci)

$$arphi = \psi_{a} \circ \pi_{(ab)} : \left\{ egin{array}{c} \mathbf{a} o \mathbf{a} b \ \mathbf{b} o \mathbf{a} \end{array} 
ight.$$
,  $au = \psi_{a} \circ \pi_{(abc)} : \left\{ egin{array}{c} \mathbf{a} o \mathbf{a} b \ \mathbf{b} o \mathbf{a} c \ \mathbf{c} o \mathbf{a} \end{array} 
ight.$ 

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 8/17

(日) (周) (日) (日) (日)

The Arnoux-Rauzy monoid is generated by elementary Arnoux-Rauxy morphisms:

- permutations over A and
- for each  $a \in \mathcal{A}$

$$\psi_a : \left\{ \begin{array}{ll} a \to a \\ b \to ab \quad \text{if } b \neq a \end{array} \right. \quad \text{and} \quad \widetilde{\psi}_a : \left\{ \begin{array}{ll} a \to a \\ b \to ba \quad \text{if } b \neq a \end{array} \right.$$

Example (Fibonacci and Tribonacci)

$$arphi = \psi_{\mathbf{a}} \circ \pi_{(\mathbf{ab})} : \left\{ egin{array}{c} \mathbf{a} o \mathbf{ab} \\ \mathbf{b} o \mathbf{a} \end{array} 
ight., \qquad au = \psi_{\mathbf{a}} \circ \pi_{(\mathbf{abc})} : \left\{ egin{array}{c} \mathbf{a} o \mathbf{ab} \\ \mathbf{b} o \mathbf{ac} \\ \mathbf{c} o \mathbf{a} \end{array} 
ight.$$

A morphism over the binary alphabet  $\{a, b\}$  is called *standard Sturmian* if it belongs to the monoid generated by  $\pi_{(ab)}$  and  $\varphi$ .

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 8/17

イロン 不同 とくほう 不良 とうほう



- 本間 と 本臣 と 本臣 と 一臣



#### Example (Fibonacci after Tribonacci)

The infinite word

 $au({f f})={f a}{f b}{f a}{f c}{f a}{f b}{f a}{f c}{f a}{f b}{f a}{f c}{f a}{f b}{f a}{f c}{f a}{f b}{f a}{f a}{f a}{f b}{f a}{f a}{b a}{f a}{b a}{b a}{b$ 

is rich.

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 9/17

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class*  $P_{ret}$ , if there exists a palindrome w, called *marker*, such that:

- $\psi(a)w$  is a palindromic complete return word to w for each  $a \in A$ ,
  - (i.e.,  $\psi(a)w = w\widetilde{\psi(a)}$  and  $|\psi(a)w|_w = 2$ )
- $\psi(a) \neq \psi(b)$  for each  $a, b \in A$ ,  $a \neq b$ .

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class*  $P_{ret}$ , if there exists a palindrome w, called *marker*, such that:

- $\psi(a)w$  is a palindromic complete return word to w for each  $a \in A$ ,
  - (i.e.,  $\psi(a)w = w\widetilde{\psi(a)}$  and  $|\psi(a)w|_w = 2$ )
- $\psi(a) \neq \psi(b)$  for each  $a, b \in A$ ,  $a \neq b$ .

#### Example $(\ell, p, q \in \mathbb{N}, \ \ell > 0, \ p \neq q)$

 $\label{eq:rescaled} Francesco \ Dolce \ (\check{C}VUT) \qquad Morphisms \ preserving \ palindromic \ richness \ \ 22 \ Mar. \ 2021 \qquad 10 \ / \ 17$ 

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class*  $P_{ret}$ , if there exists a palindrome w, called *marker*, such that:

- $\psi(a)w$  is a palindromic complete return word to w for each  $a \in A$ ,
  - (i.e.,  $\psi(a)w = w\widetilde{\psi(a)}$  and  $|\psi(a)w|_w = 2$ )
- $\psi(a) \neq \psi(b)$  for each  $a, b \in A$ ,  $a \neq b$ .

♦ Every permutation on A is in Class  $P_{ret}$  with marker  $\varepsilon$ ,

$$\pi_{(abc)}: \begin{cases} a \to b \\ b \to c \\ c \to a \end{cases}$$

FRANCESCO DOLCE (ČVUT) MORPHISMS PRESERVING PALINDROMIC RICHNESS 22 MAR. 2021 10/17

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class*  $P_{ret}$ , if there exists a palindrome w, called *marker*, such that:

- $\psi(a)w$  is a palindromic complete return word to w for each  $a \in A$ ,
  - (i.e.,  $\psi(a)w = w\widetilde{\psi(a)}$  and  $|\psi(a)w|_w = 2$ )
- $\psi(a) \neq \psi(b)$  for each  $a, b \in A$ ,  $a \neq b$ .

- ♦ Every permutation on A is in Class  $P_{ret}$  with marker  $\varepsilon$ ,
- ♦ For each  $a \in A$  the elementary A-R morphism  $\psi_a$  is in Class  $P_{ret}$  with marker a,

$$\pi_{(\mathrm{abc})}: \left\{ \begin{array}{ll} \mathbf{a} \to \mathbf{b} \\ \mathbf{b} \to \mathbf{c} \\ \mathbf{c} \to \mathbf{a} \end{array} \right., \qquad \psi_{\mathbf{a}}: \left\{ \begin{array}{ll} \mathbf{a} \to \mathbf{a} \\ \mathbf{b} \to \mathbf{ab} \\ \mathbf{c} \to \mathbf{ac} \end{array} \right.$$

Francesco Dolce ( $\dot{C}VUT$ ) Morphisms preserving palindromic richness 22 Mar. 2021 10/17

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class*  $P_{ret}$ , if there exists a palindrome w, called *marker*, such that:

- $\psi(a)w$  is a palindromic complete return word to w for each  $a \in A$ ,
  - (i.e.,  $\psi(a)w = w\widetilde{\psi(a)}$  and  $|\psi(a)w|_w = 2$ )
- $\psi(a) \neq \psi(b)$  for each  $a, b \in A$ ,  $a \neq b$ .

- ♦ Every permutation on A is in Class  $P_{ret}$  with marker  $\varepsilon$ ,
- ♦ For each  $a \in A$  the elementary A-R morphism  $\psi_a$  is in Class  $P_{ret}$  with marker a,
- ◊ For each a ∈ A the elementary A-R morphism ψ<sub>a</sub> is not in Class P<sub>ret</sub>, but it is conjugated to ψ<sub>a</sub> ∈ P<sub>ret</sub> with conjugate word a.

$$\pi_{(\mathrm{abc})}: \left\{ \begin{array}{ll} \mathbf{a} \to \mathbf{b} \\ \mathbf{b} \to \mathbf{c} \\ \mathbf{c} \to \mathbf{a} \end{array} \right., \qquad \psi_{\mathbf{a}}: \left\{ \begin{array}{ll} \mathbf{a} \to \mathbf{a} \\ \mathbf{b} \to \mathbf{ab} \\ \mathbf{c} \to \mathbf{ac} \end{array} \right., \qquad \widetilde{\psi}_{\mathbf{a}}: \left\{ \begin{array}{ll} \mathbf{a} \to \mathbf{a} \\ \mathbf{b} \to \mathbf{ba} \\ \mathbf{c} \to \mathbf{ca} \end{array} \right.$$

FRANCESCO DOLCE (ČVUT) MORPHISMS PRESERVING PALINDROMIC RICHNESS 22 MAR. 2021 10/17

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class*  $P_{ret}$ , if there exists a palindrome w, called *marker*, such that:

- $\psi(a)w$  is a palindromic complete return word to w for each  $a \in A$ ,
  - (i.e.,  $\psi(a)w = w\widetilde{\psi(a)}$  and  $|\psi(a)w|_w = 2$ )
- $\psi(a) \neq \psi(b)$  for each  $a, b \in A$ ,  $a \neq b$ .

- ♦ Every permutation on A is in Class  $P_{ret}$  with marker  $\varepsilon$ ,
- ♦ For each  $a \in A$  the elementary A-R morphism  $\psi_a$  is in Class  $P_{ret}$  with marker a,
- ◊ For each a ∈ A the elementary A-R morphism ψ<sub>a</sub> is not in Class P<sub>ret</sub>, but it is conjugated to ψ<sub>a</sub> ∈ P<sub>ret</sub> with conjugate word a.

#### Theorem [D., Pelantová (2021)]

Every Arnoux-Rauzy morphism is conjugate to a morphism in Class Pret.

Francesco Dolce ( $\check{C}VUT$ ) Morphisms preserving palindromic richness 22 Mar. 2021 10/17

・ロト ・周ト ・ヨト ・ヨト ・ヨー うへつ

Theorem Balková, Pelantová, Starosta (2011)

Let  $\psi_1, \psi_2$  be in Class  $P_{ret}$  with marker  $w_1, w_2$  respectively. Then  $\psi_2 \circ \psi_1$  is in Class  $P_{ret}$  with marker  $\psi_2(w_1)w_2$ .

# Example $\psi_1 : \begin{cases} a \rightarrow a \\ b \rightarrow ab \end{cases}$ $\psi_2 : \begin{cases} a \rightarrow bba \\ b \rightarrow b \end{pmatrix}$ $\psi_2 \circ \psi_1 : \begin{cases} a \rightarrow bba \\ b \rightarrow bbab \end{pmatrix}$ $w_1 = a$ $w_2 = bb$ $\psi_2(w_1)w_2 = bba bb$

 $(\psi_2\circ\psi_1)(a)$ bbabb = bbabbabb ,  $(\psi_2\circ\psi_1)(b)$ bbabb = bbabbbabb

(ロトイラトイミン モン マクヘビ Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 11/17

# Class P<sub>ret</sub> and Class P

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class P* if there exists a palindrome  $p \in \mathcal{A}^*$  such that  $\psi(a) = pq_a$  for each  $a \in \mathcal{A}$ , where  $q_a$  is a palindrome.

Any fixed point of a substitution from Class P contains infinitely many palindromes.

#### Proposition

Any morphism from Class  $P_{ret}$  is conjugate to an acyclic morphism from Class P.

# Class P<sub>ret</sub> and Class P

A morphism  $\psi : \mathcal{A}^* \to \mathcal{A}^*$  belongs to *Class P* if there exists a palindrome  $p \in \mathcal{A}^*$  such that  $\psi(a) = pq_a$  for each  $a \in \mathcal{A}$ , where  $q_a$  is a palindrome.

Any fixed point of a substitution from Class P contains infinitely many palindromes.

# Proposition Any morphism from Class $P_{ret}$ is conjugate to an acyclic morphism from Class P. Example (The converse is not true) $\psi: \begin{cases} a \rightarrow ababab \\ b \rightarrow ababaab \\ \vdots \\ \vdots \\ \vdots \\ \end{bmatrix}, \quad \psi_R: \begin{cases} a \rightarrow ababab \\ b \rightarrow abababa \\ \vdots \\ \vdots \\ \vdots \\ \end{bmatrix}, \quad \psi_R = abababa \\ |\psi_R(a)w_R|_{w_R} = |abababababa|_{w_R} = 4$

 $(\Box) + (\overline{\Box}) + (\overline{\Xi}) + (\overline{\Xi$ 

An acyclic morphism  $\psi$  is

- right marked if the mapping  $a \to \text{Lst}(\psi_R(a))$  is injective on  $\mathcal{A}$ .
- *left marked* if the mapping  $a \to \operatorname{Fst}(\psi_L(a))$  is injective on  $\mathcal{A}$ .

A morphism is *marked* if it is both right marked and left marked.

A marked morphism is *well-marked* if the mappings above are the identity on  $\mathcal{A}$ .

Example (Tribonacci)
$$\tau = \tau_R : \begin{cases} \mathbf{a} \to \mathbf{a}\mathbf{b} \\ \mathbf{b} \to \mathbf{a}\mathbf{c} \\ \mathbf{c} \to \mathbf{a} \end{cases}$$
 $\tau_L : \begin{cases} \mathbf{a} \to \mathbf{b}\mathbf{a} \\ \mathbf{b} \to \mathbf{c}\mathbf{a} \\ \mathbf{c} \to \mathbf{a} \end{cases}$ 

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 13/17

→ □ → モ → モ → モ → ○ ○ ○

An acyclic morphism  $\psi$  is

- right marked if the mapping  $a \to \text{Lst}(\psi_R(a))$  is injective on  $\mathcal{A}$ .
- *left marked* if the mapping  $a \to \operatorname{Fst}(\psi_L(a))$  is injective on  $\mathcal{A}$ .

A morphism is *marked* if it is both right marked and left marked.

A marked morphism is *well-marked* if the mappings above are the identity on A.

#### Proposition [D., Pelantová (2021)]

Let  $\psi$  be in Class  $P_{ret}$  and right marked. Then  $\psi$  is left marked too. Moreover there exists  $k \geq 1$  such that  $\psi^k$  is well-marked.

Example (Tribonacci)

$$\tau^{3} = \tau_{R}^{3} : \begin{cases} a \to abacab\underline{a} \\ b \to abaca\underline{b} \\ c \to abac \end{cases}, \qquad \tau_{L}^{3} : <$$

$$\left\{ \begin{array}{l} a \to \underline{a} bacaba \\ b \to \underline{b} acaba \\ c \to caba \end{array} \right.$$

FRANCESCO DOLCE (ČVUT)

Morphisms preserving palindromic richness 22 Mar. 2021 13

13 / 17

Theorem [D., Pelantová (2021)]

Let  $\psi$  be a marked morphism in Class  $P_{ret}$  and  $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$  s.t.  $\mathcal{L}(\mathbf{u})$  is closed under reversal. If  $\psi(\mathbf{u})$  is rich, then  $\mathbf{u}$  is rich.

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 14/17

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

Theorem [D., Pelantová (2021)]

Let  $\psi$  be a marked morphism in Class  $P_{ret}$  and  $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$  s.t.  $\mathcal{L}(\mathbf{u})$  is closed under reversal. If  $\psi(\mathbf{u})$  is rich, then  $\mathbf{u}$  is rich.

And the other direction?

 $(\Box) + (\overline{\bigcirc}) + (\overline{)} + (\overline{)$ 

#### Theorem [D., Pelantová (2021)]

Let  $\psi$  be a marked morphism in Class  $P_{ret}$  and  $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$  s.t.  $\mathcal{L}(\mathbf{u})$  is closed under reversal. If  $\psi(\mathbf{u})$  is rich, then  $\mathbf{u}$  is rich.

#### And the other direction?

Theorem [D., Pelantová (2021)] Let  $\psi : \{\mathbf{a}, \mathbf{b}\}^* \to \{\mathbf{a}, \mathbf{b}\}^*$  be a morphism conjugated to a morphism in Class  $P_{ret}$ , and let w be the marker associated to  $\psi_R$ . Assume that  $\psi_R(\mathbf{ab})w$  is rich. Then • If  $\mathbf{u} \in \{\mathbf{a}, \mathbf{b}\}^{\mathbb{N}}$  is recurrent and rich, then  $\psi(\mathbf{u})$  is rich.

• If  $\mathbf{u} \in {\{\mathbf{a}, \mathbf{b}\}}^{\mathbb{N}}$  is a fixed point of  $\psi$ , and  $\psi$  is primitive, then  $\psi(\mathbf{u}) = \mathbf{u}$  is rich.

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 14/17

#### Theorem [D., Pelantová (2021)]

Let  $\psi$  be a marked morphism in Class  $P_{ret}$  and  $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$  s.t.  $\mathcal{L}(\mathbf{u})$  is closed under reversal. If  $\psi(\mathbf{u})$  is rich, then  $\mathbf{u}$  is rich.

#### And the other direction?

Theorem [D., Pelantová (2021) ]

Let  $\psi : \{a, b\}^* \to \{a, b\}^*$  be a morphism conjugated to a morphism in Class  $P_{ret}$ , and let w be the marker associated to  $\psi_R$ . Assume that  $\psi_R(ab)w$  is rich. Then

- If  $\mathbf{u} \in {\{\mathbf{a}, \mathbf{b}\}}^{\mathbb{N}}$  is recurrent and rich, then  $\psi(\mathbf{u})$  is rich.
- If  $\mathbf{u} \in {\{\mathbf{a}, \mathbf{b}\}}^{\mathbb{N}}$  is a fixed point of  $\psi$ , and  $\psi$  is primitive, then  $\psi(\mathbf{u}) = \mathbf{u}$  is rich.

#### Corollary

Let  $\psi : \{a, b\}^* \to \{a, b\}^*$  be a morphism from Class  $P_{ret}$  and  $u \in \{a, b\}^{\mathbb{N}}$  a non-unary recurrent word. If  $\psi(\mathbf{u})$  is rich, then  $\psi(\mathbf{v})$  is rich for every recurrent rich word  $\mathbf{v} \in \{a, b\}^{\mathbb{N}}$ .

Francesco Dolce ( $\check{C}VUT$ ) Morphisms preserving palindromic richness 22 Mar. 2021 14/17

# To sum up

We can construct new rich words from known ones.

- Applying an arbitrary Arnoux-Rauzy morphism to a symmetric regular IET word gives a new rich word which is neither Arnoux-Rauzy nor a IET word. (see Fibonacci after Tribonacci).
- We can apply the results both to finite and infinite words. ([Vesti (2014) ])
- Improve lower bound of rich words over a binary alphabet. (Each word of the form  $a^{m_1}b^{n_1}a^{m_2}b^{n_2}\cdots a^{m_k}b^{n_k}$ , with  $m_1 \le m_2 \le \cdots \le m_k$  and  $n_1 \le n_2 \le \cdots \le n_k$  is rich [Guo, Shallit, Shur (2016)])

Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 15/17

# **Open** questions

- Which tame morphisms preserve richness?
- How characterize dendric languages closed under reversal?
- How many finite rich words of given length are there over a given alphabet?
- Can we determine an optimal lower bound for the critical exponent? (Lower bounds on alphabets of cardinality k = 2, 3, 4, 5. [Baranwal, Shallit (2019)] The bound is the best possible for k = 2. [Currie, Mol, Rampersad (2020)] What about  $k \ge 3$ ?)

FRANCESCO DOLCE (ČVUT) MORPHISMS PRESERVING PALINDROMIC RICHNESS 22 MAR. 2021 16/17

イロト イボト イヨト イヨト ヨー わへの

# T H A N K YOUOY K N A H T



 $(\Box ) + (\Box ) + (\Xi ) + (\Xi ) = (\odot ) (\odot )$ Francesco Dolce (ČVUT) Morphisms preserving palindromic richness 22 Mar. 2021 17/17