On morphisms preserving palindromic richness

Francesco Dolce

joint work with Edita Pelantová

Day of Short Talks on Combinatorics on Words
One World CoW Seminar
March 22nd, 2021

Goflowolfog

Goflowolfog, the spirit who eases traffic blockages so that you can continue your journey. GOFLOWOLFOG typically appears in the form of a shades-wearing cat riding a skateboard. He brings with him a wind, and a noise which sounds like "Neeeowww." [..] If nothing else, this act of summoning may take your mind off sources of stress.

Goflowolfog

Goflowolfog, the spirit who eases traffic blockages so that you can continue your journey. GOFLOWOLFOG typically appears in the form of a shades-wearing cat riding a skateboard. He brings with him a wind, and a noise which sounds like "Neeeowww." [..] If nothing else, this act of summoning may take your mind off sources of stress.

Naming the Spirit - several suggestions were made for an appropriate name, and Go Flow was chosen. This name was made suitably 'barbaric' by mirroring it, so becoming GoFlowolFoG.

Palindromes

A palindrome is a finite word w such that $w=\widetilde{w}$.
Theorem [Droubay, Justin, Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

Palindromes

A palindrome is a finite word w such that $w=\widetilde{w}$.
Theorem [Droubay, Justin, Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}\{$ pizza $\}=\{\varepsilon, \mathrm{a}, \mathbf{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=6=|\mathrm{w}|+1
$$

Palindromes

A palindrome is a finite word w such that $w=\widetilde{w}$.

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}\{$ pizza $\}=\{\varepsilon, \mathrm{a}, \mathbf{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=6=|\mathrm{w}|+1
$$

- $\mathcal{P}\{$ ananas $\}=\{\varepsilon, \mathrm{a}, \mathrm{n}, \mathrm{s}$, ana, nan, anana $\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=7=|\mathrm{w}|+1
$$

Palindromes

A palindrome is a finite word w such that $w=\widetilde{w}$.

Theorem [Droubay, Justin, Pirillo (2001)]

A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich.

- $\mathcal{P}\{$ pizza $\}=\{\varepsilon, \mathrm{a}, \mathbf{i}, \mathrm{p}, \mathbf{z}, \mathbf{z z}\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=6=|\mathrm{w}|+1
$$

- $\mathcal{P}\{$ ananas $\}=\{\varepsilon, \mathrm{a}, \mathrm{n}, \mathrm{s}$, ana, nan, anana $\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=7=|\mathrm{w}|+1
$$

- $\mathcal{P}\{$ hawaiianpizza $\}=\{\varepsilon$, a, h, i, n, p, w, z, ii, zz, awa, aiia $\}$

$$
\# \mathcal{P}\{\mathrm{w}\}=12<13=|\mathrm{w}|+1
$$

Rich words

An infinite word \mathbf{u} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

Rich words

An infinite word \mathbf{u} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words [Droubay, Justin, Pirillo (2001)]
$\mathbf{f}=\varphi^{\omega}(\mathrm{a})=$ abaababaabaababaababaabaababaabaababaababaab \cdots

$$
\text { where } \varphi=\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}\right.
$$

Rich words

An infinite word \mathbf{u} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words [Droubay, Justin, Pirillo (2001)]
- Symmetric regular interval exchange sets [Baláži, Masáková, Pelantová (2007)]

Rich words

An infinite word \mathbf{u} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words
[Droubay, Justin, Pirillo (2001)]
- Symmetric regular interval exchange sets [Baláži, Masáková, Pelantová (2007)]
- (Recurrent) dendric sets closed under reversal [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
$\mathcal{E}(\varepsilon)$

$\mathcal{L}(\mathbf{f})=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$

$$
\mathcal{E}(\mathrm{b})
$$

Rich words

An infinite word \mathbf{u} is rich if all its finite prefixes are rich.
A factorial set is rich if all its elements are rich.

- Arnoux-Rauzy words
[Droubay, Justin, Pirillo (2001)]
- Symmetric regular interval exchange sets [Baláži, Masáková, Pelantová (2007)]
- (Recurrent) dendric sets closed under reversal [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
- Complementary-symmetric Rote words [Blondin-Massé, Brlek, Labbé, Vuillon (2011)]
- Languages closed under reversal with factor complexity $\mathcal{C}(n)=2 n+1$ [Balková, Pelantová, Starosta (2009)]
- etc.

How many (finite) rich words?

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017)]

Let $\mathcal{R}_{q}(n)$ denote the number of rich words for of length $n \in \mathbb{N}$ over an alphabet of cardinality q.

- $\mathcal{R}_{q}(n)$ is superpolynomial;
- $\mathcal{R}_{q}(n)$ is subexponential.

How many (finite) rich words?

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017)]

Let $\mathcal{R}_{q}(n)$ denote the number of rich words for of length $n \in \mathbb{N}$ over an alphabet of cardinality q.

- $\mathcal{R}_{q}(n)$ is superpolynomial;
- $\mathcal{R}_{q}(n)$ is subexponential.

Can we construct new rich words from known ones?

How many (finite) rich words?

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017)]

Let $\mathcal{R}_{q}(n)$ denote the number of rich words for of length $n \in \mathbb{N}$ over an alphabet of cardinality q.

- $\mathcal{R}_{q}(n)$ is superpolynomial;
- $\mathcal{R}_{q}(n)$ is subexponential.

Can we construct new rich words from known ones?

$$
\begin{aligned}
\varphi(\text { aaabbba }) & =\text { abababaaaab } \\
\text { where } \varphi & \varphi\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}\right.
\end{aligned}
$$

How many (finite) rich words?

Theorem [Guo, Shallit, Shur (2016), Rukavicka (2017)]

Let $\mathcal{R}_{q}(n)$ denote the number of rich words for of length $n \in \mathbb{N}$ over an alphabet of cardinality q.

- $\mathcal{R}_{q}(n)$ is superpolynomial;
- $\mathcal{R}_{q}(n)$ is subexponential.

Can we construct new rich words from known ones?

Theorem [Vesti (2014)]

Let u be a finite rich word.
There exist an infinite aperiodic rich word and an infinite periodic rich words such that u is a factor of both of them.

Morphisms

A morphism is a map $\varphi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ such that $\varphi(u v)=\varphi(u) \varphi(v)$ for all $u, v \in \mathcal{A}^{*}$.
A substitution is a morphism φ such that there exists $a \in \mathcal{A}$ with $\varphi(a)=a v$ and $\lim _{n \rightarrow \infty}\left|\varphi^{n}(a)\right|=\infty$. The word $\varphi^{\omega}(a)$ is a fixed point of the substitution.

A morphism φ is primitive if there exists $k \in \mathbb{N}$ such that b is a factor of $\varphi^{k}(a)$ for all $a, b \in \mathcal{A}$.

Example (Fibonacci)

$$
\varphi:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}, \quad \varphi^{2}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{aba} \\
\mathrm{~b} \rightarrow \mathrm{ab}
\end{array}\right.\right.
$$

$$
\mathbf{f}=\varphi^{\omega}(\mathrm{a})=\text { abaababaabaababaababaabaababaabaababaababaab } \ldots
$$

Conjugated morphisms

A morphism φ is right conjugate to a morphism ψ if there exists a word $x \in \mathcal{A}^{*}$, called the conjugate word, such that $\psi(a) x=x \varphi(a)$ for each $a \in \mathcal{A}$.

The rightmost conjugate to φ is (when it exists) a right conjugate to φ that is the only right conjugate to itself. We denote it by φ_{R}.

Example $(x=\mathrm{a})$

$$
\varphi:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{bba} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}, \quad \varphi_{R}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{abb} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}\right.\right.
$$

If φ has no rightmost conjugate, then it is called cyclic and there exists $z \in \mathcal{A}$ such that $\varphi(a) \in z^{*}$ for each $a \in \mathcal{A}$. A fixed point of a cyclic morphism if periodic.

Conjugated morphisms

A morphism φ is right conjugate to a morphism ψ if there exists a word $x \in \mathcal{A}^{*}$, called the conjugate word, such that $\psi(a) x=x \varphi(a)$ for each $a \in \mathcal{A}$.

The rightmost conjugate to φ is (when it exists) a right conjugate to φ that is the only right conjugate to itself. We denote it by φ_{R}.

Example ($x=\mathrm{a}$)

$$
\varphi:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{bba} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}, \quad \varphi_{R}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{abb} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}\right.\right.
$$

If φ has no rightmost conjugate, then it is called cyclic and there exists $z \in \mathcal{A}$ such that $\varphi(a) \in z^{*}$ for each $a \in \mathcal{A}$. A fixed point of a cyclic morphism if periodic.

If φ and ψ are conjugates and \mathbf{u} is a recurrent infinite word one has $\mathcal{L}(\varphi(\mathbf{u}))=\mathcal{L}(\psi(\mathbf{u}))$. Since the palindromic richness can be seen as a property of a language (and not of an infinite word itself) it is enough to examine richness for one of these languages.

Arnoux-Rauzy morphisms

The Arnoux-Rauzy monoid is generated by elementary Arnoux-Rauxy morphisms:

- permutations over \mathcal{A} and
- for each $a \in \mathcal{A}$

$$
\psi_{a}:\left\{\begin{array}{l}
a \rightarrow a \\
b \rightarrow a b
\end{array} \text { if } b \neq a \quad \text { and } \quad \tilde{\psi}_{a}:\left\{\begin{array}{l}
a \rightarrow a \\
b \rightarrow b a
\end{array} \text { if } b \neq a\right.\right.
$$

Example (Fibonacci and Tribonacci)

$$
\varphi=\psi_{\mathrm{a}} \circ \pi_{(\mathrm{ab})}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}, \quad \tau=\psi_{\mathrm{a}} \circ \pi_{(\mathrm{abc})}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{ac} \\
\mathrm{c} \rightarrow \mathrm{a}
\end{array}\right.\right.
$$

Arnoux-Rauzy morphisms

The Arnoux-Rauzy monoid is generated by elementary Arnoux-Rauxy morphisms:

- permutations over \mathcal{A} and
- for each $a \in \mathcal{A}$

$$
\psi_{a}:\left\{\begin{array}{l}
a \rightarrow a \\
b \rightarrow a b
\end{array} \text { if } b \neq a \quad \text { and } \quad \tilde{\psi}_{a}:\left\{\begin{array}{l}
a \rightarrow a \\
b \rightarrow b a
\end{array} \text { if } b \neq a\right.\right.
$$

Example (Fibonacci and Tribonacci)

$$
\varphi=\psi_{\mathrm{a}} \circ \pi_{(\mathrm{ab})}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{a}
\end{array}, \quad \tau=\psi_{\mathrm{a}} \circ \pi_{(\mathrm{abc})}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{ac} \\
\mathrm{c} \rightarrow \mathrm{a}
\end{array}\right.\right.
$$

A morphism over the binary alphabet $\{\mathrm{a}, \mathrm{b}\}$ is called standard Sturmian if it belongs to the monoid generated by $\pi_{(\mathrm{ab})}$ and φ.

Arnoux-Rauzy morphisms

Theorem [Glen, Justin, Widmer, Zamboni (2009)]
Let $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ be an Arnoux-Rauzy morphism and $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ s.t. $\mathcal{L}(\mathbf{u})$ is closed under reversal. Then

$$
\mathbf{u} \text { is rich } \Longleftrightarrow \psi(\mathbf{u}) \text { is rich. }
$$

Arnoux-Rauzy morphisms

Theorem [Glen, Justin, Widmer, Zamboni (2009)]

Let $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ be an Arnoux-Rauzy morphism and $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ s.t. $\mathcal{L}(\mathbf{u})$ is closed under reversal. Then

$$
\mathbf{u} \text { is rich } \Longleftrightarrow \psi(\mathbf{u}) \text { is rich. }
$$

Example (Fibonacci after Tribonacci)

The infinite word
$\tau(\mathbf{f})=$ abacababacabacababacababacabacababacabacababacababacabac \cdots
is rich.

Class $P_{\text {ret }}$

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class $P_{\text {ret }}$, if there exists a palindrome w, called marker, such that:

- $\psi(a) w$ is a palindromic complete return word to w for each $a \in \mathcal{A}$,
(i.e., $\psi(a) w=w \widetilde{\psi(a)}$ and $|\psi(a) w|_{w}=2$)
- $\psi(a) \neq \psi(b)$ for each $a, b \in \mathcal{A}, a \neq b$.

Class $P_{\text {ret }}$

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class $P_{\text {ret }}$, if there exists a palindrome w, called marker, such that:

- $\psi(a) w$ is a palindromic complete return word to w for each $a \in \mathcal{A}$, (i.e., $\psi(a) w=w \widetilde{\psi(a)}$ and $|\psi(a) w|_{w}=2$)
- $\psi(a) \neq \psi(b)$ for each $a, b \in \mathcal{A}, a \neq b$.

Example $(\ell, p, q \in \mathbb{N}, \ell>0, p \neq q)$

$$
\begin{array}{cc}
\psi_{1}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{aba} \\
\mathrm{~b} \rightarrow \mathrm{abaab}
\end{array},\right. & \psi_{2}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{bba} \\
\mathrm{~b} \rightarrow \mathrm{~b}
\end{array},\right. \\
w_{1}=\mathrm{abaaba} & w_{2}=\mathrm{bb} \\
\mathrm{a} \rightarrow \mathrm{a}^{\ell} \mathrm{b}^{p} \\
\mathrm{a} \mathrm{a}^{q}
\end{array}, \quad \psi_{3}=\mathrm{a}^{\ell} .
$$

$$
\psi_{1}(\mathrm{a}) w_{1}=\stackrel{\text { abaabaaba }}{ }, \quad \psi_{1}(\mathrm{~b}) w_{1}=\widetilde{\text { abaababaaba }}
$$

Class $P_{\text {ret }}$

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class $P_{\text {ret }}$, if there exists a palindrome w, called marker, such that:

- $\psi(a) w$ is a palindromic complete return word to w for each $a \in \mathcal{A}$, (i.e., $\psi(a) w=w \widetilde{\psi(a)}$ and $|\psi(a) w|_{w}=2$)
- $\psi(a) \neq \psi(b)$ for each $a, b \in \mathcal{A}, a \neq b$.
\diamond Every permutation on \mathcal{A} is in Class $P_{\text {ret }}$ with marker ε,

$$
\pi_{(\mathrm{abc})}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{~b} \\
\mathrm{~b} \rightarrow \mathrm{c} \\
\mathrm{c} \rightarrow \mathrm{a}
\end{array}\right.
$$

Class $P_{\text {ret }}$

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class $P_{\text {ret }}$, if there exists a palindrome w, called marker, such that:

- $\psi(a) w$ is a palindromic complete return word to w for each $a \in \mathcal{A}$, (i.e., $\psi(a) w=w \widetilde{\psi(a)}$ and $|\psi(a) w|_{w}=2$)
- $\psi(a) \neq \psi(b)$ for each $a, b \in \mathcal{A}, a \neq b$.
\diamond Every permutation on \mathcal{A} is in Class $P_{\text {ret }}$ with marker ε,
\diamond For each $a \in \mathcal{A}$ the elementary $\mathrm{A}-\mathrm{R}$ morphism ψ_{a} is in Class $P_{\text {ret }}$ with marker a,

$$
\pi_{(\mathrm{abc})}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{~b} \\
\mathrm{~b} \rightarrow \mathrm{c} \\
\mathrm{c} \rightarrow \mathrm{a}
\end{array} \quad, \quad \psi_{\mathrm{a}}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{a} \\
\mathrm{~b} \rightarrow \mathrm{ab} \\
\mathrm{c} \rightarrow \mathrm{ac}
\end{array}\right.\right.
$$

Class $P_{\text {ret }}$

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class $P_{\text {ret }}$, if there exists a palindrome w, called marker, such that:

- $\psi(a) w$ is a palindromic complete return word to w for each $a \in \mathcal{A}$,
(i.e., $\psi(a) w=w \widetilde{\psi(a)}$ and $|\psi(a) w|_{w}=2$)
- $\psi(a) \neq \psi(b)$ for each $a, b \in \mathcal{A}, a \neq b$.
\diamond Every permutation on \mathcal{A} is in Class $P_{\text {ret }}$ with marker ε,
\diamond For each $a \in \mathcal{A}$ the elementary A-R morphism ψ_{a} is in Class $P_{r e t}$ with marker a,
\diamond For each $a \in \mathcal{A}$ the elementary A-R morphism $\widetilde{\psi}_{a}$ is not in Class $P_{\text {ret }}$, but it is conjugated to $\psi_{a} \in P_{\text {ret }}$ with conjugate word a.

$$
\pi_{(\mathrm{abc})}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{~b} \\
\mathrm{~b} \rightarrow \mathrm{c} \\
\mathrm{c} \rightarrow \mathrm{a}
\end{array} \quad, \quad \psi_{\mathrm{a}}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{a} \\
\mathrm{~b} \rightarrow \mathrm{ab} \\
\mathrm{c} \rightarrow \mathrm{ac}
\end{array} \quad, \quad \tilde{\psi}_{\mathrm{a}}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{a} \\
\mathrm{~b} \rightarrow \mathrm{ba} \\
\mathrm{c} \rightarrow \mathrm{ca}
\end{array}\right.\right.\right.
$$

Class $P_{\text {ret }}$

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class $P_{\text {ret }}$, if there exists a palindrome w, called marker, such that:

- $\psi(a) w$ is a palindromic complete return word to w for each $a \in \mathcal{A}$, (i.e., $\psi(a) w=w \widetilde{\psi(a)}$ and $|\psi(a) w|_{w}=2$)
- $\psi(a) \neq \psi(b)$ for each $a, b \in \mathcal{A}, a \neq b$.
\diamond Every permutation on \mathcal{A} is in Class $P_{\text {ret }}$ with marker ε,
\diamond For each $a \in \mathcal{A}$ the elementary A-R morphism ψ_{a} is in Class $P_{r e t}$ with marker a,
\diamond For each $a \in \mathcal{A}$ the elementary A-R morphism $\widetilde{\psi}_{a}$ is not in Class $P_{\text {ret }}$, but it is conjugated to $\psi_{a} \in P_{\text {ret }}$ with conjugate word a.

Theorem [D., Pelantová (2021)]
Every Arnoux-Rauzy morphism is conjugate to a morphism in Class $P_{\text {ret }}$.

Class $P_{\text {ret }}$

Theorem [Balková, Pelantová, Starosta (2011)]

Let ψ_{1}, ψ_{2} be in Class $P_{\text {ret }}$ with marker w_{1}, w_{2} respectively.
Then $\psi_{2} \circ \psi_{1}$ is in Class $P_{\text {ret }}$ with marker $\psi_{2}\left(w_{1}\right) w_{2}$.

Example

$$
\begin{array}{cc}
\psi_{1}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{a} \\
\mathrm{~b} \rightarrow \mathrm{ab}
\end{array},\right. & \psi_{2}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{bba} \\
\mathrm{~b} \rightarrow \mathrm{~b}
\end{array},\right. \\
w_{1}=\mathrm{a} & w_{2}=\mathrm{bb}
\end{array}
$$

$$
\left(\psi_{2} \circ \psi_{1}\right)(\mathrm{a}) \mathrm{bbabb}=\stackrel{\mathrm{bbabbabb}}{ }, \quad\left(\psi_{2} \circ \psi_{1}\right)(\mathrm{b}) \mathrm{bbabb}=\stackrel{\mathrm{bbabb}}{ }
$$

Class $P_{\text {ret }}$ and Class P

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class P if there exists a palindrome $p \in \mathcal{A}^{*}$ such that $\psi(a)=p q_{a}$ for each $a \in \mathcal{A}$, where q_{a} is a palindrome.

Any fixed point of a substitution from Class P contains infinitely many palindromes.

Proposition

Any morphism from Class $P_{\text {ret }}$ is conjugate to an acyclic morphism from Class P.

Class $P_{\text {ret }}$ and Class P

A morphism $\psi: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ belongs to Class P if there exists a palindrome $p \in \mathcal{A}^{*}$ such that $\psi(a)=p q_{a}$ for each $a \in \mathcal{A}$, where q_{a} is a palindrome.
Any fixed point of a substitution from Class P contains infinitely many palindromes.

Proposition

Any morphism from Class $P_{\text {ret }}$ is conjugate to an acyclic morphism from Class P.

Example (The converse is not true)

$$
\begin{gathered}
\psi:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \text { ababab } \\
\mathrm{b} \rightarrow \text { ababaab }
\end{array},\right.
\end{gathered}, \psi_{R}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \text { ababab } \\
\mathrm{b} \rightarrow \text { abababa }
\end{array}\right\}
$$

Marked morphisms

An acyclic morphism ψ is

- right marked if the mapping $a \rightarrow \operatorname{Lst}\left(\psi_{R}(a)\right)$ is injective on \mathcal{A}.
- left marked if the mapping $a \rightarrow \operatorname{Fst}\left(\psi_{L}(a)\right)$ is injective on \mathcal{A}.

A morphism is marked if it is both right marked and left marked.
A marked morphism is well-marked if the mappings above are the identity on \mathcal{A}.

Example (Tribonacci)

$$
\tau=\tau_{R}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \mathrm{ab} \\
\mathrm{~b} \rightarrow \mathrm{a} \underline{c} \\
\mathrm{c} \rightarrow \underline{\mathrm{a}}
\end{array}, \quad \tau_{L}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \underline{\mathrm{ba}} \\
\mathrm{~b} \rightarrow \underline{\mathrm{c} a} \\
\mathrm{c} \rightarrow \underline{\mathrm{a}}
\end{array}\right.\right.
$$

Marked morphisms

An acyclic morphism ψ is

- right marked if the mapping $a \rightarrow \operatorname{Lst}\left(\psi_{R}(a)\right)$ is injective on \mathcal{A}.
- left marked if the mapping $a \rightarrow \operatorname{Fst}\left(\psi_{L}(a)\right)$ is injective on \mathcal{A}.

A morphism is marked if it is both right marked and left marked.
A marked morphism is well-marked if the mappings above are the identity on \mathcal{A}.

Proposition [D., Pelantová (2021)]

Let ψ be in Class $P_{\text {ret }}$ and right marked. Then ψ is left marked too. Moreover there exists $k \geq 1$ such that ψ^{k} is well-marked.

Example (Tribonacci)

$$
\tau^{3}=\tau_{R}^{3}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \text { abacaba } \\
\mathrm{b} \rightarrow \text { abacab } \\
\mathrm{c} \rightarrow \text { abac }
\end{array}, \quad \tau_{L}^{3}:\left\{\begin{array}{l}
\mathrm{a} \rightarrow \underline{\text { abacaba }} \\
\mathrm{b} \rightarrow \underline{\mathrm{~b} a c a b a} \\
\mathrm{c} \rightarrow \underline{\mathrm{c} a b a}
\end{array}\right.\right.
$$

Marked morphisms

Theorem [D., Pelantová (2021)]
Let ψ be a marked morphism in Class $P_{\text {ret }}$ and $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ s.t. $\mathcal{L}(\mathbf{u})$ is closed under reversal. If $\psi(\mathbf{u})$ is rich, then \mathbf{u} is rich.

Marked morphisms

Theorem [D., Pelantová (2021)]
Let ψ be a marked morphism in Class $P_{r e t}$ and $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ s.t. $\mathcal{L}(\mathbf{u})$ is closed under reversal. If $\psi(\mathbf{u})$ is rich, then \mathbf{u} is rich.

And the other direction?

Marked morphisms

Theorem [D., Pelantová (2021)]

Let ψ be a marked morphism in Class $P_{\text {ret }}$ and $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ s.t. $\mathcal{L}(\mathbf{u})$ is closed under reversal. If $\psi(\mathbf{u})$ is rich, then \mathbf{u} is rich.

And the other direction?

Theorem [D., Pelantová (2021)]

Let $\psi:\{\mathrm{a}, \mathrm{b}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ be a morphism conjugated to a morphism in Class $P_{\text {ret }}$, and let w be the marker associated to ψ_{R}. Assume that $\psi_{R}(\mathrm{ab}) w$ is rich. Then

- If $\mathbf{u} \in\{\mathrm{a}, \mathrm{b}\}^{\mathbb{N}}$ is recurrent and rich, then $\psi(\mathbf{u})$ is rich.
- If $\mathbf{u} \in\{\mathbf{a}, \mathbf{b}\}^{\mathbb{N}}$ is a fixed point of ψ, and ψ is primitive, then $\psi(\mathbf{u})=\mathbf{u}$ is rich.

Marked morphisms

Theorem [D., Pelantovà (2021)]

Let ψ be a marked morphism in Class $P_{r e t}$ and $\mathbf{u} \in \mathcal{A}^{\mathbb{N}}$ s.t. $\mathcal{L}(\mathbf{u})$ is closed under reversal. If $\psi(\mathbf{u})$ is rich, then \mathbf{u} is rich.

And the other direction?

Theorem [D., Pelantová (2021)]

Let $\psi:\{\mathrm{a}, \mathrm{b}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ be a morphism conjugated to a morphism in Class $P_{\text {ret }}$, and let w be the marker associated to ψ_{R}. Assume that $\psi_{R}(\mathrm{ab}) w$ is rich. Then

- If $\mathbf{u} \in\{a, b\}^{\mathbb{N}}$ is recurrent and rich, then $\psi(\mathbf{u})$ is rich.
- If $\mathbf{u} \in\{\mathrm{a}, \mathrm{b}\}^{\mathbb{N}}$ is a fixed point of ψ, and ψ is primitive, then $\psi(\mathbf{u})=\mathbf{u}$ is rich.

Corollary

Let $\psi:\{\mathrm{a}, \mathrm{b}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ be a morphism from Class $P_{\text {ret }}$ and $\mathbf{u} \in\{\mathrm{a}, \mathrm{b}\}^{\mathbb{N}}$ a non-unary recurrent word. If $\psi(\mathbf{u})$ is rich, then $\psi(\mathbf{v})$ is rich for every recurrent rich word $\mathbf{v} \in\{\mathbf{a}, \mathbf{b}\}^{\mathbb{N}}$.

To sum up

We can construct new rich words from known ones.

- Applying an arbitrary Arnoux-Rauzy morphism to a symmetric regular IET word gives a new rich word which is neither Arnoux-Rauzy nor a IET word. (see Fibonacci after Tribonacci).
- We can apply the results both to finite and infinite words.
([Vesti (2014)])
- Improve lower bound of rich words over a binary alphabet.
(Each word of the form $\mathrm{a}^{m_{1}} \mathrm{~b}^{n_{1}} \mathrm{a}^{m_{2}} \mathrm{~b}^{n_{2}} \cdots \mathrm{a}^{m_{k}} \mathrm{~b}^{n_{k}}$, with $m_{1} \leq m_{2} \leq \cdots \leq m_{k}$ and $n_{1} \leq n_{2} \leq \cdots \leq n_{k}$ is rich [Guo, Shallit, Shur (2016)])

Open questions

- Which tame morphisms preserve richness?
- How characterize dendric languages closed under reversal?
- How many finite rich words of given length are there over a given alphabet?
- Can we determine an optimal lower bound for the critical exponent? (Lower bounds on alphabets of cardinality $k=2,3,4,5$. [Baranwal, Shallit (2019)] The bound is the best possible for $k=2$. [Currie, Mol, Rampersad (2020)] What about $k \geq 3$?)

