Playing with games and words

Francesco Dolce

Séminaire d'Ouverture aux Informatique et de Formation PASTIS

Paris, 9 juin 2022

Nim Game
 (Drinking version)

Initial position: Arbitrary number of piles, of arbitrary sizes, of glasses of wine. Rules:
i) At each turn a player drinks a positive number of glasses from one pile. Winner: Who drinks the last glass.

Nim Game
 Using some math

Let us denote by $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a game position. A position is in \mathcal{P} if there exists a winning strategy for the second player. Otherwise it is in \mathcal{N}.

- $(0,0, \ldots, 0) \in \mathcal{P}$;
(The last player wins)
- $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{P} \quad \Rightarrow \quad \operatorname{Nim}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \subseteq \mathcal{N}$;
(Any move from \mathcal{P} leads to \mathcal{N})
- $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{N} \quad \Rightarrow \quad \operatorname{Nim}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cap \mathcal{P} \neq \emptyset$.
(From any position in \mathcal{N} there exists a move leading to a position in \mathcal{P})

Nim Game
 Using some math

Let us denote by $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a game position. A position is in \mathcal{P} if there exists a winning strategy for the second player. Otherwise it is in \mathcal{N}.

- $(0,0, \ldots, 0) \in \mathcal{P}$;
(The last player wins)
- $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{P} \quad \Rightarrow \quad \operatorname{Nim}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \subseteq \mathcal{N}$;
(Any move from \mathcal{P} leads to \mathcal{N})
- $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{N} \quad \Rightarrow \quad \operatorname{Nim}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cap \mathcal{P} \neq \emptyset$.
(From any position in \mathcal{N} there exists a move leading to a position in \mathcal{P})
Thus $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{P}$ if $\forall \exists \forall \exists \cdots \forall \exists$ moves s.t. we obtain $(0,0, \ldots, 0)$.

Nim Game

Nim Game
 Using more math

Question: How to determine whether a position is in \mathcal{P} ?

Theorem [C. Bouton (1904)]

A position $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is in \mathcal{P} if its N im-sum is 0 .

$$
2 \oplus 4 \oplus 6=0
$$

$$
\begin{array}{ccc}
& 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\hline 0 & 0 & 0
\end{array}
$$

$$
3 \oplus 6 \oplus 8 \neq 0
$$

$$
\begin{array}{cccc}
& & 1 & 1 \\
& 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 1
\end{array}
$$

$$
\begin{aligned}
& \text { Wythoff's Game } \\
& \text { A modification of Nim Game }
\end{aligned}
$$

Initial position: Two piles, of arbitrary sizes, of glasses of wines. Rules: At each turn a player drinks either
i) a positive number of glasses from one pile, or
ii) a positive equal number of glasses from both piles.

Winner: Who drinks the last glass of wine.

Wythoff's Game
Playing chess

Wythoff's Game
 Safe positions

Question: How to compute the set \mathcal{P} ?

- $(0,0) \in \mathcal{P}$ but $(n, n) \in \mathcal{N}$ for every $n>0$;
- if $(a, b) \in \mathcal{P}$ then $(a+k, b+k) \in \mathcal{N}$ for every $k>0$;
- $(a, b) \in \mathcal{P}$ iff $(b, a) \in \mathcal{P}$ [Thus, wlog, $0 \leq a \leq b]$.

Wythoff's Game
 Safe positions

Question: How to compute the set \mathcal{P} ?

- $(0,0) \in \mathcal{P}$ but $(n, n) \in \mathcal{N}$ for every $n>0$;
- if $(a, b) \in \mathcal{P}$ then $(a+k, b+k) \in \mathcal{N}$ for every $k>0$;
- $(a, b) \in \mathcal{P}$ iff $(b, a) \in \mathcal{P}$ [Thus, wlog, $0 \leq a \leq b]$.

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where $\left(a_{0}, b_{0}\right)=(0,0)$ and

$$
\left\{\begin{array}{l}
a_{n}=\operatorname{Mex}\left(\left\{a_{i}, b_{i} \mid 0 \leq i<n\right\}\right) \\
b_{n}=a_{n}+n
\end{array}\right.
$$

Thus \mathcal{P} contains: $(0,0),(1,2),(3,5),(4,7),(6,10), \ldots$

On the chessboard again

On the chessboard again

Problem: Is it possible to compute the sequence in polyomial time?

Wythoff's Game
 Algebraic characterisation

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where

$$
a_{n}=\lfloor n \tau\rfloor \quad b_{n}=\left\lfloor n \tau^{2}\right\rfloor
$$

where $\tau=\frac{1+\sqrt{5}}{2}$ (and thus $\tau^{2}=\frac{3+\sqrt{5}}{2}$).

Wythoff's Game
 Algebraic characterisation

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\left\{\left(a_{n}, b_{n}\right)\right\}_{n \in \mathbb{N}}$, where

$$
a_{n}=\lfloor n \tau\rfloor \quad b_{n}=\left\lfloor n \tau^{2}\right\rfloor
$$

where $\tau=\frac{1+\sqrt{5}}{2}$ (and thus $\tau^{2}=\frac{3+\sqrt{5}}{2}$).
Proof.
\rightarrow Easy to see that $b_{n}-a_{n}=n$.
\rightarrow Prove that every positive integer appears exactly once is a bit more complicated...

- For every irrational α the set of infinite pairs $\left\{\lfloor n \alpha\rfloor,\left\lfloor n \frac{\alpha}{\alpha-1}\right\rfloor\right\}_{n \in \mathbb{N}}$ is a (eventual) covering family, i.e., it covers \mathbb{Z}.
- $\alpha-\frac{\alpha}{\alpha-1}=1 \quad \Leftrightarrow \quad \alpha=\tau$

Fibonacci word

$$
\mathbf{f}=\text { abaababaabaababaaba } \cdot
$$

$$
\mathbf{f}=\lim _{n \rightarrow \infty} \varphi^{n}(\mathrm{a}) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}\right.
$$

The length of prefixes $\left|\varphi^{n}(\mathrm{a})\right|_{n}=(1) 1,2,3,5,8,, \ldots$ are the Fibonacci numbers.

Fibonacci numbers and bunnies

Fibonacci word

$$
\mathbf{f}=\text { abaababaabaababaaba } \cdots
$$

Let a_{n} denote the $n^{\text {th }}$ occurrence of a and b_{n} denote the $n^{\text {th }}$ occurrence of b .

$$
\left(a_{n}\right)_{n \geq 1}=1,3,4,6,8,9, \ldots \quad\left(b_{n}\right)_{n \geq 1}=2,5,7,10,13,15, \ldots
$$

The golden ration τ is exactly the frequence of a in \mathbf{f} (and τ^{2} the frequence of b).

Fibonacci word

$$
\mathbf{f}=\text { abaababaabaababaaba } \cdots
$$

Let a_{n} denote the $n^{\text {th }}$ occurrence of a and b_{n} denote the $n^{\text {th }}$ occurrence of b .

$$
\left(a_{n}\right)_{n \geq 1}=1,3,4,6,8,9, \ldots \quad\left(b_{n}\right)_{n \geq 1}=2,5,7,10,13,15, \ldots
$$

Theorem [Duchêne, Rigo (2008)]

Let $a_{0}=b_{0}=0$. The sequence $\left(a_{n}, b_{n}\right)_{n \in \mathbb{N}}$ is the Wythoff's sequence.

Fibonacci word

$\mathbf{f}=$ abaababaabaababaaba \cdots
Let a_{n} denote the $n^{\text {th }}$ occurrence of a and b_{n} denote the $n^{\text {th }}$ occurrence of b .

$$
\left(a_{n}\right)_{n \geq 1}=1,3,4,6,8,9, \ldots \quad\left(b_{n}\right)_{n \geq 1}=2,5,7,10,13,15, \ldots
$$

Theorem [Duchêne, Rigo (2008)]

Let $a_{0}=b_{0}=0$. The sequence $\left(a_{n}, b_{n}\right)_{n \in \mathbb{N}}$ is the Wythoff's sequence.
Proof.
\rightarrow All b are created by a , the gaps are filled with a and $\mathrm{a}_{n}=\operatorname{Mex}\left(\left\{a_{i}, b_{i} \mid 0 \leq i<n\right\}\right)$.
\rightarrow Since f starts with $a b$, then $b_{1}=2=a_{1}+1$;
Let us suppose that $b_{n-1}=a_{n-1}+n-1$.

- Since $\varphi(\mathrm{aa})=\mathrm{abab}$, if $a_{n}-a_{n-1}=1$ then $b_{n}-b_{n-1}=2$;
- Since $\varphi(\mathrm{aba})=$ abaab, if $a_{n}-a_{n-1}=2$ then $b_{n}-b_{n-1}=3$;

In both case $b_{n}=a_{n}+n$.

Sturmian words

Definition

An infinite word \mathbf{w} is Sturmian if it has $n+1$ distinct factors of length n for every $n \geq 0$.

Example (Fibonacci)

$$
\mathbf{f}=\text { abaababaabaababa } \cdots
$$

$$
\mathcal{L}(f)=\{\underbrace{\varepsilon}_{1}, \underbrace{a, b}_{2}, \underbrace{\text { aa, ab, ba }}_{3}, \underbrace{\text { aab, aba, baa, bab }}_{4}, \underbrace{\text { aaba, abaa, abab, baab, baba }}_{5}, \ldots\}
$$

Sturmian words

Definition

An infinite word \mathbf{w} is Sturmian if it has $n+1$ distinct factors of length n for every $n \geq 0$. A Sturmian word can also be represented geometrically.

Example (Fibonacci)

$$
\left\{\begin{array}{l}
\mathrm{a} \text { if }\lfloor(n+1) \theta+\rho\rfloor-\lfloor n \theta+\rho\rfloor=0 \\
\mathrm{~b} \text { if }\lfloor(n+1) \theta+\rho\rfloor-\lfloor n \theta+\rho\rfloor=1
\end{array}\right.
$$

Modified Wythoff's Games? always with two piles

Question: Let \mathbf{x} be a Sturmian word (maybe with some extra hypotheses). Is it possible to define a new game (similar rules as Wythoff's one) such that

$$
(A, B) \in \mathcal{P} \quad \text { if and only if } \quad A=a_{n} \text { and } B=b_{n}
$$

with a_{n} (resp. b_{n}) the $n^{t h}$ occurrence of a (resp. of b) in x ?

More complicated games

SI VOUS LANCEZ UNE VALEUR
 EN DEBUT DE TOUR
 - METTONS SIROP DE 8, POUR COMVENCER PETIT LES AUTRES ONT LE CHOIX ENTRE LASSER FILER LA MISE OU RELANCER UN SIROP DE 14.

Modified Wythoff's Game

Tribonacci game

Initial position: Three piles, of arbitrary sizes, of glasses of wine.
Rules: At each turn a player drinks either
i) a positive number of glasses from one pile; or
ii) a positive number α, β and γ of glasses from the first, second and third pile whenever $2 \max \{\alpha, \beta, \gamma\} \leq \alpha+\beta+\gamma$; or
iii) the same positive number α of glasses from two piles and β from the other pile whenever $\beta>2 \alpha>0$ and $a^{\prime}<c^{\prime}<b^{\prime}$, with (a, b, c) the original position and ($a^{\prime}, b^{\prime}, c^{\prime}$) the new one.

Winner: Who drinks the last glass of wine.

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if

1. it has $(k-1) n+1$ distinct factors of length n for every $n \geq 0$;
2. for each lenght only one factor is right special; and
3. its set of factors is closed under reversal.

Example (Tribonacci: $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$)

$$
\mathbf{t}=\psi^{\omega}(\mathrm{a})=\text { abacabaabacababacabaabaca } \cdots
$$

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if

1. it has $(k-1) n+1$ distinct factors of length n for every $n \geq 0$;
2. for each lenght only one factor is right special; and
3. its set of factors is closed under reversal.

Example (Tribonacci: $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$)

$$
\mathbf{t}=\psi^{\omega}(\mathrm{a})=\text { abacabaabacababacabaabaca } \cdots
$$

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{a, b, c}_{3}, \underbrace{a \mathrm{a}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

Arnoux-Rauzy words

Definition

An infinite word \mathbf{w} over an alphabet of k letters is an Arnoux-Rauzy word if

1. it has $(k-1) n+1$ distinct factors of length n for every $n \geq 0$;
2. for each lenght only one factor is right special; and
3. its set of factors is closed under reversal.

Example (Tribonacci: $\psi: \mathrm{a} \mapsto \mathrm{ab}, \mathrm{b} \mapsto \mathrm{ac}, \mathrm{c} \mapsto \mathrm{a}$)

$$
\mathbf{t}=\psi^{\omega}(\mathrm{a})=\text { abacabaabacababacabaabaca } \cdots
$$

$$
\mathcal{L}(\mathbf{t})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}, \mathrm{c}}_{3}, \underbrace{\mathrm{aa}, \mathrm{ab}, \mathrm{ac}, \mathrm{ba}, \mathrm{ca}}_{5}, \underbrace{\mathrm{aab}, \mathrm{aba}, \mathrm{aca}, \mathrm{baa}, \mathrm{bab}, \mathrm{bac}, \mathrm{cab}}_{7}, \ldots\}
$$

Tribonacci game and Tribonacci word

$$
\mathbf{t}=\text { abacabaabacababacabaabaca } \cdots
$$

Let a_{n}, b_{n} and c_{n} denote the $n^{\text {th }}$ occurrences of a, b and c in t respectively.

$$
\left(a_{n}\right)_{n}=1,3,4,7,8, \ldots \quad\left(b_{n}\right)_{n}=2,6,9,13,15, \ldots \quad\left(c_{n}\right)_{n}=4,11,17,24,28, \ldots
$$

Theorem [Duchêne, Rigo (2008)]

The set $\left\{\left(a_{n}, b_{n}, c_{n}\right) \mid n \geq 1\right\}$ is set of \mathcal{P}-positions of the Tribonacci game.
Proof. (idea)

$$
\left\{\begin{array}{l}
a_{n}=\operatorname{Mex}\left(\left\{a_{i}, b_{i}, c_{i} \mid 0 \leq i<n\right\}\right) \\
b_{n}=a_{n}+\operatorname{Mex}\left(b_{i}-a_{i}, c_{i}-b_{i} \mid 0 \leq i<n\right) \\
c_{n}=a_{n}+b_{n}+n
\end{array}\right.
$$

Modified Wythoff's Games?
 on two or more piles

Question: Let \mathbf{x} be an Arnoux-Rauzy word. Is it possible to define a new game (similar rules as Wythoff's one) such that

$$
(A, B, C) \in \mathcal{P} \quad \text { if and only if } \quad A=a_{n}, B=b_{n} \text { and } C=c_{n}
$$

with a_{n} (resp. b_{n}, c_{n}) the $n^{\text {th }}$ occurrence of a (resp. b, c) in \mathbf{x} ?

Different types of games

(Im) perfect information

Definition

A (sequencial) game has perfect information if each player knows all the previous configurations (initial configuration, moves of every players).
Whenever some configuration is hidden, the game has imperfect information.

Different types of games

(In)complete information

Definition

A (sequencial) game has complete information if each player knows the strategies of the other player (rules of the game, goals, payoff, etc.)
Whenever players don't have full information about their opponents' strategies, the game has incomplete information.

	A	B	C	D	E	F	G	H	I	L
$\mathbf{1}$										
$\mathbf{2}$										
$\mathbf{3}$	\square									
4			X							
$\mathbf{5}$						X	X			
$\mathbf{6}$		X				\square		X		X
7				X						X
8	X	X						X		
9										
10										

Different types of games

A game with complete information may or may not have perfect information, and vice versa.
However...

Theorem [J.C. Harsanyi (1967)]
Every game with incomplete information can be modified to a game with complete but imperfect information.

Modified Nim or Wythoff's Games?

Question: Is it possible to define (and to find a winning strategy) a variation of the Nim or Wythoff's Game with imperfect (or maybe inncomplete) information?

