Playing with games and words

 $Francesco \ \mathrm{Dolce}$

Séminaire d'Ouverture aux Informatique et de Formation PASTIS

Paris, 9 juin 2022

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 1/24

- 3

イロト イボト イヨト イヨト

Nim Game (Drinking version)

Initial position: Arbitrary number of piles, of arbitrary sizes, of glasses of wine. **Rules:**

i) At each turn a player drinks a positive number of glasses from one pile. **Winner:** Who drinks the last glass.

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Paris, 9/6/2022 2/24

イロト 不同 トイヨト イヨト 二日

Nim Game Using some math

Let us denote by (a_1, a_2, \ldots, a_n) be a game position. A position is in \mathcal{P} if there exists a winning strategy for the second player. Otherwise it is in \mathcal{N} .

• $(0, 0, \dots, 0) \in \mathcal{P};$

(The last player wins)

• $(a_1, a_2, \ldots, a_n) \in \mathcal{P} \quad \Rightarrow \quad \textit{Nim}(a_1, a_2, \ldots, a_n) \subseteq \mathcal{N};$

(Any move from \mathcal{P} leads to \mathcal{N})

• $(a_1, a_2, \ldots, a_n) \in \mathcal{N} \Rightarrow Nim(a_1, a_2, \ldots, a_n) \cap \mathcal{P} \neq \emptyset.$

(From any position in \mathcal{N} there exists a move leading to a position in \mathcal{P})

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 3/24

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Nim Game Using some math

Let us denote by (a_1, a_2, \ldots, a_n) be a game position. A position is in \mathcal{P} if there exists a winning strategy for the second player. Otherwise it is in \mathcal{N} .

• $(0, 0, \dots, 0) \in \mathcal{P};$

(The last player wins)

• $(a_1, a_2, \ldots, a_n) \in \mathcal{P} \quad \Rightarrow \quad Nim(a_1, a_2, \ldots, a_n) \subseteq \mathcal{N};$

(Any move from \mathcal{P} leads to \mathcal{N})

• $(a_1, a_2, \ldots, a_n) \in \mathcal{N} \Rightarrow Nim(a_1, a_2, \ldots, a_n) \cap \mathcal{P} \neq \emptyset.$

(From any position in \mathcal{N} there exists a move leading to a position in \mathcal{P})

Thus $(a_1, a_2, \ldots, a_n) \in \mathcal{P}$ if $\forall \exists \forall \exists \cdots \forall \exists$ moves s.t. we obtain $(0, 0, \ldots, 0)$.

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Nim Game Using more math

Question: How to determine whether a position is in \mathcal{P} ?

Francesco Dolce (ČVUT)

GAMES AND WORDS

Wythoff's Game A modification of Nim Game

Initial position: <u>Two</u> piles, of arbitrary sizes, of glasses of wines. **Rules**: At each turn a player drinks either

- i) a positive number of glasses from one pile, or
- ii) a positive equal number of glasses from both piles.

Winner: Who drinks the last glass of wine.

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 6/24

3

イロト イボト イヨト イヨト

Wythoff's Game

Playing chess

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Paris, 9/6/2022 7/24

Wythoff's Game Safe positions

Question: How to compute the set \mathcal{P} ?

- $(0,0) \in \mathcal{P}$ but $(n,n) \in \mathcal{N}$ for every n > 0;
- if $(a, b) \in \mathcal{P}$ then $(a + k, b + k) \in \mathcal{N}$ for every k > 0;
- $(a, b) \in \mathcal{P}$ iff $(b, a) \in \mathcal{P}$ [Thus, wlog, $0 \le a \le b$].

Francesco Dolce (ČVUT)

GAMES AND WORDS

Paris, 9/6/2022 8/24

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Wythoff's Game Safe positions

Question: How to compute the set \mathcal{P} ?

- $(0,0) \in \mathcal{P}$ but $(n,n) \in \mathcal{N}$ for every n > 0;
- if $(a, b) \in \mathcal{P}$ then $(a + k, b + k) \in \mathcal{N}$ for every k > 0;
- $(a, b) \in \mathcal{P}$ iff $(b, a) \in \mathcal{P}$ [Thus, wlog, $0 \le a \le b$].

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where $(a_0, b_0) = (0, 0)$ and

$$\left\{ \begin{array}{l} a_n = {
m Mex}\left(\{a_i, b_i \mid 0 \le i < n\}\right), \\ b_n = a_n + n. \end{array} \right.$$

Thus \mathcal{P} contains: (0,0), (1,2), (3,5), (4,7), (6,10),

Francesco Dolce (ČVUT)

GAMES AND WORDS

$On \ the \ chessboard \ again$

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Paris, 9/6/2022 9/24

$On \ the \ chessboard \ again$

Problem: Is it possible to compute the sequence in polyonial time?

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Paris, 9/6/2022 9/24

3 1 4 3

Wythoff's Game Algebraic characterisation

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where

$$a_n = \lfloor n\tau \rfloor$$
 $b_n = \lfloor n\tau^2 \rfloor$

where $au=rac{1+\sqrt{5}}{2}$ (and thus $au^2=rac{3+\sqrt{5}}{2}$).

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Wythoff's Game Algebraic characterisation

Theorem [W. Wythoff (1907)]

The set \mathcal{P} is defined by the positions $\{(a_n, b_n)\}_{n \in \mathbb{N}}$, where

$$\mathbf{a}_n = \lfloor n\tau \rfloor \qquad \mathbf{b}_n = \lfloor n\tau^2 \rfloor$$

where $au=rac{1+\sqrt{5}}{2}$ (and thus $au^2=rac{3+\sqrt{5}}{2}$).

Proof.

- \rightarrow Easy to see that $b_n a_n = n$.
- \rightarrow Prove that every positive integer appears exactly once is a bit more complicated...
 - For every irrational α the set of infinite pairs { [nα], [n α/(α-1)]_{n∈N} is a (eventual) covering family, i.e., it covers Z.

•
$$\alpha - \frac{\alpha}{\alpha - 1} = 1 \quad \Leftrightarrow \quad \alpha = \tau$$

Francesco Dolce (ČVUT)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

O

$\mathbf{f} = abaababaabaabaabaaba \cdots$

Fibonacci word

$$\mathbf{f} = \lim_{n \to \infty} \varphi^n(\mathbf{a})$$
 where $\varphi : \left\{ egin{array}{c} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \ \mathbf{b} \mapsto \mathbf{a} \end{array}
ight.$

The length of prefixes $|\varphi^n(\mathbf{a})|_n = (1, 1, 2, 3, 5, 8, ...$ are the Fibonacci numbers.

Francesco Dolce (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 11/24

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Fibonacci numbers and bunnies

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

4 □ ▶ 4 □ ▶ 4 ■ ▶ 4 ■ ▶ 4 ■ ▶ ■ 今 Q @
PARIS, 9/6/2022 12 / 24

Fibonacci word

 $\mathbf{f} = abaababaabaabaabaaba \cdots$

Let a_n denote the n^{th} occurrence of **a** and b_n denote the n^{th} occurrence of **b**.

 $(a_n)_{n\geq 1} = 1, 3, 4, 6, 8, 9, \ldots$ $(b_n)_{n\geq 1} = 2, 5, 7, 10, 13, 15, \ldots$

The golden ration τ is exactly the frequence of **a** in **f** (and τ^2 the frequence of **b**).

Francesco Dolce (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 13/24

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Fibonacci word

Let a_n denote the n^{th} occurrence of **a** and b_n denote the n^{th} occurrence of **b**.

 $(a_n)_{n>1} = 1, 3, 4, 6, 8, 9, \ldots$ $(b_n)_{n>1} = 2, 5, 7, 10, 13, 15, \ldots$

Theorem [Duchêne, Rigo (2008)]

Let $a_0 = b_0 = 0$. The sequence $(a_n, b_n)_{n \in \mathbb{N}}$ is the Wythoff's sequence.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Paris, 9/6/2022 13/24

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Fibonacci word

Let a_n denote the n^{th} occurrence of **a** and b_n denote the n^{th} occurrence of **b**.

 $(a_n)_{n>1} = 1, 3, 4, 6, 8, 9, \ldots$ $(b_n)_{n>1} = 2, 5, 7, 10, 13, 15, \ldots$

Theorem [Duchêne, Rigo (2008)]

Let $a_0 = b_0 = 0$. The sequence $(a_n, b_n)_{n \in \mathbb{N}}$ is the Wythoff's sequence. **Proof.**

 \rightarrow All b are created by a, the gaps are filled with a and $a_n = Mex(\{a_i, b_i \mid 0 \le i < n\})$. \rightarrow Since f starts with ab, then $b_1 = 2 = a_1 + 1$;

Let us suppose that $b_{n-1} = a_{n-1} + n - 1$.

- Since $\varphi(aa) = abab$, if $a_n a_{n-1} = 1$ then $b_n b_{n-1} = 2$;
- Since $\varphi(aba) = abaab$, if $a_n a_{n-1} = 2$ then $b_n b_{n-1} = 3$;

In both case $b_n = a_n + n$.

$Sturmian \ words$

Definition

An infinite word **w** is *Sturmian* if it has n + 1 distinct factors of length *n* for every $n \ge 0$.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Paris, 9/6/2022 14/24

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

$Sturmian \ words$

Definition

An infinite word **w** is *Sturmian* if it has n + 1 distinct factors of length *n* for every $n \ge 0$. A Sturmian word can also be represented geometrically.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Modified Wythoff's Games? always with two piles

Question: Let x be a Sturmian word (maybe with some extra hypotheses). Is it possible to define a new game (*similar rules as Wythoff's one*) such that

 $(A, B) \in \mathcal{P}$ if and only if $A = a_n$ and $B = b_n$

with a_n (resp. b_n) the n^{th} occurrence of a (resp. of b) in x?

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つ Q ○ PARIS, 9/6/2022 15/24

More complicated games

SI VOUS LANCEZ UNE VALEUR EN DÉBUT DE TOUR - METTONS SIROP DE 8, POUR COMMENCER PETIT -LES AUTRES ONT LE CHOIX ENTRE LAISSER FILER LA MISE OU RELANCER UN SIROP DE 14.

Francesco Dolce (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 16/24

イロト イヨト イヨト イヨト

Modified Wythoff's Game

Tribonacci game

Initial position: <u>Three</u> piles, of arbitrary sizes, of glasses of wine. **Rules:** At each turn a player drinks either

- i) a positive number of glasses from one pile; or
- *ii)* a positive number α , β and γ of glasses from the first, second and third pile whenever $2 \max{\{\alpha, \beta, \gamma\}} \le \alpha + \beta + \gamma$; or
- *iii)* the same positive number α of glasses from two piles and β from the other pile whenever $\beta > 2\alpha > 0$ and a' < c' < b', with (a, b, c) the original position and (a', b', c') the new one.

Winner: Who drinks the last glass of wine.

Francesco Dolce (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 17/24

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Arnoux-Rauzy words

Definition

An infinite word w over an alphabet of k letters is an Arnoux-Rauzy word if

- 1. it has (k-1)n+1 distinct factors of length n for every $n \ge 0$;
- $\ensuremath{\mathcal{D}}.$ for each lenght only one factor is right special; and
- 3. its set of factors is closed under reversal.

Francesco Dolce (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 18/24

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Arnoux-Rauzy words

Definition

An infinite word w over an alphabet of k letters is an Arnoux-Rauzy word if

- 1. it has (k-1)n+1 distinct factors of length n for every $n \ge 0$;
- 2. for each lenght only one factor is right special; and
- 3. its set of factors is closed under reversal.

Example (Tribonacci: ψ : $\mathbf{a} \mapsto \mathbf{ab}$, $\mathbf{b} \mapsto \mathbf{ac}$, $\mathbf{c} \mapsto \mathbf{a}$) $\mathbf{t} = \psi^{\omega}(\mathbf{a}) = \mathbf{abacabaabacabaabacabaabacabaabaca} \cdots$ $\mathcal{L}(\mathbf{t}) = \{\underbrace{\varepsilon}_{1}, \underbrace{\mathbf{a}, \mathbf{b}, \mathbf{c}}_{3}, \underbrace{\mathbf{aa}, \mathbf{ab}, \mathbf{ac}, \mathbf{ba}, \mathbf{ca}}_{5}, \underbrace{\mathbf{aab}, \mathbf{aba}, \mathbf{aca}, \mathbf{baa}, \mathbf{bab}, \mathbf{bac}, \mathbf{cab}}_{7}, \ldots\}$

Francesco Dolce (ČVUT)

GAMES AND WORDS

<ロト < 部ト < 語ト < 語ト < 語ト 語 の Q () PARIS, 9/6/2022 18/24

Arnoux-Rauzy words

Definition

An infinite word w over an alphabet of k letters is an Arnoux-Rauzy word if

- 1. it has (k-1)n+1 distinct factors of length n for every $n \ge 0$;
- $\ensuremath{\mathcal{D}}.$ for each lenght only one factor is right special; and
- 3. its set of factors is closed under reversal.

Example (Tribonacci: ψ : $\mathbf{a} \mapsto \mathbf{ab}$, $\mathbf{b} \mapsto \mathbf{ac}$, $\mathbf{c} \mapsto \mathbf{a}$) $\mathbf{t} = \psi^{\omega}(\mathbf{a}) = \mathbf{abacabaabacabaabacabaabaca} \cdots$ $\mathcal{L}(\mathbf{t}) = \{\underbrace{\varepsilon}_{1}, \underbrace{\mathbf{a}, \mathbf{b}, \mathbf{c}}_{3}, \underbrace{\mathbf{aa}, \mathbf{ab}, \mathbf{ac}, \mathbf{ba}, \mathbf{ca}}_{5}, \underbrace{\mathbf{aab}, \mathbf{aba}, \mathbf{aca}, \mathbf{baa}, \mathbf{bab}, \mathbf{bac}, \mathbf{cab}}_{7}, \ldots\}$

Francesco Dolce (ČVUT)

GAMES AND WORDS

<ロト < 部ト < 語ト < 語ト < 語ト 語 の Q () PARIS, 9/6/2022 18/24

Tribonacci game and Tribonacci word

 $\mathbf{t} = \mathtt{abacabaabacabaabaca} \cdots$

Let a_n , b_n and c_n denote the n^{th} occurrences of **a**, **b** and **c** in **t** respectively.

 $(a_n)_n = 1, 3, 4, 7, 8, \ldots$ $(b_n)_n = 2, 6, 9, 13, 15, \ldots$ $(c_n)_n = 4, 11, 17, 24, 28, \ldots$

Theorem [Duchêne, Rigo (2008)]

The set $\{(a_n, b_n, c_n) \mid n \ge 1\}$ is set of \mathcal{P} -positions of the Tribonacci game.

Proof. (idea)

$$\left(\begin{array}{l} a_n = {\sf Mex} \left(\{ a_i, b_i, c_i \mid 0 \le i < n \} \right), \\ b_n = a_n + {\sf Mex} \left(b_i - a_i, \ c_i - b_i \mid 0 \le i < n \right), \\ c_n = a_n + b_n + n \end{array} \right.$$

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 19/24

・ロト ・ 同ト ・ ヨト ・ ヨー ・ つへの

Modified Wythoff's Games?

on two or more piles

Question: Let x be an Arnoux-Rauzy word. Is it possible to define a new game (*similar rules as Wythoff's one*) such that

 $(A, B, C) \in \mathcal{P}$ if and only if $A = a_n, B = b_n$ and $C = c_n$

with a_n (resp. b_n , c_n) the n^{th} occurrence of a (resp. b, c) in x?

FRANCESCO DOLCE (ČVUT)

GAMES AND WORDS

Different types of games (Im)perfect information

Definition

A (sequencial) game has *perfect information* if each player knows all the previous configurations (initial configuration, moves of every players). Whenever some configuration is hidden, the game has *imperfect* information.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Different types of games
(In)complete information

Definition

A (sequencial) game has *complete information* if each player knows the strategies of the other player (rules of the game, goals, payoff, etc.) Whenever players don't have full information about their opponents' strategies, the game has *incomplete information*.

Francesco Dolce (ČVUT)

GAMES AND WORDS

Different types of games

A game with complete information may or may not have perfect information, and vice versa.

However...

Theorem [J.C. Harsanyi (1967)]

Every game with incomplete information can be modified to a game with complete but imperfect information.

Francesco Dolce (ČVUT)

GAMES AND WORDS

PARIS, 9/6/2022 23/24

Modified Nim or Wythoff's Games?

Question: Is it possible to define (and to find a winning strategy) a variation of the Nim or Wythoff's Game with imperfect (or maybe inncomplete) information?

GAMES AND WORDS

PARIS, 9/6/2022 24/24