Dendric languages and the Finite Index Basis Property

Francesco Dolce

Conference on Theoretical and Computational Algebra

Pocinho, 6 de julho de 2023

Fibonacci

$\mathbf{x}=$ abaababaabaababa \cdots

$$
x=\lim _{n \rightarrow \infty} \varphi^{n}(a) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}\right.
$$

Fibonacci

$$
\mathbf{x}=\text { abaababaabaababa } \cdots
$$

The Fibonacci word is a Sturmian word. Its set of factor $\mathcal{L}(\mathbf{x})$ is a Sturmian language.

Definition

A Sturmian language $\mathcal{L} \subset \mathcal{A}^{*}$ is a factorial set such that $p_{n}=\operatorname{Card}\left(\mathcal{L} \cap \mathcal{A}^{n}\right)=n+1$.

$$
\mathcal{L}(\mathbf{x})=\{\underbrace{\varepsilon}_{1}, \underbrace{\mathrm{a}, \mathrm{~b}}_{2}, \underbrace{\text { aa, ab, ba, }}_{3}, \underbrace{\text { aab, aba, baa, bab }}_{4}, \underbrace{\text { aaba, abaa, abab, baab, baba }}_{5}, \ldots\}
$$

2-coded Fibonacci

$\mathbf{x}=\mathrm{ab}$ aa ba ba ab aa ba ba \ldots

2-coded Fibonacci

$$
\begin{gathered}
\mathbf{x}=\mathrm{ab} \text { aa ba ba } \mathrm{ab} \text { aa ba ba } \cdots \\
f^{-1}(\mathbf{x})=\mathrm{v} \text { u w w v u w w } \cdots \\
f:\left\{\begin{array}{lll}
\mathrm{u} & \mapsto & \text { aa } \\
\mathrm{v} & \mapsto & \mathrm{ab} \\
\mathrm{w} & \mapsto & \mathrm{ba}
\end{array}\right.
\end{gathered}
$$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon$, a, $\mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon$, a, $\mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}$, baa, bab, $\ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon$, a, $\mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}$, aba, baa, bab, $\ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$\mathcal{E}(\mathrm{b})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

The multiplicity of a word w is the quantity

$$
m(w)=C \operatorname{ard}(B(w))-C \operatorname{ard}(L(w))-C \operatorname{ard}(R(w))+1
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$\mathcal{E}(\mathrm{b})$

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Acyclic, connected and tree sets" (2014)]

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Bifix codes and interval exchanges" (2015)]

Dendric and neutral languages

- Fibonacci
? 2-coded Fibonacci
- Tribonacci
? 2-coded Tribonacci
- regular IE
? 2-coded regular IE

Bifix codes

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

$$
\begin{array}{ll}
\sqrt{ } & \{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\} \\
\checkmark & \{\mathrm{aa}, \mathrm{ab}, \mathrm{bba}, \mathrm{bbb}\} \\
\sqrt{ } & \{\mathrm{ac}, \mathrm{bcc}, \mathrm{bcbca}\}
\end{array}
$$

X \{ por, portugal, vinho \}
x \{ saudade, do, fado $\}$
x \{ do, douro, ouro $\}$

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L}-maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}$, aaa, aba, baa, bab, ... $\}$)

The set $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$ is an \mathcal{L}-maximal bifix code. It is not an \mathcal{A}^{*}-maximal bifix code, since $B \subset B \cup\{\mathrm{bb}\}$.

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L}-maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

A coding morphism for a bifix code $B \subset A^{+}$is a morphism $f: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ which maps bijectively \mathcal{B} onto B.

Example

The map $f:\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ is a coding morphism for $B=\{\mathrm{a}, \mathrm{ab}, \mathrm{ba}\}$.

$$
f:\left\{\begin{array}{l}
\mathrm{u} \mapsto \mathrm{aa} \\
\mathrm{v} \mapsto \mathrm{ab} \\
\mathrm{w} \mapsto \mathrm{ba}
\end{array}\right.
$$

When \mathcal{L} is factorial and B is an \mathcal{L}-maximal bifix code, the set $f^{-1}(\mathcal{L})$ is called a maximal bifix decoding of \mathcal{L}.

Maximal bifix decoding

Theorem

The family of regular interval exchanges languages is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Bifix codes and interval exchanges" (2015)]

Maximal bifix decoding

Theorem

The family of recurrent dendric languages is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci
[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Maximal bifix decoding" (2015)]

Maximal bifix decoding

Theorem

The family of recurrent dendric languages is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci

Theorem. All complete bifix decodings of uniformly recurrent dendric languages are also uniformly recurrent [Costa (2023)]

Maximal bifix decoding

Theorem

The family of recurrent neutral languages is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci
[D., Perrin "Neutral and tree sets of arbitrary characteristic" (2016)]

Maximal bifix decoding

Theorem

The family of eventually dendric languages is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci
[D., Perrin "Eventually dendric shift spaces" (2019)]

Maximal bifix decoding

Theorem

The family of eventually dendric languages is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci
[Gheeraert "Some properties of morphic images of (eventually) dendric words" (2023)] इ $\bar{\equiv}$

Parse and degree

Definition

A parse of a word w with respect to a bifix code B is a triple (p, x, s) such that:

- $w=p \times s$,
- p has no suffix in B,
- $x \in X^{*}$ and
- s has no prefix in B.

Example

Let $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$ and $w=\mathrm{abaaba}$. The two possible parses of w are:

- $(\varepsilon$, ab aa ba, $\varepsilon)$,
- (a, ba ab, a).

Parse and degree

Definition

A parse of a word w with respect to a bifix code B is a triple (p, x, s) such that:

- $w=p \times s$,
- p has no suffix in B,
- $x \in X^{*}$ and
- s has no prefix in B.

The \mathcal{L}-degree of B is the maximal number of parses with respect to B of a word in \mathcal{L}.

Example (Fibonacci)

- The set $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$ has \mathcal{L}-degree 2 .
- The set $\mathcal{L} \cap \mathcal{A}^{n}$ has \mathcal{L}-degree n.

Cardinality of bifix codes

Theorem

Let \mathcal{L} be a recurrent neutral set.
For any finite \mathcal{L}-maximal bifix code B of \mathcal{L}-degree n, one has

$$
\operatorname{Card}(B)=n(\operatorname{Card}(\mathcal{A})-1)+1
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

The three possible \mathcal{L}-maximal bifix codes of \mathcal{L}-degree 2 are:

- $\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$
- \{a, baab, bab\}
- $\{\mathrm{aa}, \mathrm{aba}, \mathrm{b}\}$

Each of them has cardinality $3=2(2-1)+1$.

Cardinality of bifix codes

Theorem

Let \mathcal{L} be a recurrent neutral set.
For any finite \mathcal{L}-maximal bifix code B of \mathcal{L}-degree n, one has

$$
\operatorname{Card}(B)=n(\operatorname{Card}(\mathcal{A})-1)+1 .
$$

Theorem

Let \mathcal{L} be a uniformly recurrent set.
If every finite \mathcal{L}-maximal bifix code of \mathcal{L}-degree n has $n(\operatorname{Card}(A)-1)+1$ elements, then \mathcal{L} is neutral.

Finite index basis property

Example (Fibonacci)

The \mathcal{L}-maximal bifix code $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$ of \mathcal{L}-degree 2 is a basis of $\left\langle\mathcal{A}^{2}\right\rangle$. Indeed

$$
\mathrm{bb}=\mathrm{ba}(\mathrm{aa})^{-1} \mathrm{ab}
$$

Finite index basis property

Example (Fibonacci)

The \mathcal{L}-maximal bifix code $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$ of \mathcal{L}-degree 2 is a basis of $\left\langle\mathcal{A}^{2}\right\rangle$. Indeed

$$
\mathrm{bb}=\mathrm{ba}(\mathrm{aa})^{-1} \mathrm{ab}
$$

Also $\mathcal{L} \cap \mathcal{A}^{3}=\{$ aab, aba, baa, bab $\}$ is a basis of $\left\langle\mathcal{A}^{3}\right\rangle$:

$$
\begin{aligned}
\mathrm{aaa} & =\mathrm{aab}(\mathrm{bab})^{-1} \mathrm{baa} \\
\mathrm{abb} & =\mathrm{aba}(\mathrm{baa})^{-1} \mathrm{bab} \\
\mathrm{bba} & =\mathrm{bab}(\mathrm{aab})^{-1} \mathrm{aba} \\
\mathrm{bbb} & =\mathrm{bba}(\mathrm{aba})^{-1} \mathrm{aab}
\end{aligned}
$$

Finite index basis property

Example (Fibonacci)

The \mathcal{L}-maximal bifix code $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$ of \mathcal{L}-degree 2 is a basis of $\left\langle\mathcal{A}^{2}\right\rangle$. Indeed

$$
\mathrm{bb}=\mathrm{ba}(\mathrm{aa})^{-1} \mathrm{ab}
$$

Also $\mathcal{L} \cap \mathcal{A}^{3}=\{$ aab, aba, baa, bab $\}$ is a basis of $\left\langle\mathcal{A}^{3}\right\rangle$:

$$
\begin{aligned}
\mathrm{aaa} & =\mathrm{aab}(\mathrm{bab})^{-1} \mathrm{baa} \\
\mathrm{abb} & =\mathrm{aba}(\mathrm{baa})^{-1} \mathrm{bab} \\
\mathrm{bba} & =\mathrm{bab}(\mathrm{aab})^{-1} \mathrm{aba} \\
\mathrm{bbb} & =\mathrm{bba}(\mathrm{aba})^{-1} \mathrm{aab}
\end{aligned}
$$

$\{\mathrm{aa}, \mathrm{aba}, \mathrm{b}\}$ of \mathcal{L}-degree $2 \quad$ and $\quad\left[\langle\mathrm{aa}, \mathrm{aba}, \mathrm{b}\rangle: \mathbb{F}_{\mathcal{A}}\right]=2$

Finite index basis property

Definition

A set $\mathcal{L} \subset \mathcal{A}^{+}$satisfies the finite index basis property if for any finite bifix code $B \subset \mathcal{L}$:
B is an \mathcal{L}-maximal bifix code of \mathcal{L}-degree d if and only if it is a basis of a subgroup of index d of the free group on $\mathbb{F}_{\mathcal{A}}$.

Finite index basis property

Definition

A set $\mathcal{L} \subset \mathcal{A}^{+}$satisfies the finite index basis property if for any finite bifix code $B \subset \mathcal{L}$:
B is an \mathcal{L}-maximal bifix code of \mathcal{L}-degree d if and only if it is a basis of a subgroup of index d of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

An Arnoux-Rauzy set satisfies the finite index basis property.

Finite index basis property

Definition

A set $\mathcal{L} \subset \mathcal{A}^{+}$satisfies the finite index basis property if for any finite bifix code $B \subset \mathcal{L}$:
B is an \mathcal{L}-maximal bifix code of \mathcal{L}-degree d if and only if it is a basis of a subgroup of index d of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

A regular interval exchange set satisfies the finite index basis property.

Finite index basis property

Definition

A set $\mathcal{L} \subset \mathcal{A}^{+}$satisfies the finite index basis property if for any finite bifix code $B \subset \mathcal{L}$:
B is an \mathcal{L}-maximal bifix code of \mathcal{L}-degree d if and only if it is a basis of a subgroup of index d of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

A (uniformly) recurrent dendric set satisfies the finite index basis property.

Finite index basis property

Definition

A set $\mathcal{L} \subset \mathcal{A}^{+}$satisfies the finite index basis property if for any finite bifix code $B \subset \mathcal{L}$:
B is an \mathcal{L}-maximal bifix code of \mathcal{L}-degree d if and only if it is a basis of a subgroup of index d of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

A (uniformly) recurrent dendric set satisfies the finite index basis property.

Theorem

A uniformly recurrent set satisfying the finite index basis property is a dendric set.

Return words

A (right) return word to w in \mathcal{L} is a nonempty word u such that $w u \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(w)=\left\{u \in \mathcal{A}^{+} \mid w u \in \mathcal{L} \cap\left(\mathcal{A}^{+} w \backslash \mathcal{A}^{+} w \mathcal{A}^{+}\right)\right\}
$$

Example (Fibonacci)

$$
\begin{aligned}
& \mathcal{R}(\mathrm{b})=\{\mathrm{ab}, \mathrm{aa} \underline{b}\} \\
& \qquad \varphi(\mathrm{a})^{\omega}=\text { abaababaabaababaababaabaababaabaab} \cdots
\end{aligned}
$$

$$
\mathcal{R}(\mathrm{aa})=\{\text { baa, babaa }\}
$$

$$
\varphi(a)^{\omega}=\text { abaababaabaababaababaabaababaabaab } \cdots
$$

The Return Theorem

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(\mathrm{b})=\{\mathrm{ab}, \mathrm{aab}\}$ is a basis of the free group. Indeed,

$$
\begin{gathered}
\mathrm{a}=\mathrm{aab}(\mathrm{ab})^{-1} \\
\mathrm{~b}=\mathrm{a}^{-1} \mathrm{ab} \\
\langle\mathcal{R}(\mathrm{~b})\rangle=\langle\mathrm{ab}, \mathrm{aab}\rangle=\langle\mathrm{a}, \mathrm{~b}\rangle=\mathbb{F}_{\mathcal{A}}
\end{gathered}
$$

The Return Theorem

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(\mathrm{aa})=\{\mathrm{aab}, \mathrm{aabab}\}$ is a basis of the free group. Indeed,

$$
\begin{aligned}
\mathrm{a} & =\mathrm{aab}(\mathrm{aabab})^{-1} \mathrm{aab} \\
\mathrm{~b} & =\mathrm{a}^{-1} \mathrm{a}^{-1} \mathrm{aab} \\
\langle\mathcal{R}(\mathrm{aa})\rangle & =\langle\mathrm{aab}, \text { aabab }\rangle=\langle\mathrm{a}, \mathrm{~b}\rangle=\mathbb{F}_{\mathcal{A}}
\end{aligned}
$$

The Return Theorem

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Corollary

For every $w \in \mathcal{L}$, we have $\operatorname{Card}(\mathcal{R}(w))=\operatorname{Card}(\mathcal{A})$

The Return Theorem

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$.
Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Corollary

For every $w \in \mathcal{L}$, we have $\operatorname{Card}(\mathcal{R}(w))=\operatorname{Card}(\mathcal{A})$

Theorem

Let \mathcal{L} be a recurrent connected language.
For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

The Return Theorem

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$.
Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Corollary

For every $w \in \mathcal{L}$, we have $\operatorname{Card}(\mathcal{R}(w))=\operatorname{Card}(\mathcal{A})$

Theorem

Let \mathcal{L} be a recurrent suffix-connected language.
For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.
[Goulet-Ouellet: "Suffix-connected languages" (2022)]

Open problems

- Is the class of suffix-connected languages closed under complete bifix decoding?
- Is it possible to characterize the languages such that every set of return words generates (resp., is a basis of) the free group?
- Are dendric languages rigid?

An infinite word \mathbf{x} is rigid if $\operatorname{Stab}(\mathbf{x})=\left\{\sigma: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*} \mid \sigma(\mathbf{x})=\mathbf{x}\right\}$ is cyclic.

- Connection with profinite algebra

Almeida, Costa (2016), Almeida, Costa, Kyriakoglou, Perrin (2020), Goulet-Ouellet (2022), Costa (2023)

Obrigado pela sua atenção

