Dendric languages and the Finite Index Basis Property

 $Francesco \ \mathrm{Dolce}$

Conference on Theoretical and Computational Algebra

Pocinho, 6 de julho de 2023

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Росімно, 06.07.2023 1/16

イロト イボト イヨト イヨト

Fibonacci

$\mathbf{x} = \mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\mathbf{b}\mathbf{a}\cdots$

$$\mathbf{x} = \lim_{\mathbf{n} \to \infty} \varphi^{\mathbf{n}}(\mathbf{a}) \qquad \text{where} \qquad \varphi : \left\{ \begin{array}{l} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} \right.$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Fibonacci

 $\mathbf{x} = abaababaabaababa \cdots$

The Fibonacci word is a *Sturmian word*. Its set of factor $\mathcal{L}(\mathbf{x})$ is a Sturmian language.

Definition

A Sturmian language $\mathcal{L} \subset \mathcal{A}^*$ is a factorial set such that $p_n = \text{Card} (\mathcal{L} \cap \mathcal{A}^n) = n + 1$.

$$\mathcal{L}(\mathbf{x}) = \{\underbrace{\varepsilon}_{1}, \underbrace{\mathbf{a}, \mathbf{b}}_{2}, \underbrace{\mathbf{aa}, \mathbf{ab}, \mathbf{ba}}_{3}, \underbrace{\mathbf{aab}, \mathbf{aba}, \mathbf{baa}, \mathbf{baab}}_{4}, \underbrace{\mathbf{aaba}, \mathbf{abaa}, \mathbf{abaa}, \mathbf{abaab}, \mathbf{baab}}_{5}, \ldots\}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Росілно, 06.07.2023 2/16

(日) (同) (E) (E) (E)

2-coded Fibonacci

 $\mathbf{x} = \mathbf{a}\mathbf{b}$ aa ba ba ab aa ba ba \cdots

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

2-coded Fibonacci

.

. ba	ab	aa I	ba b	a ··
v u	ww	v u	ww	
u	\mapsto	aa		
v	\mapsto	ab		
W	\mapsto	ba		
	. ba 7 u u v w	ba ab u w w u ↔ v ↔ w ↔	ba ab aa b u w w v u $u \mapsto aa$ $v \mapsto ab$ $w \mapsto ba$	ba ab aa ba b $U \cup W \cup V \cup W W$ $U \mapsto aa$ $V \mapsto ab$ $W \mapsto ba$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{ u \in \mathcal{A} \mid uw \in \mathcal{L} \}$$

$$R(w) = \{ v \in \mathcal{A} \mid wv \in \mathcal{L} \}$$

$$B(w) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{ u \in \mathcal{A} \mid uw \in \mathcal{L} \}$$

$$R(w) = \{ v \in \mathcal{A} \mid wv \in \mathcal{L} \}$$

$$B(w) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{ u \in \mathcal{A} \mid uw \in \mathcal{L} \}$$

$$R(w) = \{ v \in \mathcal{A} \mid wv \in \mathcal{L} \}$$

$$B(w) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{ u \in \mathcal{A} \mid uw \in \mathcal{L} \}$$

$$R(w) = \{ v \in \mathcal{A} \mid wv \in \mathcal{L} \}$$

$$B(w) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{ u \in \mathcal{A} \mid uw \in \mathcal{L} \}$$

$$R(w) = \{ v \in \mathcal{A} \mid wv \in \mathcal{L} \}$$

$$B(w) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{ u \in \mathcal{A} \mid uw \in \mathcal{L} \}$$

$$R(w) = \{ v \in \mathcal{A} \mid wv \in \mathcal{L} \}$$

$$B(w) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L} \}$$

The *multiplicity* of a word w is the quantity

$$m(w) = \operatorname{Card} \left(B(w) \right) - \operatorname{Card} \left(L(w) \right) - \operatorname{Card} \left(R(w) \right) + 1.$$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ○ へ ○ POCINHO, 06.07.2023 5/16

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

5/16

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

- Fibonacci
- ? 2-coded Fibonacci
- Tribonacci
- ? 2-coded Tribonacci
- regular IE
- ? 2-coded regular IE

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

← □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○
 POCINHO, 06.07.2023 7 / 16
</p>

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

- \checkmark {aa, ab, ba}
- \checkmark {aa, ab, bba, bbb}
- ✓ {ac, bcc, bcbca}

- X { por, portugal, vinho }
- X { saudade, do, fado }
- $X \{ do, douro, ouro \}$

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L} -maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

Example (Fibonacci, $\mathcal{L} = \{\varepsilon, a, b, aa, ab, ba, aaa, aba, baa, bab, \ldots\}$)

The set $B = \{aa, ab, ba\}$ is an \mathcal{L} -maximal bifix code. It is not an \mathcal{A}^* -maximal bifix code, since $B \subset B \cup \{bb\}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Definition

A bifix code is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L} -maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

A coding morphism for a bifix code $B \subset A^+$ is a morphism $f : \mathcal{B}^* \to \mathcal{A}^*$ which maps bijectively \mathcal{B} onto \mathcal{B} .

Example

The map $f : {u, v, w}^* \to {a, b}^*$ is a coding morphism for $B = {aa, ab, ba}$.

$$f: \left\{ \begin{array}{l} \mathbf{u} \mapsto \mathbf{a} \mathbf{a} \\ \mathbf{v} \mapsto \mathbf{a} \mathbf{b} \\ \mathbf{w} \mapsto \mathbf{b} \mathbf{a} \end{array} \right.$$

7/16

When \mathcal{L} is factorial and B is an \mathcal{L} -maximal bifix code, the set $f^{-1}(\mathcal{L})$ is called a maximal bifix decoding of \mathcal{L} . ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで FRANCESCO DOLCE (CTU IN PRAGUE) DENDRIC LANGUAGES Pocinho, 06.07.2023

Theorem

The family of regular interval exchanges languages is closed under maximal bifix decoding.

Theorem

The family of recurrent dendric languages is closed under maximal bifix decoding.

Theorem

The family of recurrent dendric languages is closed under maximal bifix decoding.

Theorem. All complete bifix decodings of uniformly recurrent dendric languages are also uniformly recurrent [Costa (2023)]

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Росімно, 06.07.2023 8 / 16

Theorem

The family of recurrent neutral languages is closed under maximal bifix decoding.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Theorem

The family of eventually dendric languages is closed under maximal bifix decoding.

Theorem

The family of **eventually** dendric languages is closed under maximal bifix decoding.

- 21 POCINHO, 06.07.2023 8/16

Parse and degree

Definition

A parse of a word w with respect to a bifix code B is a triple (p, x, s) such that:

- $w = p \times s$,
- p has no suffix in B,
- $x \in X^*$ and
- s has no prefix in B.

Example

Let $B = \{aa, ab, ba\}$ and w = abaaba. The two possible parses of w are:

- (ε , ab aa ba, ε),
- (a, ba ab, a).

abaaba

イロト イヨト イヨト イヨト

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Росімно, 06.07.2023 9 / 16

э

Parse and degree

Definition

A parse of a word w with respect to a bifix code B is a triple (p, x, s) such that:

- $w = p \times s$,
- p has no suffix in B,
- $x \in X^*$ and
- s has no prefix in B.

The \mathcal{L} -degree of B is the maximal number of parses with respect to B of a word in \mathcal{L} .

Example (Fibonacci)

- The set $B = \{aa, ab, ba\}$ has \mathcal{L} -degree 2.
- The set $\mathcal{L} \cap \mathcal{A}^n$ has \mathcal{L} -degree n.

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Cardinality of bifix codes

Theorem

Let \mathcal{L} be a recurrent neutral set. For any finite \mathcal{L} -maximal bifix code B of \mathcal{L} -degree n, one has

Card(B) = n(Card(A) - 1) + 1.

Example (Fibonacci, $\mathcal{L} = \{\varepsilon, a, b, aa, ab, ba, aab, aba, baa, bab, \ldots\})$

The three possible \mathcal{L} -maximal bifix codes of \mathcal{L} -degree 2 are :

- {aa, ab, ba}
- {a, baab, bab}
- {aa, aba, b}

Each of them has cardinality 3 = 2(2 - 1) + 1.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 回 > < 0 Q () POCINHO, 06.07.2023 10 / 16

Cardinality of bifix codes

Theorem

Let \mathcal{L} be a recurrent neutral set. For any finite \mathcal{L} -maximal bifix code B of \mathcal{L} -degree n, one has

 $\operatorname{Card}(B) = n(\operatorname{Card}(A) - 1) + 1.$

Theorem

Let \mathcal{L} be a *uniformly* recurrent set. If every finite \mathcal{L} -maximal bifix code of \mathcal{L} -degree n has n(Card(A) - 1) + 1 elements, then \mathcal{L} is neutral.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Росімно, 06.07.2023 10 / 16

化口水 化塑料 化医水化医水合 医

Example (Fibonacci)

The \mathcal{L} -maximal bifix code $B = \{aa, ab, ba\}$ of \mathcal{L} -degree 2 is a basis of $\langle \mathcal{A}^2 \rangle$. Indeed

 $bb = ba (aa)^{-1} ab$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Example (Fibonacci)

The \mathcal{L} -maximal bifix code $B = \{aa, ab, ba\}$ of \mathcal{L} -degree 2 is a basis of $\langle \mathcal{A}^2 \rangle$. Indeed bb = ba $(aa)^{-1}$ ab

Also $\mathcal{L} \cap \mathcal{A}^3 = \{aab, aba, baa, bab\}$ is a basis of $\langle \mathcal{A}^3 \rangle$:

aaa	=	aab (bab) $^{-1}$ baa
abb	=	aba (baa) $^{-1}$ bab
bba	=	bab $(aab)^{-1}$ aba
bbb	=	bba $(aba)^{-1}$ aab

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 回 > < 0 Q () POCINHO, 06.07.2023 11 / 16

Example (Fibonacci)

The \mathcal{L} -maximal bifix code $B = \{aa, ab, ba\}$ of \mathcal{L} -degree 2 is a basis of $\langle \mathcal{A}^2 \rangle$. Indeed $bb = ba (aa)^{-1} ab$

Also $\mathcal{L} \cap \mathcal{A}^3 = \{aab, aba, baa, bab\}$ is a basis of $\langle \mathcal{A}^3 \rangle$:

aaa = $aab (bab)^{-1} baa$ $abb = aba (baa)^{-1} bab$ $bba = bab (aab)^{-1} aba$ $bbb = bba (aba)^{-1} aab$

 $\{aa, aba, b\} \text{ of } \mathcal{L}\text{-degree 2} \qquad \text{and} \qquad [\langle aa, aba, b \rangle \ : \ \mathbb{F}_{\mathcal{A}}] \ = \ 2$

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Definition

A set $\mathcal{L} \subset \mathcal{A}^+$ satisfies the *finite index basis property* if for any finite bifix code $B \subset \mathcal{L}$:

B is an \mathcal{L} -maximal bifix code of \mathcal{L} -degree *d* if and only if it is a basis of a subgroup of index *d* of the free group on $\mathbb{F}_{\mathcal{A}}$.

イロト イボト イヨト イヨト

Definition

A set $\mathcal{L} \subset \mathcal{A}^+$ satisfies the *finite index basis property* if for any finite bifix code $B \subset \mathcal{L}$:

B is an \mathcal{L} -maximal bifix code of \mathcal{L} -degree *d* if and only if it is a basis of a subgroup of index *d* of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

An Arnoux-Rauzy set satisfies the finite index basis property.

Definition

A set $\mathcal{L} \subset \mathcal{A}^+$ satisfies the *finite index basis property* if for any finite bifix code $B \subset \mathcal{L}$:

B is an \mathcal{L} -maximal bifix code of \mathcal{L} -degree *d* if and only if it is a basis of a subgroup of index *d* of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

A regular interval exchange set satisfies the finite index basis property.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Росімно, 06.07.2023 12/16

イロト イボト イヨト・

Definition

A set $\mathcal{L} \subset \mathcal{A}^+$ satisfies the *finite index basis property* if for any finite bifix code $B \subset \mathcal{L}$:

B is an \mathcal{L} -maximal bifix code of \mathcal{L} -degree *d* if and only if it is a basis of a subgroup of index *d* of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

A (uniformly) recurrent dendric set satisfies the finite index basis property.

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Росілно, 06.07.2023 12/16

化白豆 化间面 化医原油 医原生素

Definition

A set $\mathcal{L} \subset \mathcal{A}^+$ satisfies the *finite index basis property* if for any finite bifix code $B \subset \mathcal{L}$:

B is an \mathcal{L} -maximal bifix code of \mathcal{L} -degree *d* if and only if it is a basis of a subgroup of index *d* of the free group on $\mathbb{F}_{\mathcal{A}}$.

Theorem

A (uniformly) recurrent dendric set satisfies the finite index basis property.

Theorem

A *uniformly recurrent* set satisfying the finite index basis property is a dendric set.

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

化白豆 化间面 化医原油 医原生素

POCINHO, 06.07.2023

12/16

Return words

A (*right*) return word to w in \mathcal{L} is a nonempty word u such that $wu \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

```
\mathcal{R}(\boldsymbol{w}) = \{\boldsymbol{u} \in \mathcal{A}^+ \mid \boldsymbol{w}\boldsymbol{u} \in \mathcal{L} \cap (\mathcal{A}^+\boldsymbol{w} \setminus \mathcal{A}^+\boldsymbol{w}\mathcal{A}^+)\}
```


FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Росілно, 06.07.2023 13/16

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(b) = \{ab, aab\}$ is a basis of the free group. Indeed,

$$a = aab (ab)^{-1}$$

 $b = a^{-1} ab$

 $\langle \mathcal{R}(b) \rangle = \langle ab, aab \rangle = \langle a, b \rangle = \mathbb{F}_{\mathcal{A}}$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Росімно, 06.07.2023 14/16

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(aa) = \{aab, aabab\}$ is a basis of the free group. Indeed,

 $a = aab (aabab)^{-1} aab$ $b = a^{-1} a^{-1} aab$

 $\langle \mathcal{R}(aa)
angle = \langle aab, aabab
angle = \langle a, b
angle = \mathbb{F}_{\mathcal{A}}$

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Росімно, 06.07.2023 14/16

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Corollary

For every $w \in \mathcal{L}$, we have $Card(\mathcal{R}(w)) = Card(\mathcal{A})$

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Росімно, 06.07.2023 14/16

イロト イヨト イヨト イヨト 二日

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Corollary

For every $w \in \mathcal{L}$, we have $Card(\mathcal{R}(w)) = Card(\mathcal{A})$

Theorem	١
Let \mathcal{L} be a recurrent connected language.	1
For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.	J

FRANCESCO DOLCE (CTU IN PRAGUE)

DENDRIC LANGUAGES

Theorem

Let \mathcal{L} be a recurrent dendric language and $w \in \mathcal{L}$. Then $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Corollary

For every $w \in \mathcal{L}$, we have $Card(\mathcal{R}(w)) = Card(\mathcal{A})$

Theorem

Let \mathcal{L} be a recurrent suffix-connected language. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Goulet-Ouellet: "Suffix-connected languages" (2022)

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Росімно, 06.07.2023 14/16

化白豆 化间面 化医原油 医原生素

Open problems

Is the class of suffix-connected languages closed under complete bifix decoding?

Is it possible to characterize the languages such that every set of return words generates (resp., is a basis of) the free group?

Are dendric languages rigid?

An infinite word **x** is *rigid* if $Stab(\mathbf{x}) = \{\sigma : \mathcal{A}^* \to \mathcal{A}^* \mid \sigma(\mathbf{x}) = \mathbf{x}\}$ is cyclic.

Connection with profinite algebra

Almeida, Costa (2016), Almeida, Costa, Kyriakoglou, Perrin (2020), Goulet-Ouellet (2022), Costa (2023)

FRANCESCO DOLCE (CTU IN PRAGUE)

Dendric languages

Росімно, 06.07.2023 15 / 16

Obrigado pela sua atenção