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Specular Sets Extension Graphs

The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w)⊔R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},

R(w) = {a ∈ A |wa ∈ S},

B(w) = {(a,b) ∈ A×A | awb ∈ S}.
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Specular Sets Tree Sets

A factorial set S is called a tree set of characteristic 
 if E(w) is a tree for any nonempty
w ∈ S , and E(ε) is a union of 
 trees.
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Specular Sets Tree Sets

A factorial set S is called a tree set of characteristic 
 if E(w) is a tree for any nonempty
w ∈ S , and E(ε) is a union of 
 trees.

Theorem

Families of (uniformly) recurrent tree sets of characteristic 1 :

◮ Factors of Arnoux-Rauzy (Sturmian) words ;

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

◮ Natural coding of regular interval exchanges.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Francesco Dolce (Paris-Est) Numeration 2016 Prague, 24 May 2016 5 / 23



Specular Sets Tree Sets

A factorial set S is called a tree set of characteristic 
 if E(w) is a tree for any nonempty
w ∈ S , and E(ε) is a union of 
 trees.

Theorem
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◮ Factors of Arnoux-Rauzy (Sturmian) words ;

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

◮ Natural coding of regular interval exchanges.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Example (Tribonacci)
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Specular Sets Reduced Words and Symmetric Sets

Let θ : A→ A be an involution (possibly with some fixed point).
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Let θ : A→ A be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.

Example

Let θ : a 7→ a, b 7→ d , 
 7→ 
, d 7→ b.

The θ-reduction of the word daaa
db is da
.
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.
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Specular Sets Definition and Factor Complexity

A specular set on an alphabet A (w.r.t. an involution θ) is a set

◮ biextendable,

◮ θ-symmetric,

◮ θ-reduced,

◮ tree set of characteristic 2.
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Let A= {a,b} and θ be the identity on A. The set of factors of (ab)ω is a specular set.
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Proposition [using J. Cassaigne (1997)]

The factor complexity of a specular set is given by p
n

= n (Card (A)− 2)+2 for all n ≥ 1.
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Specular Sets Linear Involutions

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

T = σ2 ◦ σ1

a b b
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−1
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σ1

σ1

σ1

σ2
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Specular Sets Linear Involutions

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.
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Specular Sets Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}
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1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ
i

(u) = v for a path starting at the state i
with input label u and output label v .

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω

Francesco Dolce (Paris-Est) Numeration 2016 Prague, 24 May 2016 9 / 23



Specular Sets Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ
i

(u) = v for a path starting at the state i
with input label u and output label v .

The image of a set T is δ(T) = δ0(T) ∪ δ1(T).

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω

δ
(
Fac (αω)

)
= Fac

(
(ab)ω

)
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Specular Sets Doubling Maps

Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The image of a tree set of characteristic 1 closed under reversal is a specular set with
respect to θA.

i

j

α | a

1− j 1− i

α | θA(a)
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Specular Sets Doubling Maps

Example (two doublings of Fibonacci on Σ = {α, β})

◮ Fac (abaababa· · · )∪ Fac (
d

d
d
 · · · )

0 1
α | a
β |b

α | 

β |d θA :















a 7→ 


b 7→ d


 7→ a

d 7→ b
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Return Words Right Return Words

A right return word to w in S is a nonempty word u such that wu∈ S , starts and ends
with w but has no w as an internal factor. Formally,

R(w) =
{
u ∈ A

+ | wu ∈
(
A

+
w \A+

wA

+) ∩ S
}
.

Example (Fibonacci)

R(aa) = {baa, babaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab· · ·
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Return Words Right Return Words

A right return word to w in S is a nonempty word u such that wu∈ S , starts and ends
with w but has no w as an internal factor. Formally,

R(w) =
{
u ∈ A

+ | wu ∈
(
A

+
w \A+

wA

+) ∩ S
}
.

Example (Fibonacci)

R(aa) = {baa, babaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab· · ·

Cardinality Theorem for Right Return Words [BDDDLPRR (2015)]

For any w in a recurrent specular set, one has

Card (R(w)) = Card (A)− 1.
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Return Words Complete Return Words

A complete return word to a set X ⊂ S is a word starting and ending with a word of X
but having no internal factor in X . Formally,

CR (X) = S ∩
(
XA

+∩A+
X

)
\A+

XA

+.

Example (Fibonacci)

CR({aa,bab}) = { aabaa, aabab, babaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab· · ·
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Return Words Complete Return Words

A complete return word to a set X ⊂ S is a word starting and ending with a word of X
but having no internal factor in X . Formally,

CR (X) = S ∩
(
XA

+∩A+
X

)
\A+

XA

+.

Example (Fibonacci)

CR({aa,bab}) = { aabaa, aabab, babaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab· · ·

Cardinality Theorem for Complete Return Words [BDDDLPRR (2015)]

Let S be a recurrent specular set and X ⊂ S be a finite bifix code 1 with empty kernel 2.
Then,

Card (CR(X ))= Card (X )+ Card (A)− 2.

1. bifix code : set that does not contain any proper prefix or suffix of its elements.
2. kernel : set of words of X which are also internal factors of X .
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Return Words Mixed Return Words

Two words u,v overlap if a nonempty suffix of one of them is a prefix of the other.

u

v
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u

v

Consider a word w not overlapping with w−1.
A mixed return word to w is the word N(u) obtained from u ∈ CR

(
{w ,w−1}

)
erasing

the prefix if it is w and the suffix if it is w−1.

u
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w
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−1

Francesco Dolce (Paris-Est) Numeration 2016 Prague, 24 May 2016 14 / 23



Return Words Mixed Return Words

Two words u,v overlap if a nonempty suffix of one of them is a prefix of the other.

u

v

Consider a word w not overlapping with w−1.
A mixed return word to w is the word N(u) obtained from u ∈ CR

(
{w ,w−1}

)
erasing

the prefix if it is w and the suffix if it is w−1.

u

N(u)

w

−1
w

−1

Cardinality Theorem for Mixed Return Words [BDDDLPRR (2015)]

Let S be a recurrent specular set and w ∈ S such that w , w−1 do not overlap. Then,

Card (MR(w)) = Card (A).
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Palindromes Definition

A palindrome is a word w = w̃ as, for instance :
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Palindromes Definition

A palindrome is a word w = w̃ as, for instance :

eye, noon, sagas, racecar . . .

ici, été, coloc, kayak, radar, . . .

non, osso, aveva, rossor, ottetto, . . .

Jelenovi Pivo Nelej (to a deer, don’t pour beer),
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Palindromes Definition

A palindrome is a word w = w̃ as, for instance :

eye, noon, sagas, racecar . . .

ici, été, coloc, kayak, radar, . . .

non, osso, aveva, rossor, ottetto, . . .

Jelenovi Pivo Nelej (to a deer, don’t pour beer), Ital Plat́ı, . . .
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Palindromes Rich Words and Rich Sets

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most n+ 1 palindrome factors.

A word with maximal number of palindromes is rich.
A factorial set is rich if all its elements are rich.

Example (Fibonacci)

Pal(abaab) = {ε, a,b,aa,aba,baab}.
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Palindromes Rich Words and Rich Sets

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most n+ 1 palindrome factors.

A word with maximal number of palindromes is rich.
A factorial set is rich if all its elements are rich.

Example (Fibonacci)

Pal(abaab) = {ε, a,b,aa,aba,baab}.

Theorem [A. Glen, J. Justin, S. Widmer, L.Q. Zamboni (2009)]

Let S be a recurrent set closed under reversal.
S is rich ⇐⇒ every complete return word to a palindrome is a palindrome.
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Palindromes Tree Sets are Rich

Theorem

Families of rich sets :

◮ Factors of Arnoux-Rauzy (Sturmian) words.

[X. Droubay, J. Justin, G. Pirillo (2001)]

◮ Natural coding of regular interval exchanges defined by a symmetric permutation.

[P. Balázi, Z. Masáková, E. Pelantová (2007)]
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Palindromes Tree Sets are Rich

Theorem

Families of rich sets :

◮ Factors of Arnoux-Rauzy (Sturmian) words.

[X. Droubay, J. Justin, G. Pirillo (2001)]

◮ Natural coding of regular interval exchanges defined by a symmetric permutation.

[P. Balázi, Z. Masáková, E. Pelantová (2007)]

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Recurrent tree sets of characteristic 1 closed under reversal are rich.
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Palindromes σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if w = σ(w).
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Palindromes σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if w = σ(w).

Example

Let σ : A ↔ T, C ↔ G.
The word CTTAAG is a σ-palindrome.

Theorem [Š. Starosta (2011)]

Let γσ(w) be the number of transpositions of σ affecting w . Then,

Card (Palσ(w))≤ |w |+ 1− γσ(w).

A word (set) is σ-rich if the equality holds (for all its elements).
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Palindromes G-palindromes

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism.
A word w is a G -palindrome if there exists a nontrivial g ∈ G s.t. w = g(w).
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Palindromes G-palindromes

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism.
A word w is a G -palindrome if there exists a nontrivial g ∈ G s.t. w = g(w).

Example

Let G = 〈σ, τ 〉, with σ : A ↔ R, E ↔ T, I ↔ M, O ↔ U and
τ : A ↔ G, E ↔ P, U ↔ R.

The following words are G -palindromes :
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Let G be a group of morphisms and antimorphisms, containing at least an antimorphism.
A word w is a G -palindrome if there exists a nontrivial g ∈ G s.t. w = g(w).

Example

Let G = 〈σ, τ 〉, with σ : A ↔ R, E ↔ T, I ↔ M, O ↔ U and
τ : A ↔ G, E ↔ P, U ↔ R.

The following words are G -palindromes :

• NUMERATION, fixed by σ,
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Let G be a group of morphisms and antimorphisms, containing at least an antimorphism.
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Let G be a group of morphisms and antimorphisms, containing at least an antimorphism.
A word w is a G -palindrome if there exists a nontrivial g ∈ G s.t. w = g(w).

Example

Let G = 〈σ, τ 〉, with σ : A ↔ R, E ↔ T, I ↔ M, O ↔ U and
τ : A ↔ G, E ↔ P, U ↔ R.

The following words are G -palindromes :
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A word (set) is G -rich ∗ if...
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Palindromes G-palindromes

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism.
A word w is a G -palindrome if there exists a nontrivial g ∈ G s.t. w = g(w).

Example

Let G = 〈σ, τ 〉, with σ : A ↔ R, E ↔ T, I ↔ M, O ↔ U and
τ : A ↔ G, E ↔ P, U ↔ R.

The following words are G -palindromes :

• NUMERATION, fixed by σ,

• PRAGUE, fixed by τ ,

• PÍT, fixed by στσ.

A word (set) is G -rich ∗ if... “the number of G -palindromes if maximal”.
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Palindromes Specular Sets are G-rich

Theorem [E. Pelantová, Š. Starosta (2014)]

A set S closed under G is G -rich if for every w ∈ S , every complete return word to the
G -orbit of w is fixed by a nontrivial element of G .
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Palindromes Specular Sets are G-rich

Theorem [E. Pelantová, Š. Starosta (2014)]

A set S closed under G is G -rich if for every w ∈ S , every complete return word to the
G -orbit of w is fixed by a nontrivial element of G .

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

The specular set obtained as image under a doubling transducer A is GA-rich.

GA = {id, σ, τ, στ} ≃ (Z/2Z)× (Z/2Z)

with σ an antimorphism and τ a morphism.

i

j

α|a
1− i

1− j

α|σ(a)

1− j 1− i

α|τ (a)
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Conclusions
Summing up

◮ Tree and specular sets.

Linear involutions and doubling maps.
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Conclusions
Summing up

◮ Tree and specular sets.

Linear involutions and doubling maps.

◮ Cardinality Theorems for return words.

Card (R(w)) = Card (A)− 1

Card (CR(X )) = Card (X )+ Card (A)− 2

Card (MR(w)) = Card (A)

◮ New family of G -rich sets.

Specular sets obtained by doubling maps are GA-rich.
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Further Research Directions
and other works in progress

◮ Decidability of the tree (and specular) condition.

[work in progress with Julien Leroy and Revekka Kyriakoglou]
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Further Research Directions
and other works in progress

◮ Decidability of the tree (and specular) condition.

[work in progress with Julien Leroy and Revekka Kyriakoglou]

◮ Tree set and free groups.

Tree set of χ = 1 =⇒ R(w) is a basis of the free group for every w

◮ New classes of G -rich sets (or new groups G ).
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