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x = abaababaabaababaababa · · ·



Motivation

Let x be the Fibonacci word, defined as the fixed point f ω(a) of the
substitution f : a 7→ ab, b 7→ a, that is

x = abaababaabaababaababa · · ·

Can we decompose x as a concatenantion of f (a) = ab and f (b) = a ?

x = |ab|a|ab|ab|a|ab|a|ab|ab|a|ab|ab|a · · ·



Motivation

Let x be the Fibonacci word, defined as the fixed point f ω(a) of the
substitution f : a 7→ ab, b 7→ a, that is

x = abaababaabaababaababa · · ·

Can we decompose x as a concatenantion of f (a) = ab and f (b) = a ?

x = |ab|a|ab|ab|a|ab|a|ab|ab|a|ab|ab|a · · ·

More in general, given a word v ∈ L(x), can we decompose v as a
concatenation (up to a prefix and a suffix) of ab and a ? Is this decomposition
unique ?

v = ab|ab|a|ab|aab



Natural cutting points

Let σ be a primitive substitution over an alphabet A. Let u = u0u1 · · · be a
fixed point of σ. For each k > 0 let define

Ek = {0} ∪ {|σk(u0 · · · up−1)| : p > 0},

the set of natural k-cutting points (or cutting bars of order k).
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• E2 = {0, 3, 5, 8, 11, 13, 16, 18, 21, . . .}



Natural cutting points
Some easy remarks

Ek = {0} ∪ {|σk (u0 · · · up−1)| : p > 0}

• If k ≤ ℓ, then Eℓ ⊂ Ek .

• If σ has constant length q, then Ek = {mqk : m ≥ 0}.

Example

Let u be the Morse word defined as the fixed point µω(a) of the substitution
µ : a 7→ ab, b 7→ ba. Then E1 = {0, 2, 4, 6, . . .}.

u = |ab|ba|ba|ab|ba|ab|ab|ba|ba|ab|ab|ba|ab| · · ·



Cutting points and ancestors

For every factor v = ui · · · ii+|v|−1, there exists a rank j , a length ℓ, a suffix S of
σ(uj) and a prefix P of σ(uj+ℓ+1) such that v = S σ(uj+1) · · · σ(uj+ℓ)P, and
such that

Ek ∩ {i , . . . , i + |v | − 1} = (i − h) + Ek ∩ {h, . . . , h + |v | − 1},

with h = |σ(u0 · · · uj )| − |S |.
We say that [S , σk(uj+1), . . . , σ

k(uj+ℓ),P] is the k-cutting at the rank i of v ,
and that v comes from the ancester word uj · · · uj+ℓ+1.

Example

Let v = baaba a factor of the Fibonacci word.

x = |a b|a|a b|a b|a|a b|a|a b|a b|a|a b|a b|a · · ·
0 1 2 3 4 5 6 7 8 9 1011121314 15 1617 1819 20

a b a a

ij

The 1-cutting at rank 9 of v is [b, f (b), f (a), a] and his ancestor is abaa.



Unilaterally recognizable substitutions

A substitution σ is called unilaterally (right) recognizable if there exists an
integer L > 0 such that

{
uiui+1 · · · ui+L−1 = ujuj+1 · · · uj+L−1

i ∈ E1
=⇒ j ∈ E1.

The smaller inter L that verifies this property is called the recognizability index

of σ.

Then, a substitution is recognizable if the 1-cutting of any long enough factor
is independent of the rank of occurrence of the factor, except maybe for a
suffix of the word.
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Unilaterally recognizable substitutions
Some examples

Examples

• The substitution σ : a 7→ aba, b 7→ bab is not recognizable (and so is any
infinite periodic word).

σ
ω(a) = |aba|baba|bab|aba|bab|aba|bab|aba|ba · · ·

• The Fibonacci substitution is recognizable with recognizability index 2.

x = |ab|a|ab|ab|a|ab|a|ab|ab|a|ab|ab|a · · ·



Unilaterally recognizable substitutions
The Morse substitution

Example [M. Quefféllec, 1987]

The Morse substitution is recognizabile.

u = |ab|ba|ba|ab|ba|ab|ab|ba|ba|ab|ab|ba|ab| · · ·

Indeed, the question is to decide wether some a (resp. b) is the beginning of
some substituted word, µ(a) (resp. µ(b)) necessarily.

◦ We can say nothing for the letter a.

◦ aa and is not a substituted word, while ab occurs both as a factor of µ(a)
and µ(ba) = baba.

◦ No word with more than two consecutive b occurs in u ; it follows that
abb is the beginning of some substituted word but aba may not be one,
since it appears both in µ(aa) = abab and µ(bb) = baba.

◦ abaa is never a substituted word (since aa is not one), while abab is
always µ(aa).

We proved that a is the beginning of µ(a) in u, if it appears in abb or abab. By
symmetryn we conclude that the (unilaterally) recognizability index is 4.



A brief history . . .

• In 1973, J.C. Martin claims that any substitution on a two-letter alphabet
which is aperiodic is unilaterally recognizable (or rank one determined).
His proof is not convincing.

• In 1987, M. Quefféllec announces a short proof of the unilaterally
recognizability of constant length substitutions due to G. Rauzy. Nobody
could check this proof.

• In his 1989 PhD Thesis, M. Mentzen said to prove this result, using a
paper by T. Kamae of 1972.

• In 1999, C. Apparicio shows a gap in Mentzen proof (Kamae’s results
only works for a particular case of the theorem, namely if the length is a
power of a prime number). She solves the problem using a 1978 result by
F.M. Dekking.

• In the meantime, in 1992, B. Mossé proves a more general result (also
nonconstant length), but using a new notion of (bilaterally) recognizable
substitution (see later). She refines this result in 1996.



Recognizability of constant length substitutions

Theorem [Mentzen, 1989 – Apparicio 1999]

Let σ a constant length substitution, one-to-one over the alphabet, with fixed
point u = σω(a) aperiodic, and satisfying

∀ b ∈ A,∃ k ≥ 1 such that a occurs in σ
k(b). (1)

Then σ is unilaterally recognizable.
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• If σ is primitive then condition (1) is verified.

• A q-constant length substitution σ is unilaterally recognizabile if there
exists an L > 0 such that for every n, i , t ∈ N,

ui · · · ui+Lqn−1 = utqn · · · u(t+L)qn−1 =⇒ q
n divides i



Aω is a compact metric space, with distance d(x , y) = 1
min{m+1 | xm 6=ym}
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The set W = OT (u) is a compact. Moreover, if σ verifies condition (1), W is a
minimal set of (Aω,T ).
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Aω is a compact metric space, with distance d(x , y) = 1
min{m+1 | xm 6=ym}

.

The set W = OT (u) is a compact. Moreover, if σ verifies condition (1), W is a
minimal set of (Aω,T ).

Lemma 1

For every point of W one has σn ◦ T p = T pqn ◦ σp, for every n, p ∈ N.

Proposition 2 [Dekking, 1978]

For every n ∈ N, W = ∪qn−1
j=0 T j ◦ σn(W ), where the union is disjoint.



1st step. Let first show that for every n ∈ N, there exists an Ln such that for
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1st step. Let first show that for every n ∈ N, there exists an Ln such that for
every t, i ∈ N,
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n divides i .

Let suppose, by contraddiction, that there exists two sequences (r(t))t∈N and
(s(t))t∈N such that r(t) ≡ 0 (mod qn) and s(t) 6≡ 0 (mod qn), verifying

us(t) · · · us(t)+tqn−1 = ur(t) · · · ur(t)+tqn−1

Since W is compact, there exist two convergent subsequences T r(ti )u → x and
T s(ti )u → y . Since r(ti ) ≡ 0 (mod qn) and σn(W ) is closed then x ∈ σn(W )
(by Lemma 1). Similary, y ∈ T p ◦ σn(W ) for a p 6≡ 0 (mod qn). Thus x 6= y by
Theorem 1.

But d(T r(t)u,T s(t)u) ≤ 1
tqn

→ 0 when t → ∞. Thus x = y , a contradiction.
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2nd step. Let us show that we can choose L1 = L2.

Let i , t ∈ N such that

ui · · · ui+L1q
2−1 = utq2 · · · utq2+L1q

2−1,

and let show that q2 divides i .

In particular, if we consider the last L1q − 1 letters, we have

ui+L1q(q−1) · · · ui+L1q(q−1)+L1q
1−1 = u(tq+L1(q−1))q1 · · · u(tq+L1(q−1))q1+L1q

1−1,

thus, q divides i + L1q(q − 1), whence q divides i .

Let i = qs. We show that q divides s. Since σ(u) = u, one has

ui · · · ui+L1q
2−1 = σ(us · · · us+L1q−1), utq2 · · · utq2+L1q

2−1 = σ(utq · · · utq+L1q−1).

By injectivity and by definition of L1 one obtain that q divides s.

ui · · · ui+L1q
2−1 = utq2 · · · utq2+L1q

2−1 =⇒ q
2 divides i .

Using the same reasoning, one has L1 = L2 = . . . = Ln = . . ..



Unilaterally recognizability

Theorem [B. Host, 1986]

Let σ a primitive substitution and Xσ the associated dynamical system. The
substitution σ is (unilaterally) recognizable if and only if σ(Xσ) is an open set.



Substitutions not unilaterally recognizable

A sufficient condition for a (non periodic) substitution not to be unilaterally
recognizable is that for every couple of distinct letter (a, b), σ(a) is a strict
suffix of σ(b), or conversely.

Example

The substitution σ : a 7→ aaab, b 7→ ab is not unilaterally recognizable.

Example

The Chacon substitution over the alphabet {0, 1, 2} defined by

0 7→ 0012, 1 7→ 12, 2 7→ 012

is not unilaterally recognizable.



A negative result . . .

Theorem [B. Mossé, 1992]

Let σ be a primitive substitution with a non-periodic fixed point u. The substi-
tution σ is not unilaterally recognizable if and only if for every L > 0 there exists
a word v of length L and two letters a and b of the alphabet such that :

1. the word σ(b) is a proper suffix of σ(a) ;

2. the words σ(a)v and σ(b)v are both in L(u) and with the same 1-cutting
of v .



Bilaterally recognizable substitutions

A substitution σ is called (bilaterally) recognizable if there exists an integer
L > 0 such that

{
ui−L · · · ui+L = uj−L · · · uj+L

i ∈ E1
=⇒ j ∈ E1.

The smaller inter L that verifies this property is called the recognizability index

of σ.

Then, a substitution is bilaterally recognizable if the 1-cutting of any long
enough factor is independent of the rank of occurrence of the factor, except
maybe for a suffix and a prefix of the word.



. . . and two positive results

Theorem [B. Mossé, 1992]

Let σ be a primitive substitution with a non-periodic fixed point u. The substi-
tution σ is bilaterally recognizable.



. . . and two positive results

Theorem [B. Mossé, 1992]

Let σ be a primitive substitution with a non-periodic fixed point u. The substi-
tution σ is bilaterally recognizable.

Theorem [B. Mossé, 1996]

Let σ be a primitive substitution with a non-periodic fixed point u. There exists
an integer L > 0 such that if

ui−L · · · ij+L = ui′−L · · · uj′+L,

then, ui · · · uj and ui′ · · · uj′ have the same 1-cutting at ranks i and i ′ and the
same ancestor.



Some remarks on the periodicity

There exists nontrivial substitutions which are periodic.

Example

The fixed point σ(a) of the substitution σ : a 7→ aba , b 7→ babab is the periodic
point (ab)ω.

However the problem is decidable.



Some remarks on the periodicity

There exists nontrivial substitutions which are periodic.

Example

The fixed point σ(a) of the substitution σ : a 7→ aba , b 7→ babab is the periodic
point (ab)ω.

However the problem is decidable.

A primitive non-periodic substitution σ does not have necessarily a fixed point,
but has at least a periodic point, that is a u such that σk(u) = u for some
k > 0. Thus, a power of σ is bilaterally recognizable.



Recognizability for biinfinite words

We can extend the notion to a two-sided version, defining

E1 = {0} ∪ {|σ(u0 · · · up−1)| : p > 0} ∪ {|σ(u−p · · · u−1)| : p > 0}

From Mossé’s theorem, we can deduce that any word of the bilateral
dynamical system Xσ associated with a primitive non-periodic substitution σ

can be desubstituted in a unique biinfinite word.

Corollary

Let σ be a primitive non-periodic substitution. Let Xσ be the associated substi-
tutive dynamical system. Then, for any w ∈ Xσ there exists a unique v ∈ Xσ

such that w = T kσ(v), with 0 ≤ k ≤ |σ(v0)|.

w = · · · | · · ·
︸︷︷︸

σ(v−1)

|w−k · · ·w1 .w0 · · ·wℓ
︸ ︷︷ ︸

σ(v0)

| · · ·
︸︷︷︸

σ(v1)

| · · ·
︸︷︷︸

σ(v2)

| · · ·

where v = · · · v−1.v0v1 · · · ∈ Xσ.
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