Dendric languages and return words

Francesco Dolce

Konference TIGR CoW 2021
Telč, 27. června 2021

Fibonacci

$$
\text { x = abaababaabaababa } \cdot
$$

$$
x=\lim _{n \rightarrow \infty} \varphi^{n}(a) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{a}
\end{array}\right.
$$

Fibonacci

$$
\text { x = abaababaabaababa } \cdot
$$

The Fibonacci language (set of factors of \mathbf{x}) is a Sturmian language.

Definition

A Sturmian language $\mathcal{L} \subset \mathcal{A}^{*}$ is a factorial set such that $p_{n}=\operatorname{Card}\left(\mathcal{L} \cap \mathcal{A}^{n}\right)=n+1$.

$n:$	0	1	2	3	4	5	\cdots
$p_{n}:$	1	2	3	4	5	6	\cdots

2-coded Fibonacci

$$
\text { x }=\text { ab aa ba ba ab aa ba ba } \cdots
$$

2-coded Fibonacci

x = ab aa ba ba ab aa ba ba ...

$$
f:\left\{\begin{array}{lll}
\mathrm{u} & \mapsto & \mathrm{aa} \\
\mathrm{v} & \mapsto & \mathrm{ab} \\
\mathrm{w} & \mapsto & \mathrm{ba}
\end{array}\right.
$$

2-coded Fibonacci

$$
\begin{aligned}
& \mathbf{x}=\mathrm{ab} \text { aa ba ba ab aa ba ba... } \\
& f^{-1}(\mathbf{x})=\text { vuwWvuww... } \\
& f:\left\{\begin{array}{lll}
\mathrm{u} & \mapsto & \text { aa } \\
\mathrm{v} & \mapsto & \mathrm{ab} \\
\mathrm{w} & \mapsto & \mathrm{ba}
\end{array}\right.
\end{aligned}
$$

2-coded Fibonacci

$$
\begin{gathered}
x=a b \text { aa ba ba ab aa ba ba... } \\
f^{-1}(\mathbf{x})=\text { v u w w v u w w } \cdots
\end{gathered}
$$

$$
f:\left\{\begin{array}{lll}
\mathrm{u} & \mapsto & \mathrm{aa} \\
\mathrm{v} & \mapsto & \mathrm{ab} \\
\mathrm{w} & \mapsto & \mathrm{ba}
\end{array}\right.
$$

Arnoux-Rauzy languages

Definition

An Arnoux-Rauzy language is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-$ 1) $n+1$ having a unique right special factor for each length.

Arnoux-Rauzy languages

Definition

An Arnoux-Rauzy language is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-$ 1) $n+1$ having a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\psi^{\omega}(\mathrm{a})$ of the morphism $\quad \psi: \mathrm{a} \mapsto \mathrm{ab}, \quad \mathrm{b} \mapsto \mathrm{bc}, \quad \mathrm{c} \mapsto \mathrm{a}$.

$$
\begin{array}{llllll}
n: & 0 & 1 & 2 & 3 & \cdots \\
p_{n}: & 1 & 3 & 5 & 7 & \cdots \\
p_{n}= & 2 n+1
\end{array}
$$

$$
\begin{aligned}
& \text { 2-coded Fibonacci } \\
& f^{-1}(\mathbf{x})=\mathrm{vuwwv} \mathbf{u w w} \ldots
\end{aligned}
$$

Is the set of factors of $f^{-1}(\mathrm{x})$ an Arnoux-Rauzy language?

$$
\begin{aligned}
& \text { 2-coded Fibonacci } \\
& f^{-1}(\mathrm{x})=\mathrm{vuwnvumw} .
\end{aligned}
$$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy language?

$$
\begin{array}{ll}
p_{n}=2 n+1 \\
n: & 0
\end{array} 1 \begin{array}{llllll}
\\
p_{n}: & 1 & 3 & 5 & 7 & 9 \\
\cdots
\end{array}
$$

$$
\begin{aligned}
& \text { 2-coded Fibonacci } \\
& f^{-1}(\mathrm{x})=\mathrm{vuwnvuwn} \ldots
\end{aligned}
$$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy language? No!

$$
\begin{aligned}
& p_{n}=2 n+1 \\
& n: \\
& n \\
& p_{n}:
\end{aligned} 1 \begin{array}{lllllll}
& 1 & 3 & 5 & 7 & 9 & \cdots
\end{array}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

$$
\gamma_{\mathrm{c}}=T\left(\gamma_{\mathrm{b}}\right)
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=\mathrm{ab}
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=\mathrm{aba}
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=\mathrm{abaa}
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=\mathrm{abaab}
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=\text { abaaba } \cdots
$$

Interval exchanges

The language $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange language.

Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Interval exchanges

The language $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange language.

Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Proposition

Regular interval exchange languages have factor complexity $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$.

Arnoux-Rauzy and Interval exchanges

Arnoux-Rauzy and Interval exchanges

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon$, a, $\mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}$, baa, bab, $\ldots\}$)

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1 .
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$$
\mathcal{E}(\mathrm{b})
$$

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Acyclic, connected and tree sets" (2014).]

Dendric and neutral languages

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Bifix codes and interval exchanges" (2015).]

Dendric and neutral languages

Example (neutral not dendric)

The language of the fixed point $\tau\left(\sigma^{\omega}(\mathrm{a})\right)$ is a (recurrent) neutral language but it is not dendric (not acyclic).

$$
\sigma:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{ab} \\
\mathrm{~b} \mapsto \mathrm{cda} \\
\mathrm{c} \mapsto \mathrm{~cd} \\
\mathrm{~d} \mapsto \mathrm{abc}
\end{array} \quad \tau:\left\{\begin{array}{l}
\mathrm{a} \mapsto 12 \\
\mathrm{~b} \mapsto 2 \\
\mathrm{c} \mapsto 3 \\
\mathrm{~d} \mapsto 3
\end{array}\right.\right.
$$

Planar dendric languages

Let $<_{L}$ and $<_{R}$ be two orders on \mathcal{A}.
For a language \mathcal{L} and a word $w \in \mathcal{L}$, the graph $\mathcal{E}(w)$ is compatible with $<_{L}$ and $<_{R}$ if for any $(a, b),(c, d) \in B(w)$, one has

$$
a<_{L} c \quad \Longrightarrow \quad b \leq_{R} d
$$

Example (Fibonacci, $\mathrm{b}<_{L}$ a and $\mathrm{a}<_{R} \mathrm{~b}$)

$\mathcal{E}(\mathrm{b})$

A biextendable language \mathcal{L} is a planar dendric language w.r.t. $<_{L}$ and $<_{R}$ on \mathcal{A} if for any $w \in \mathcal{L}$ the graph $\mathcal{E}(w)$ is a tree compatible with $<_{L}$ and $<_{R}$.
Planar dendric languages

Example

The Tribonacci language is not a planar dendric language. Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\quad \mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}$

Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \Longrightarrow \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$ or $\mathrm{c}<_{R} \mathrm{~b}<_{R} \mathrm{a}$

Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \Longrightarrow \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$ or $\mathrm{c}<_{R} \mathrm{~b}<_{R} \mathrm{a}$

Planar dendric languages

Example

The Tribonacci language is not a planar dendric language．
Indeed，let us consider the extension graphs of the bispecial words ε ，a and aba．

－$\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \Longrightarrow \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$

Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\underline{\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b}} \quad \Longrightarrow \quad \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$

Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $\mathrm{a}<_{L} \mathrm{c}<_{L} \mathrm{~b} \quad \Longrightarrow \quad \mathrm{~b}<_{R} \mathrm{c}<_{R} \mathrm{a}$

Planar dendric languages

Theorem [s. Ferenczi, L. Zamboni (2008)]
A set \mathcal{L} is a regular interval exchange language if and only if it is a recurrent planar dendric language.

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.

Example (Fibonacci)

```
x = abaababaabaababaababaabaababa...
```


Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.

Example (Fibonacci)

$$
x=\underbrace{a b a a}_{4} \text { ba baab aaba baababaaba abab a } \cdot \cdots
$$

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.
\triangleright Arnoux-Rauzy
\triangleright regular Interval Exchanges

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L}.
\triangleright Arnoux-Rauzy
\triangleright regular Interval Exchanges

Proposition

Uniform recurrence \Longrightarrow Recurrence.

Dendric and neutral languages

Dendric and neutral languages

- Fibonacci
- Tribonacci
- regular IE

Dendric and neutral languages

- Fibonacci
? 2-coded Fibonacci
- Tribonacci
? 2-coded Tribonacci
- regular IE
? 2-coded regular IE

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

$$
\begin{array}{ll}
\checkmark & \{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\} \\
\checkmark & \{\mathrm{aa}, \mathrm{ab}, \mathrm{bba}, \mathrm{bbb}\} \\
\checkmark & \{\mathrm{ac}, \mathrm{bcc}, \mathrm{bcbca}\}
\end{array}
$$

X \{ pivnice, pivo, pivovar \}
X \{ becherovka, beton, rovka \}
$X\{s$, slivovice, vice $\}$

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L}-maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

Example (Fibonacci)

The set $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$ is an \mathcal{L}-maximal bifix code.
It is not an \mathcal{A}^{*}-maximal bifix code, since $B \subset B \cup\{\mathrm{bb}\}$.

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L}-maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

A coding morphism for a bifix code $B \subset A^{+}$is a morphism $f: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ which maps bijectively \mathcal{B} onto B.

Example

The map $f:\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ is a coding morphism for $B=\{\mathrm{a}, \mathrm{ab}, \mathrm{ba}\}$.

$$
f:\left\{\begin{array}{l}
\mathrm{u} \mapsto \mathrm{aa} \\
\mathrm{v} \mapsto \mathrm{ab} \\
\mathrm{w} \mapsto \mathrm{ba}
\end{array}\right.
$$

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L}-maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

A coding morphism for a bifix code $B \subset A^{+}$is a morphism $f: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ which maps bijectively \mathcal{B} onto B.

Example

The map $f:\{\mathrm{u}, \mathrm{v}, \mathrm{w}\}^{*} \rightarrow\{\mathrm{a}, \mathrm{b}\}^{*}$ is a coding morphism for $B=\{\mathrm{aa}, \mathrm{ab}, \mathrm{ba}\}$.

$$
f:\left\{\begin{array}{l}
\mathrm{u} \mapsto \mathrm{aa} \\
\mathrm{v} \mapsto \mathrm{ab} \\
\mathrm{w} \mapsto \mathrm{ba}
\end{array}\right.
$$

When \mathcal{L} is factorial and B is an \mathcal{L}-maximal bifix code, the set $f^{-1}(\mathcal{L})$ is called a maximal bifix decoding of \mathcal{L}.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

The family of regular interval exchanges languages is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of recurrent dendric languages is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)]
The family of recurrent neutral languages is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of recurrent neutral languages is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci

Return words

A (right) return word to w in \mathcal{L} is a nonempty word u such that $w u \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(w)=\left\{u \in \mathcal{A}^{+} \mid w u \in \mathcal{L} \cap\left(\mathcal{A}^{+} w \backslash \mathcal{A}^{+} w \mathcal{A}^{+}\right)\right\}
$$

Example (Fibonacci)

$$
\mathcal{R}(\mathrm{b})=\{\mathrm{ab}, \mathrm{aab}\}
$$

$$
\varphi(\mathrm{a})^{\omega}=\text { abaababaabaababaababaabaababaabaab } \ldots
$$

Return words

A (right) return word to w in \mathcal{L} is a nonempty word u such that $w u \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(w)=\left\{u \in \mathcal{A}^{+} \mid w u \in \mathcal{L} \cap\left(\mathcal{A}^{+} w \backslash \mathcal{A}^{+} w \mathcal{A}^{+}\right)\right\}
$$

Example (Fibonacci)

$$
\mathcal{R}(\mathrm{aa})=\{\text { baa, babaa }\}
$$

$\varphi(\mathrm{a})^{\omega}=$ abaababaabaababaababaabaababaabaab \ldots

Cardinality of return words

Theorem [Vuillon (2001)]

Let \mathcal{L} be a Sturmian language. For every $w \in \mathcal{L}$, one has

$$
\operatorname{Card}(\mathcal{R}(w))=2
$$

Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]
Let \mathcal{L} be a recurrent neutral language. For every $w \in \mathcal{L}$, one has
$\operatorname{Card}(\mathcal{R}(w))=\operatorname{Card}(\mathcal{A})$.

Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]

Let \mathcal{L} be a. For every $w \in \mathcal{L}$, one has

$$
\operatorname{Card}(\mathcal{R}(w))=\operatorname{Card}(\mathcal{A}) .
$$

Corollary

A neutral (dendric) language is recurrent if and only if it is uniformly recurrent
Proof. A recurrent language \mathcal{L} is uniformly recurrent if and only if $\mathcal{R}(w)$ is finite for all $w \in \mathcal{L}$.

$$
\begin{aligned}
& \text { Rauzy graphs } \\
& \text { and Stallings foldings }
\end{aligned}
$$

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015),
Let \mathcal{L} be a recurrent dendric (actually just connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Rauzy graphs
 and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]
Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

> Rauzy graphs
> and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\})$

b

> Rauzy graphs
> and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\})$

b

$$
\Gamma_{\varepsilon}=\langle\mathrm{a}, \mathrm{~b}\rangle=\mathbb{F}_{\mathcal{A}}
$$

> Rauzy graphs
> and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\})$

$$
\Gamma_{\mathrm{a}}=\langle\mathrm{a}, \mathrm{ba}\rangle
$$

> Rauzy graphs
> and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\})$

$$
\Gamma_{\mathrm{ab}}=\left\langle\mathrm{a}(\mathrm{ba})^{*} \mathrm{ab}\right\rangle
$$

> Rauzy graphs
> and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

> Rauzy graphs
> and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A}. For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{aab}, \mathrm{aba}, \mathrm{baa}, \mathrm{bab}, \ldots\}$)

$$
G_{2}(\mathcal{L}) \rightsquigarrow G_{1}(\mathcal{L}) \rightsquigarrow G_{0}(\mathcal{L})
$$

The Return Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Ridone (2015)]
Let \mathcal{L} be a recurrent dendric language. For every $w \in \mathcal{L}, \mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(\mathrm{b})=\{\mathrm{ab}, \mathrm{aab}\}$ is a basis of the free group. Indeed,

$$
\begin{aligned}
& \mathrm{a}=\mathrm{aab}(\mathrm{ab})^{-1} \\
& \mathrm{~b}=\mathrm{a}^{-1} \mathrm{ab}
\end{aligned}
$$

The Return Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Ridone (2015)]
Let \mathcal{L} be a recurrent dendric language. For every $w \in \mathcal{L}, \mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(a a)=\{a a b, a a b a b\}$ is a basis of the free group. Indeed,

$$
\begin{aligned}
& \mathrm{a}=\mathrm{aab}(\mathrm{aabab})^{-1} \mathrm{aab} \\
& \mathrm{~b}=\mathrm{a}^{-1} \mathrm{a}^{-1} \mathrm{aab}
\end{aligned}
$$

Děkuji za pozornost*

*

(Dakujem za pozornosí (1)

Merci pour l'attention

