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Fibonacci

x = abaababaabaababa · · ·

x = lim
n→∞

ϕn(a) where ϕ :

{
a 7→ ab
b 7→ a
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Fibonacci

x = abaababaabaababa · · ·

The Fibonacci language (set of factors of x) is a Sturmian language.

Definition

A Sturmian language L ⊂ A∗ is a factorial set such that pn = Card (L ∩ An) = n + 1.
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2-coded Fibonacci

x = ab aa ba ba ab aa ba ba · · ·

f −1(x) = v u w w v u w w · · ·
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Arnoux-Rauzy languages

Definition

An Arnoux-Rauzy language is a factorial set closed by reversal with pn = (Card (A) −
1)n + 1 having a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point ψω(a) of the morphism ψ : a 7→ ab, b 7→ bc, c 7→ a.
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2-coded Fibonacci
f −1(x) = v u w w v u w w · · ·

Is the set of factors of f −1(x) an Arnoux-Rauzy language?

No!
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Interval exchanges

Let (Iα)α∈A and (Jα)α∈A be two partitions of [0, 1[.
An interval exchange transformation (IET) is a map T : [0, 1[→ [0, 1[ defined by

T (z) = z + yα if z ∈ Iα.

Ia Ib Ic Id

JaJb Jc Jd

T
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Interval exchanges

T is said to be minimal if for any point z ∈ [0, 1[ the orbit O(z) = {T n(z) | n ∈ Z} is
dense in [0, 1[.

T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

γb γc = T (γb)

T
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Interval exchanges

The natural coding of T relative to z ∈ [0, 1[ is the infinite word ΣT (z) = a0a1 · · · ∈ Aω
defined by

an = α if T n(z) ∈ Iα.

Example (Fibonacci, z = (3−
√

5)/2 )

a b

ab

z T (z)T 2(z) T 3(z) T 4(z)T 5(z)

T

ΣT (z) = abaaba · · ·
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Interval exchanges
The language L(T ) =

⋃
z∈[0,1[

Fac (ΣT (z)) is said a (minimal, regular) interval exchange

language.

Remark. If T is minimal, Fac (ΣT (z)) does not depend on the point z .

Example (Fibonacci)

a b

ab

T

L(T ) =
{
ε, a, b, aa, ab, ba, aab, aba, baa, bab . . .

}

Proposition

Regular interval exchange languages have factor complexity pn = (Card (A)− 1)n + 1.
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Arnoux-Rauzy and Interval exchanges

pn = (Card (A)− 1)n + 1

Sturmian
regular
Interval
Exchanges

Arnoux-Rauzy

10 / 26



Arnoux-Rauzy and Interval exchanges

pn = (Card (A)− 1)n + 1

Sturmian
regular
Interval
Exchanges

Arnoux-Rauzy

10 / 26



Extension graphs

The extension graph of a word w ∈ L is the undirected bipartite graph E(w) with
vertices L(w) t R(w) and edges B(w), where

L(w) = {u ∈ A | uw ∈ L}
R(w) = {v ∈ A |wv ∈ L}
B(w) = {(u, v) ∈ A×A | uwv ∈ L}

The multiplicity of a word w is the quantity

m(w) = Card (B(w))− Card (L(w))− Card (R(w)) + 1.

Example (Fibonacci, L = {ε, a, b, aa, ab, ba, aab, aba, baa, bab, . . .})

E(ε)

a

b

a

b

E(a)

a

b

a

b

E(b)

a a

m(a) = 3− 2− 2 + 1 = 0
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Dendric and neutral languages
Definition

A language L is called (purely) dendric if the graph E(w) is a tree for any w ∈ L.

It is
called neutral if every word w has multiplicity m(w) = 0.

Dendric

Neutral

pn = (Card (A)− 1)n + 1

Arnoux-Rauzy

Sturmregular
Interval

Exchanges
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[ Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: “Acyclic, connected and tree sets” (2014). ]
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Dendric and neutral languages

Example (neutral not dendric)

The language of the fixed point τ(σω(a)) is a (recurrent) neutral language but it is not
dendric (not acyclic).

σ :


a 7→ ab
b 7→ cda
c 7→ cd
d 7→ abc

τ :


a 7→ 12
b 7→ 2
c 7→ 3
d 7→ 3

E(ε)

1

2

3

2

3

1
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Planar dendric languages

Let <L and <R be two orders on A.
For a language L and a word w ∈ L, the graph E(w) is compatible with <L and <R if
for any (a, b), (c, d) ∈ B(w), one has

a <L c =⇒ b ≤R d .

Example (Fibonacci, b <L a and a <R b)

E(ε)

b

a

a

b

<
L

<
R

E(a)

b

a

a

b

E(b)

a a

A biextendable language L is a planar dendric language w.r.t. <L and <R on A if for
any w ∈ L the graph E(w) is a tree compatible with <L and <R .
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Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

E(ε)
a

c

b

b

c

a

E(a)

b

a

c

a

c

b

E(aba)

c

a

b

a

b

c

• a <L c <L b =⇒
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Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.
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Planar dendric languages

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set L is a regular interval exchange language if and only if it is a recurrent planar dendric
language.

<R <R

<L <L

T

a b c

ab c

E(ε)

b

c

a

a

b

c

<
L

<
R
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Recurrence and uniform recurrence

Definition

A language L is recurrent if for every u,v ∈ L there is a w ∈ L such that uwv is in L.

L is uniformly recurrent if for every u ∈ L there exists an n ∈ N such that u is a factor
of every word of length n in L.

Example (Fibonacci)

x = abaababaabaababaababaabaababa · · ·
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Definition

A language L is recurrent if for every u,v ∈ L there is a w ∈ L such that uwv is in L.

L is uniformly recurrent if for every u ∈ L there exists an n ∈ N such that u is a factor
of every word of length n in L.

. Arnoux-Rauzy

. regular Interval Exchanges

Proposition

Uniform recurrence =⇒ Recurrence.
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Dendric and neutral languages

pn = (Card (A)− 1)n + 1

Sturmian

Dendric

Neutral

Arnoux-Rauzy

Planar dendric
recurrent

• Fibonacci

• Tribonacci

• regular IE

? 2-coded Fibonacci

? 2-coded Tribonacci

? 2-coded regular IE
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Bifix codes

Definition

A bifix code is a set B ⊂ A+ of nonempty words that does not contain any proper prefix
or suffix of its elements.

A bifix code B ⊂ L is L-maximal if it is not properly contained in a bifix code C ⊂ L.

A coding morphism for a bifix code B ⊂ A+ is a morphism f : B∗ → A∗ which maps
bijectively B onto B.

Example

X {aa, ab, ba}

X {aa, ab, bba, bbb}

X {ac, bcc, bcbca}

7 { pivnice, pivo, pivovar }
7 { becherovka, beton, rovka }
7 { s, slivovice, vice }

When L is factorial and B is an L-maximal bifix code, the set f −1(L) is called a
maximal bifix decoding of L.
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bijectively B onto B.

Example (Fibonacci)

The set B = {aa, ab, ba} is an L-maximal bifix code.
It is not an A∗-maximal bifix code, since B ⊂ B ∪ {bb}.
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b
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b
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Example

The map f : {u, v, w}∗ → {a, b}∗ is a coding morphism for B = {aa, ab, ba}.
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Maximal bifix decoding
Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

The family of regular interval exchanges languages is closed under maximal bifix decoding.

Sturm

dendric

neutral

Arnoux-Rauzy

regular
interval
exchanges

• Fibonacci
• 2-coded Fibonacci

• Tribonacci
• 2-coded Tribonacci
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Maximal bifix decoding
Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]
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Maximal bifix decoding
Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)]
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Maximal bifix decoding
Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of recurrent neutral languages is closed under maximal bifix decoding.
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Return words

A (right) return word to w in L is a nonempty word u such that wu ∈ L starts and ends
with w but has no w as an internal factor. Formally,

R(w) = {u ∈ A+ |wu ∈ L ∩
(
A+w \ A+wA+)}

Example (Fibonacci)

R(b) = {ab, aab}

ϕ(a)ω = abaababaabaababaababaabaababaabaab · · ·
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with w but has no w as an internal factor. Formally,

R(w) = {u ∈ A+ |wu ∈ L ∩
(
A+w \ A+wA+)}

Example (Fibonacci)

R(aa) = {baa, babaa}

ϕ(a)ω = abaababaabaababaababaabaababaabaab · · ·

22 / 26



Cardinality of return words

Theorem [Vuillon (2001)]

Let L be a Sturmian language. For every w ∈ L, one has

Card (R(w)) = 2.

Corollary

A neutral (dendric) language is recurrent if and only if it is uniformly recurrent

Proof. A recurrent language L is uniformly recurrent if and only if R(w) is finite for all
w ∈ L.
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Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]

Let L be a recurrent neutral language. For every w ∈ L, one has

Card (R(w)) = Card (A) .

Corollary

A neutral (dendric) language is recurrent if and only if it is uniformly recurrent

Proof. A recurrent language L is uniformly recurrent if and only if R(w) is finite for all
w ∈ L.

23 / 26



Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]

Let L be a . For every w ∈ L, one has
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Rauzy graphs
and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015),

Goulet-Ouellet (2021)

]

Let L be a recurrent dendric (actually just

suffix-

connected) language containing the
alphabet A. For any w ∈ L, the set R(w) generates the free group FA.

Example (Fibonacci, L = {ε, a, b, aa, ab, ba, aab, aba, baa, bab, . . .})

ε a b aa

ab

ba
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The Return Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Ridone (2015) ]

Let L be a recurrent dendric language. For every w ∈ L, R(w) is a basis of the free
group FA.

Example (Fibonacci)

The set R(b) = {ab, aab} is a basis of the free group. Indeed,

a = aab (ab)−1

b = a−1 ab
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Let L be a recurrent dendric language. For every w ∈ L, R(w) is a basis of the free
group FA.

Example (Fibonacci)

The set R(aa) = {aab, aabab} is a basis of the free group. Indeed,
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