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Fibonacct

X = abaababaabaababa: - -




Fibonaccr

X = abaababaabaababa - - -

The Fibonacci language (set of factors of x) is a Sturmian language.

Definition

A Sturmian language £ C A* is a factorial set such that p, = Card (LN A") = n+ 1.
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2-coded Fibonacci

X = ab aa ba baabaababa ---
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2-coded Fibonacci

X = ab aa ba ba ab aa ba ba ---
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2-coded Fibonacci

X = ab aa ba ba ab aa ba ba ---

f_l(x): VUWWVUWW -+

u +— aa
f:¢ v +— ab

w +— ba
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2-coded Fibonacci

X = ab aa ba ba ab aa ba ba

f_l(x): VUWWVUWW



Arnouz-Rauzy languages

Definition

An Arnoux-Rauzy language is a factorial set closed by reversal with p, = (Card (A) —
1)n+ 1 having a unique right special factor for each length.
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Arnouz-Rauzy languages

Definition

An Arnoux-Rauzy language is a factorial set closed by reversal with p, = (Card (A) —
1)n+ 1 having a unique right special factor for each length.

|

Example (Tribonacci)

Factors of the fixed point )“(a) of the morphism ¢ :a+s ab, b bc, c+— a.

n: 0 1 2 3
pn: 1 3 5 7
pn=2n+1
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2-coded Fibonacci

FIx)= vuowwvuww ---

Is the set of factors of f~*(x) an Arnoux-Rauzy language?
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2-coded Fibonacct
Flx)= vuwwvu

Is the set of factors of f~*(x) an Arnoux-Rauzy language?

pn=2n+1
n: 0 1 2 3 4
pn: 1 3 5 7 9
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2-coded Fibonacct
Flx)= vuwwvu

Is the set of factors of f~*(x) an Arnoux-Rauzy language? No!

pn=2n+1
n: 0 1 2 3 4
pn: 1 3 5 7 9
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Interval exchanges

Let (/a)aca and (Ja)aca be two partitions of [0, 1.
An interval exchange transformation (IET) is a map T : [0, 1[— [0, 1] defined by

T(z)=z+y. ifz€l,.

Ia /b lc ld
O Q@ O Q@ O

; M \
O O { O O

Jb Jc Ja Jd
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Interval exchanges

Let (/a)aca and (Ja)aca be two partitions of [0, 1.
An interval exchange transformation (IET) is a map T : [0, 1[— [0, 1] defined by
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Interval exchanges

Let (/a)aca and (Ja)aca be two partitions of [0, 1.
An interval exchange transformation (IET) is a map T : [0, 1[— [0, 1] defined by

T(z)=z+y. ifzel,.

Ia /b lc ld
@ @ O @ o0
@ O L @ Q==
Jb Jc Ja Jd
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Interval exchanges

T is said to be minimal if for any point z € [0, 1] the orbit O(z) = {T"(z) |n € Z} is
dense in [0, 1].

T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]
A regular interval exchange transformation is minimal.
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Interval exchanges

T is said to be minimal if for any point z € [0, 1] the orbit O(z) = {T"(z) |n € Z} is
dense in [0, 1].

T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

7/26



Interval exchanges
defined by

an =

The natural coding of T relative to z € [0, 1] is the infinite word X 7(z) = apa; - - - € A”
if T"(2) € I

Example (Fibonacci, z = (3 — v/5)/2 )

A a
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Interval exchanges
defined by

an =

The natural coding of T relative to z € [0, 1] is the infinite word X 7(z) = apa; - - - € A”
if T"(2) € I

Example (Fibonacci, z = (3 — v/5)/2 )

o Z
@ &
T(

Yr(z)=a
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Interval exchanges
defined by

an =

The natural coding of T relative to z € [0, 1] is the infinite word X 7(z) = apa; - - - € A”

if T'(2) € .

Example (Fibonacci, z = (3 — v/5)/2 )

a’? T(z)b
O ® O O
T ( \\I
O O
b a
Y7(z) =ab
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Interval exchanges
defined by

an=a if T"(2) € l..

Example (Fibonacci, z = (3 — v/5)/2 )

The natural coding of T relative to z € [0, 1] is the infinite word X 7(z) = apa; - - - € A”

T(2) a T(2)y
@ 4 @ ® O
o S
@ @ O
b a
Y 7(z) = aba
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Interval exchanges
defined by

an =

The natural coding of T relative to z € [0, 1] is the infinite word X 7(z) = apa; - - - € A”

if T'(2) € .

Example (Fibonacci, z = (3 — v/5)/2 )

T(2) a T(2) b
@ ® ® O
T ( \I
O
b a
Y 7(z) = abaa
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Interval exchanges
defined by

an =

The natural coding of T relative to z € [0, 1] is the infinite word X 7(z) = apa; - - - € A”

if T'(2) € .

Example (Fibonacci, z = (3 — v/5)/2 )

a T(2)
o S}
r
o

b T4(Z)
@
b

\T

a

Y 7(z) = abaab

8 /26



Interval exchanges
defined by

an =

The natural coding of T relative to z € [0, 1] is the infinite word X 7(z) = apa; - - - € A”

if T'(2) € .

Example (Fibonacci, z = (3 — v/5)/2 )

T°(2) 4 b TH2)
@ ® O o O
A .
O @ O
b a
Y 7(z) = abaaba- - -
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Interval exchanges
The language £(T) = U Fac (X7(z)) is said a (minimal, regular) interval exchange
z€[0,1]
language.

Example (Fibonacci)

A a

Remark. If T is minimal, Fac (X1(z)) does not depend on the point z.

b
@
b

O
L(T) = {E, a,b, aa,ab, ba, aab, aba, baa, bab }
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Interval exchanges

The language £(T) = U Fac (X7(z)) is said a (minimal, regular) interval exchange
z€[0,1]
language.

Remark. If T is minimal, Fac (X1(z)) does not depend on the point z.
Example (Fibonacci)

h —

® O
b

L(T) = {5, a,b, aa,ab, ba, aab, aba, baa, bab }

Proposition

Regular interval exchange languages have factor complexity p, = (Card (A) — 1)n + 1.
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Arnouz-Rauzy and Interval exchanges

pn = (Card (A) — 1)n+1

Arnoux-Rauzy

regular
Interval
Exchanges
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Arnouz-Rauzy and Interval exchanges

pn = (Card (A) — 1)n+1

Arnoux-Rauzy

regular
Interval
Exchanges
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Extension graphs

The extension graph of a word w € L is the undirected bipartite graph £(w) with
vertices L(w) U R(w) and edges B(w), where

Lw) = {ueAluwe L}
R(w) {veAlwv e L}
B(w) {(u,v) e Ax Aluwv € L}

Example (Fibonacci, £ = {¢, a, b, aa, ab, ba, aab, aba, baa, bab, . . .})
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Extension graphs

The extension graph of a word w € L is the undirected bipartite graph £(w) with
vertices L(w) U R(w) and edges B(w), where

Lw) = {veAluwe L}
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Extension graphs

The extension graph of a word w € L is the undirected bipartite graph £(w) with
vertices L(w) U R(w) and edges B(w), where

Lw) = {ueAluwe L}
R(w) {veAlwv e L}
B(w) {(u,v) e Ax Aluwv € L}
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Extension graphs

The extension graph of a word w € L is the undirected bipartite graph £(w) with
vertices L(w) U R(w) and edges B(w), where

Lw) = {ueAluwe L}
R(w) = {veAlwvelLl}
B(w) = {(u,v)e Ax Aluwv € L}

The multiplicity of a word w is the quantity

m(w) = Card (B(w)) — Card (L(w)) — Card (R(w)) + 1.

Example (Fibonacci, £ = {¢, a, b, aa, ab, ba, aab, aba, baa, bab, . . .})

) £(a) £(v)
G @) @
0 @ GAO ma)=3—-2—-2+1=0






Dendric and neutral languages

Definition

A language L is called (purely) dendric if the graph £(w) is a tree for any w € L.
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Dendric and neutral languages

Definition

A language L is called (purely) dendric if the graph £(w) is a tree for any w € L.
called neutral if every word w has multiplicity m(w) = 0.

Pn = (Card (A) —1)n+ 1T

Arnoux-Rauz,

[ Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: “Acyclic, connected and tree sets” (2014). ]
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Dendric and neutral languages

Definition

A language L is called (purely) dendric if the graph £(w) is a tree for any w € L.
called neutral if every word w has multiplicity m(w) = 0.

Pn = (Card (A) —1)n+ 1T

regular
Interval
Exchanges

[ Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: “Bifix codes and interval exchanges” (2015). ]
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Dendric and neutral languages

Example (neutral not dendric)

The language of the fixed point 7(c“(a)) is a (recurrent) neutral language but it is not
dendric (not acyclic).

a+— ab ar— 12
b — cda b— 2
o 7S
c—cd c—3
d — abc d— 3
£(e)
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Planar dendric languages
Let <, and <, be two orders on A.

For a language £ and a word w € L, the graph £(w) is compatible with <, and <, if
for any (a, b), (¢, d) € B(w), one has

a<, c

— b<,d

Example (Fibonacci, b <, a and a < b)

£(a) £()
© ®) ©

A 2
@ O

@ ®)

A biextendable language L is a planar dendric language w.r.t. <, and <, on A if for
any w € L the graph £(w) is a tree compatible with <, and <.



Planar dendric languages
Example

The Tribonacci language is not a planar dendric language.

Indeed, let us consider the extension graphs of the bispecial words ¢, a and aba

E(e) E(a) E(aba)

@) ® @ © @
© © @ © @ ®
®© ) © ® ® ©
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Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ¢, a and aba.

E(e) E(a E(aba)

e a<, c<, b

A 8(6) E(e) 8(5)@ 8(5)@ 8(6)@ S(E)O
= A= @ b) (a b) (a c) (a g
O O & ©©0—0 @ oo——
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Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ¢, a and aba.
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Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.

Indeed, let us consider the extension graphs of the bispecial words ¢, a and aba.

e a c<< b = b<pc<ga or c<b<a

&(a) &(a)
—X) OPO.
OO O=0)
F— F—®

16 / 26



Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ¢, a and aba.

E(e) E(a) E(aba)
O ® &—® &0
© © @ © @ ®)
® @) © ®) ® ©
e a c<< b = b<pc<pa
&(a) &(a)

B—b) OO

O ) O

O, - @ O, ; @
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Planar dendric languages

Example

The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ¢, a and aba.

E(e) E(a) E(aba)

@) ® (®) @ @ @

© © @ © (@ ®

® @) © ®) ® ©

e a c<< b = b<pc<pa

E(aba)
@ _®
OvO
® @
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Planar dendric languages

Example
The Tribonacci language is not a planar dendric language.
Indeed, let us consider the extension graphs of the bispecial words ¢, a and aba.
E(e) E(a) E(aba)
O ® 0@ O
© © @ © @ O
O—® o0—® O—
e a< c<g b =4 b<pc<pa £
E(aba)
@ _®
‘311.-"3
OGO
v
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A set L is a regular interval exchange language if and only if it is a recurrent planar dendric
language.

17 /26



Recurrence and uniform recurrence

Definition

A language L is recurrent if for every u,v € L there is a w € L such that uwv is in L.

Example (Fibonacci)

X = abaababaabaababaababaabaababa - - -

18 / 26



Recurrence and uniform recurrence

Definition
A language L is recurrent if for every u,v € L there is a w € L such that uwv is in L.

L is uniformly recurrent if for every u € L there exists an n € N such that v is a factor
of every word of length nin L.

Example (Fibonacci)

X = abaababaab aaba baababaabaababa- - -
4 4 4 4
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Recurrence and uniform recurrence

Definition
A language L is recurrent if for every u,v € L there is a w € L such that uwv is in L.

L is uniformly recurrent if for every u € L there exists an n € N such that v is a factor
of every word of length nin L.

> Arnoux-Rauzy

> regular Interval Exchanges
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Recurrence and uniform recurrence

Definition

A language L is recurrent if for every u,v € L there is a w € L such that uwv is in L.

L is uniformly recurrent if for every u € L there exists an n € N such that v is a factor
of every word of length nin L.

> Arnoux-Rauzy

> regular Interval Exchanges

Proposition
Uniform recurrence = Recurrence.
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Dendric and neutral languages

pn=(Card(A) —1)n+1

Planar dendric
recurrent
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Dendric and neutral languages

pn=(Card(A) —1)n+1

e Fibonacci

Planar dendric

recurrent e Tribonacci

e regular |IE
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Dendric and neutral languages

pn=(Card(A) —1)n+1

e Fibonacci

? 2-coded Fibonacci

Planar dendric
recurrent

e Tribonacci

? 2-coded Tribonacci

e regular IE

? 2-coded regular IE
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Bifix codes

Definition

A bifix code is a set B C A" of nonempty words that does not contain any proper prefix
or suffix of its elements.

v {aa,ab,ba} X { pivnice, pivo, pivovar }
v/ {aa, ab,bba, bbb} X { becherovka, beton, rovka }
v {ac,bcc,bebea} X { s, slivovice, vice }
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Bifix codes

Definition

A bifix code is a set B C A" of nonempty words that does not contain any proper prefix
or suffix of its elements.

A bifix code B C L is £-maximal if it is not properly contained in a bifix code C C L.

Example (Fibonacci)

The set B = {aa, ab,ba} is an £-maximal bifix code.
It is not an A"-maximal bifix code, since B C BU {bb}.
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Bifix codes

Definition
A bifix code is a set B C A" of nonempty words that does not contain any proper prefix
or suffix of its elements.

A bifix code B C L is £-maximal if it is not properly contained in a bifix code C C L.

A coding morphism for a bifix code B C A" is a morphism f : B* — A* which maps
bijectively B onto B.

The map f: {u,v,w}” — {a,b}" is a coding morphism for B = {aa, ab, ba}.

u— aa
f: v — ab
w — ba
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Bifix codes

Definition
A bifix code is a set B C A" of nonempty words that does not contain any proper prefix
or suffix of its elements.

A bifix code B C L is £-maximal if it is not properly contained in a bifix code C C L.

A coding morphism for a bifix code B C A" is a morphism f : B* — A* which maps
bijectively B onto B.

The map f: {u,v,w}” — {a,b}" is a coding morphism for B = {aa, ab, ba}.

u— aa
f: v — ab
w — ba

When L is factorial and B is an £-maximal bifix code, the set (L) is called a
maximal bifix decoding of L.
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Mazimal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

The family of regular interval exchanges languages is closed under maximal bifix decoding.

neutral

dendric

regular
interval
exchanges
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Mazimal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of recurrent dendric languages is closed under maximal bifix decoding.

neutral

regular
interval
exchanges
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Mazximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)]

The family of recurrent neutral languages is closed under maximal bifix decoding.

regular

interval

exchanges
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Mazximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of recurrent neutral languages is closed under maximal bifix decoding.

e Fibonacci

e 2-coded Fibonacci
regular e Tribonacci

interval

exchanges e 2-coded Tribonacci

o>
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Return words
A (right) return word to w in L is a nonempty word u such that wu € L starts and ends
with w but has no w as an internal factor. Formally,

R(w)={uve A" [wueLn (ATw\ A wA")}
Example (Fibonacci)

R(b) = {ab, aab}

p(a)” = abaababaabaababaababaabaababaabaab - - -

Dac
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Return words
A (right) return word to w in L is a nonempty word u such that wu € L starts and ends
with w but has no w as an internal factor. Formally,

R(w)={uec A" [wue Ln (ATw\ A wA")}

Example (Fibonacci)

R(aa) = {baa, babaa}

p(a)” = abaababaabaababaababaabaababaabaab - - -

Dac
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Cardinality of return words

Theorem [Vuillon (2001)]

Let £ be a Sturmian language. For every w € L, one has

Card (R(w)) = 2.
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Cardinality of return words

Theorem [Vuillon (2001); Balkové, Pelantovs, Steiner (2008)]

Let £ be a recurrent neutral language. For every w € L, one has

Card (R(w)) = Card (A).
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Theorem [Vuillon (2001); Balkové, Pelantovs, Steiner (2008)]

Let £ be a . For every w € L, one has

Card (R(w)) = Card (A).

A neutral (dendric) language is recurrent if and only if it is uniformly recurrent

Proof. A recurrent language £ is uniformly recurrent if and only if R(w) is finite for all
weEL.

23 /26



Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015),

Let £ be a recurrent dendric (actually just connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.
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Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let £ be a recurrent dendric (actually just suffix-connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.
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Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let £ be a recurrent dendric (actually just suffix-connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.

V.

Example (Fibonacci, £ = {¢, a,b, aa, ab, ba, aab, aba, baa, bab, . ..})
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Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let £ be a recurrent dendric (actually just suffix-connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.

V.

Example (Fibonacci, £ = {¢, a,b, aa, ab, ba, aab, aba, baa, bab, . ..})

M- =(a,b) =F4
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Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let £ be a recurrent dendric (actually just suffix-connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.

V.

Example (Fibonacci, £ = {¢, a,b, aa, ab, ba, aab, aba, baa, bab, . ..})

. = (a,ba)
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Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let £ be a recurrent dendric (actually just suffix-connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.

V.

Example (Fibonacci, £ = {¢, a,b, aa, ab, ba, aab, aba, baa, bab, . ..})

I = (a(ba)*ab)
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Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let £ be a recurrent dendric (actually just suffix-connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.

V.

Example (Fibonacci, £ = {¢, a,b, aa, ab, ba, aab, aba, baa, bab, . ..})

G2(L) ~ Gi(L)
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Rauzy graphs

and Stallings foldings

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let £ be a recurrent dendric (actually just suffix-connected) language containing the
alphabet A. For any w € L, the set R(w) generates the free group F 4.

V.

Example (Fibonacci, £ = {¢, a,b, aa, ab, ba, aab, aba, baa, bab, . ..})

G2(L) ~ Gi(L) ~ Go(L)
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The Return Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Ridone (2015) ]

Let £ be a recurrent dendric language. For every w € L, R(w) is a basis of the free
group F 4.

Example (Fibonacci)

The set R(b) = {ab, aab} is a basis of the free group. Indeed,
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The Return Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Ridone (2015) ]

Let £ be a recurrent dendric language. For every w € L, R(w) is a basis of the free
group F 4.

Example (Fibonacci)

The set R(aa) = {aab, aabab} is a basis of the free group. Indeed,

aab (aabab) ' aab
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