Dendric languages and return words

Francesco Dolce

Konference TIGR CoW 2021

Telč, 27. června 2021

Fibonacci

 $x = abaababaabaababa \cdots$

$$\mathbf{x} = \lim_{\mathbf{n} \to \infty} \varphi^{\mathbf{n}}(\mathbf{a})$$
 where $\varphi : \left\{ egin{array}{l} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} \right.$

$$\varphi: \left\{ \begin{array}{l} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} \right.$$

Fibonacci

 $x = abaababaabaabaaba \cdots$

The Fibonacci language (set of factors of x) is a Sturmian language.

Definition

A Sturmian language $\mathcal{L} \subset \mathcal{A}^*$ is a factorial set such that $p_n = \mathsf{Card}\left(\mathcal{L} \cap \mathcal{A}^n\right) = n+1$.

 $\mathbf{x} = \mathbf{a}\mathbf{b}$ aa ba ba ba ab aa ba ba \cdots

 $\mathbf{x} = \mathbf{ab} \; \mathbf{aa} \; \mathbf{ba} \; \mathbf{ba} \; \mathbf{ab} \; \mathbf{aa} \; \mathbf{ba} \; \mathbf{ba} \; \cdots$

$$f: \left\{ \begin{array}{ccc} \mathbf{u} & \mapsto & \mathbf{a}\mathbf{a} \\ \mathbf{v} & \mapsto & \mathbf{a}\mathbf{b} \\ \mathbf{w} & \mapsto & \mathbf{b}\mathbf{a} \end{array} \right.$$

$$f: \left\{ \begin{array}{ccc} \mathbf{u} & \mapsto & \mathbf{a}\mathbf{a} \\ \mathbf{v} & \mapsto & \mathbf{a}\mathbf{b} \\ \mathbf{w} & \mapsto & \mathbf{b}\mathbf{a} \end{array} \right.$$

Arnoux-Rauzy languages

Definition

An Arnoux-Rauzy language is a factorial set closed by reversal with $p_n = (Card(A) - 1)n + 1$ having a unique right special factor for each length.

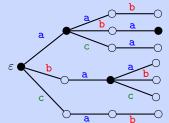
Arnoux-Rauzy languages

Definition

An Arnoux-Rauzy language is a factorial set closed by reversal with $p_n = (Card(A) - 1)n + 1$ having a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\psi^{\omega}(\mathbf{a})$ of the morphism



$$\psi: \mathbf{a} \mapsto \mathbf{ab}, \quad \mathbf{b} \mapsto \mathbf{bc}, \quad \mathbf{c} \mapsto \mathbf{a}.$$

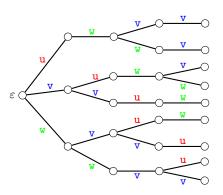
$$p_n = 2n + 1$$

$$f^{-1}(x) = v u w w v u w w \cdots$$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy language?

$$f^{-1}(\mathbf{x}) = \mathbf{v} \mathbf{u} \mathbf{w} \mathbf{v} \mathbf{u} \mathbf{w} \mathbf{w} \cdots$$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy language?



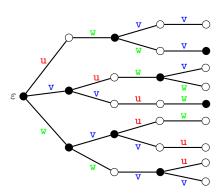
$$p_n=2n+1$$

$$n: 0 1 2 3 4 \cdots$$

 $n_0: 1 3 5 7 9 \cdots$

$$f^{-1}(\mathbf{x}) = \mathbf{v} \mathbf{u} \mathbf{w} \mathbf{v} \mathbf{u} \mathbf{w} \mathbf{w} \cdots$$

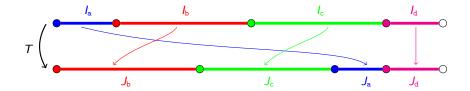
Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy language? No!

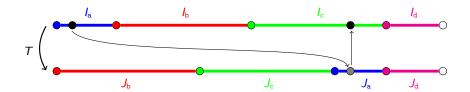


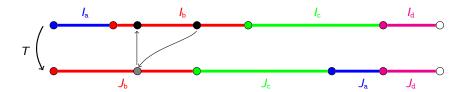
$$p_n = 2n + 1$$

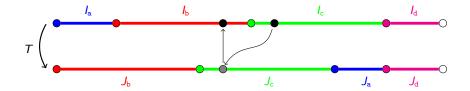
 $n: 0 1 2 3 4 \cdots$ $n_0: 1 3 5 7 9 \cdots$

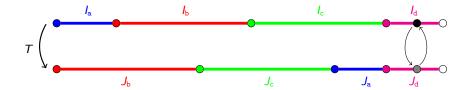
$$T(z) = z + y_{\alpha}$$
 if $z \in I_{\alpha}$.











T is said to be *minimal* if for any point $z \in [0,1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0,1[.

T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

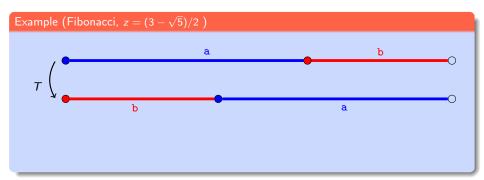
T is said to be *minimal* if for any point $z \in [0,1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0,1[.

T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

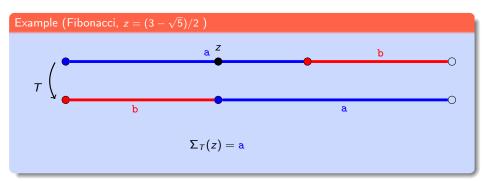
Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

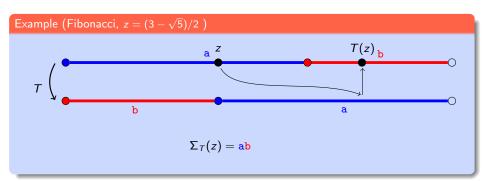
$$a_n = \alpha$$
 if $T^n(z) \in I_{\alpha}$.



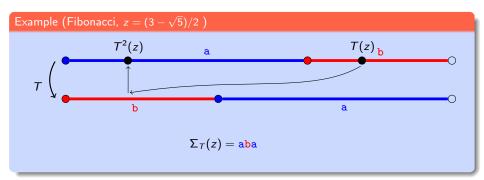
$$a_n = \alpha$$
 if $T^n(z) \in I_\alpha$.



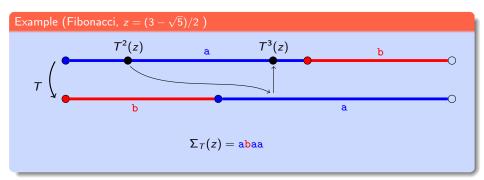
$$a_n = \alpha$$
 if $T^n(z) \in I_\alpha$.



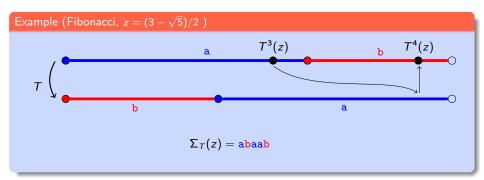
$$a_n = \alpha$$
 if $T^n(z) \in I_\alpha$.



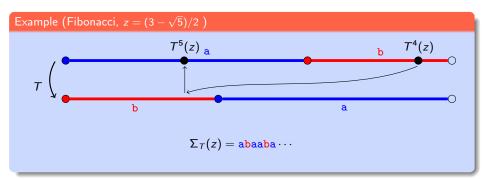
$$a_n = \alpha$$
 if $T^n(z) \in I_{\alpha}$.



$$a_n = \alpha$$
 if $T^n(z) \in I_\alpha$.

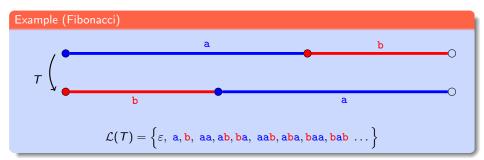


$$a_n = \alpha$$
 if $T^n(z) \in I_\alpha$.



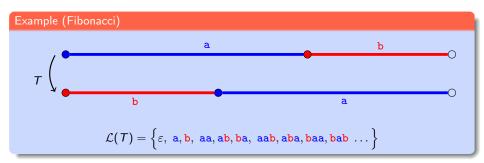
The language $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \mathsf{Fac} (\Sigma_T(z)) \text{ is said a (minimal, regular) interval exchange language.}$

Remark. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.



The language $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \mathsf{Fac} (\Sigma_T(z))$ is said a (minimal, regular) interval exchange language.

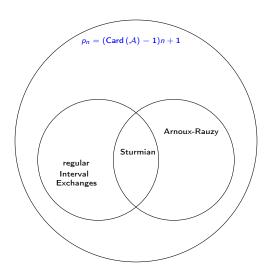
Remark. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.



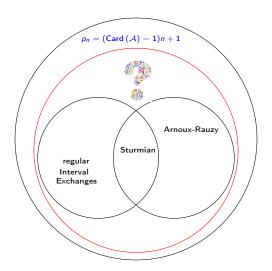
Proposition

Regular interval exchange languages have factor complexity $p_n = (\text{Card}(A) - 1)n + 1$.

Arnoux-Rauzy and Interval exchanges



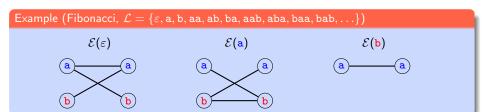
Arnoux-Rauzy and Interval exchanges



$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

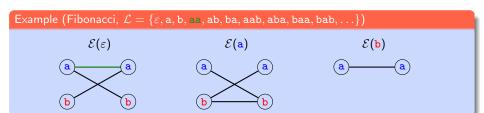
$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$



$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

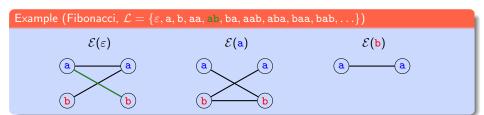
$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$



$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

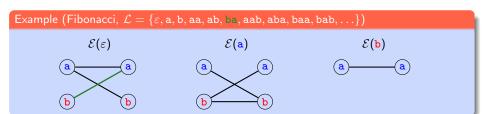
$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$



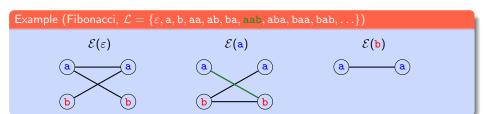
$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$



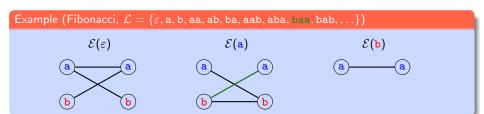
$$\begin{array}{lcl} L(\boldsymbol{w}) & = & \{u \in \mathcal{A} \mid u\boldsymbol{w} \in \mathcal{L}\} \\ R(\boldsymbol{w}) & = & \{v \in \mathcal{A} \mid \boldsymbol{w}v \in \mathcal{L}\} \\ B(\boldsymbol{w}) & = & \{(u,v) \in \mathcal{A} \times \mathcal{A} \mid u\boldsymbol{w}v \in \mathcal{L}\} \end{array}$$



$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$



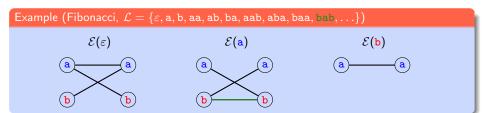
Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$



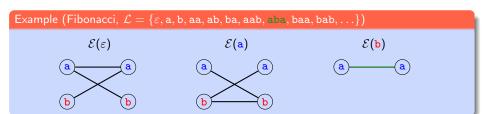
Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$



Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

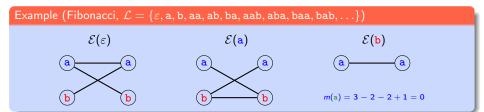
$$L(w) = \{u \in \mathcal{A} \mid uw \in \mathcal{L}\}$$

$$R(w) = \{v \in \mathcal{A} \mid wv \in \mathcal{L}\}$$

$$B(w) = \{(u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L}\}$$

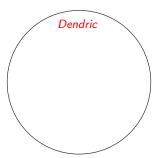
The multiplicity of a word w is the quantity

$$m(\mathbf{w}) = \operatorname{Card}(B(\mathbf{w})) - \operatorname{Card}(L(\mathbf{w})) - \operatorname{Card}(R(\mathbf{w})) + 1.$$



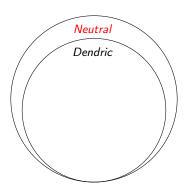
Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.



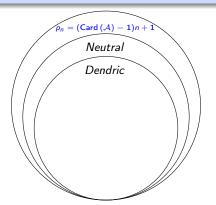
Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.



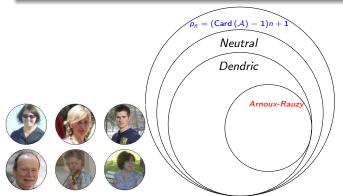
Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.



Definition

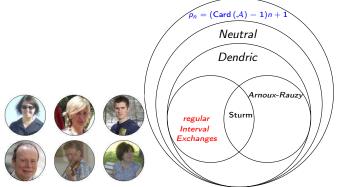
A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.



Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Acyclic, connected and tree sets" (2014).

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

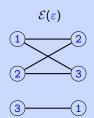


Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Bifix codes and interval exchanges" (2015).

Example (neutral not dendric)

The language of the fixed point $\tau(\sigma^{\omega}(a))$ is a (recurrent) neutral language but it is not dendric (not acyclic).

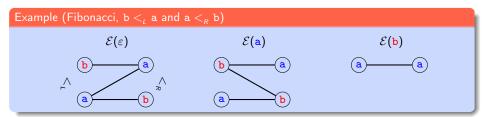
$$\sigma: \left\{ \begin{array}{l} \mathtt{a} \mapsto \mathtt{a} \mathtt{b} \\ \mathtt{b} \mapsto \mathtt{c} \mathtt{d} \mathtt{a} \\ \mathtt{c} \mapsto \mathtt{c} \mathtt{d} \\ \mathtt{d} \mapsto \mathtt{a} \mathtt{b} \mathtt{c} \end{array} \right. \quad \tau: \left\{ \begin{array}{l} \mathtt{a} \mapsto 12 \\ \mathtt{b} \mapsto 2 \\ \mathtt{c} \mapsto 3 \\ \mathtt{d} \mapsto 3 \end{array} \right.$$



Let $<_L$ and $<_R$ be two orders on \mathcal{A} .

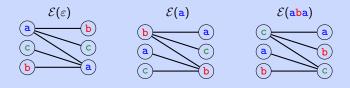
For a language \mathcal{L} and a word $w \in \mathcal{L}$, the graph $\mathcal{E}(w)$ is *compatible* with $<_{L}$ and $<_{R}$ if for any $(a,b),(c,d) \in \mathcal{B}(w)$, one has

$$a <_{L} c \implies b \leq_{R} d$$
.



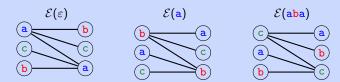
A biextendable language \mathcal{L} is a planar dendric language w.r.t. $<_L$ and $<_R$ on \mathcal{A} if for any $w \in \mathcal{L}$ the graph $\mathcal{E}(w)$ is a tree compatible with $<_L$ and $<_R$.

Example

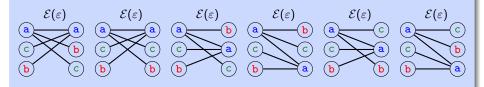


Example

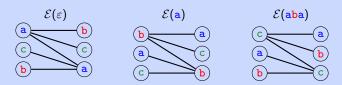
The *Tribonacci language* is <u>not</u> a planar dendric language. Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

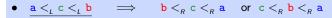


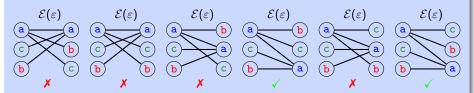
• **a** <_ c <_ **b**



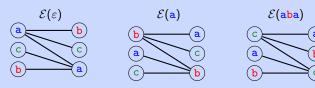
Example

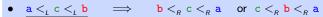


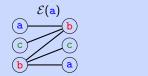




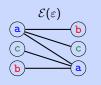
Example





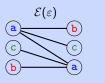


Example



•
$$\mathbf{a} <_{L} \mathbf{c} <_{L} \mathbf{b}$$

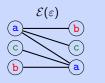
$$\mathbf{b} <_R \mathbf{c} <_R \mathbf{a}$$



•
$$\mathbf{a} <_L \mathbf{c} <_L \mathbf{b}$$

$$\mathbf{b} <_R \mathbf{c} <_R \mathbf{a}$$

Example

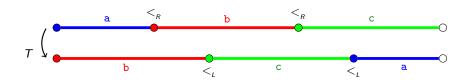


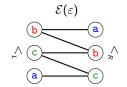
•
$$\mathbf{a} <_L \mathbf{c} <_L \mathbf{b}$$

$$\mathbf{b} <_R \mathbf{c} <_R \mathbf{a}$$

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set \mathcal{L} is a regular interval exchange language if and only if it is a recurrent planar dendric language.





Definition

A language \mathcal{L} is recurrent if for every $\mathbf{u}, \mathbf{v} \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $\mathbf{u} w \mathbf{v}$ is in \mathcal{L} .

Example (Fibonacci)

Definition

A language \mathcal{L} is recurrent if for every $\mathbf{u}, \mathbf{v} \in \mathcal{L}$ there is a $\mathbf{w} \in \mathcal{L}$ such that $\mathbf{u} \mathbf{w} \mathbf{v}$ is in \mathcal{L} .

 \mathcal{L} is *uniformly recurrent* if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L} .

Example (Fibonacci)

$$x =$$
abaa ba baab aaba baababaaba abab a \cdots

Definition

A language \mathcal{L} is recurrent if for every $\mathbf{u}, \mathbf{v} \in \mathcal{L}$ there is a $\mathbf{w} \in \mathcal{L}$ such that $\mathbf{u} \mathbf{w} \mathbf{v}$ is in \mathcal{L} .

 \mathcal{L} is uniformly recurrent if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L} .

- Arnoux-Rauzy
- regular Interval Exchanges

Definition

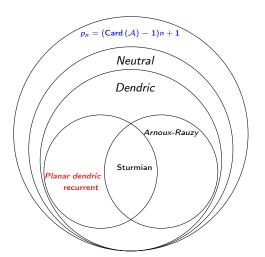
A language \mathcal{L} is recurrent if for every $\mathbf{u}, \mathbf{v} \in \mathcal{L}$ there is a $\mathbf{w} \in \mathcal{L}$ such that $\mathbf{u} \mathbf{w} \mathbf{v}$ is in \mathcal{L} .

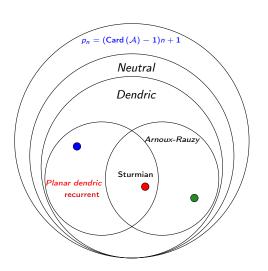
 \mathcal{L} is *uniformly recurrent* if for every $u \in \mathcal{L}$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in \mathcal{L} .

- Arnoux-Rauzy
- regular Interval Exchanges

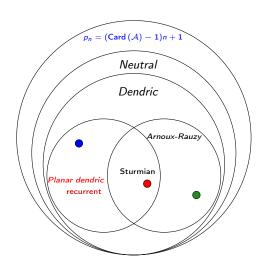
Proposition

Uniform recurrence \implies Recurrence.





- Fibonacci
- Tribonacci
- regular IE



- Fibonacci
- ? 2-coded Fibonacci
- Tribonacci
- ? 2-coded Tribonacci
- regular IE
- ? 2-coded regular IE

Definition

A *bifix code* is a set $B \subset \mathcal{A}^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

- √ {aa, ab, ba}
- √ {aa, ab, bba, bbb}
- √ {ac,bcc,bcbca}

- X { pivnice, pivo, pivovar }
- X { s, slivovice, vice }

Definition

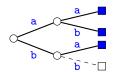
A *bifix code* is a set $B \subset \mathcal{A}^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

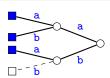
A bifix code $B \subset \mathcal{L}$ is \mathcal{L} -maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

Example (Fibonacci)

The set $B = \{aa, ab, ba\}$ is an \mathcal{L} -maximal bifix code.

It is not an \mathcal{A}^* -maximal bifix code, since $B \subset B \cup \{bb\}$.





Definition

A *bifix code* is a set $B \subset \mathcal{A}^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L} -maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

A coding morphism for a bifix code $B \subset A^+$ is a morphism $f : \mathcal{B}^* \to \mathcal{A}^*$ which maps bijectively \mathcal{B} onto B.

Example

The map $f : \{u, v, w\}^* \to \{a, b\}^*$ is a coding morphism for $B = \{aa, ab, ba\}$.

$$f: \left\{ \begin{array}{l} \mathbf{u} \mapsto \mathbf{a}\mathbf{a} \\ \mathbf{v} \mapsto \mathbf{a}\mathbf{b} \\ \mathbf{w} \mapsto \mathbf{b}\mathbf{a} \end{array} \right.$$

Definition

A *bifix code* is a set $B \subset \mathcal{A}^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset \mathcal{L}$ is \mathcal{L} -maximal if it is not properly contained in a bifix code $C \subset \mathcal{L}$.

A coding morphism for a bifix code $B \subset A^+$ is a morphism $f : \mathcal{B}^* \to \mathcal{A}^*$ which maps bijectively \mathcal{B} onto B.

Example

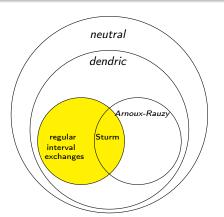
The map $f: \{u, v, w\}^* \to \{a, b\}^*$ is a coding morphism for $B = \{aa, ab, ba\}$.

$$f: \left\{ \begin{array}{l} \mathbf{u} \mapsto \mathbf{a}\mathbf{a} \\ \mathbf{v} \mapsto \mathbf{a}\mathbf{b} \\ \mathbf{w} \mapsto \mathbf{b}\mathbf{a} \end{array} \right.$$

When \mathcal{L} is factorial and B is an \mathcal{L} -maximal bifix code, the set $f^{-1}(\mathcal{L})$ is called a maximal bifix decoding of \mathcal{L} .

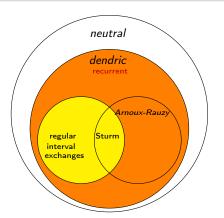
Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)

The family of regular interval exchanges languages is closed under maximal bifix decoding.



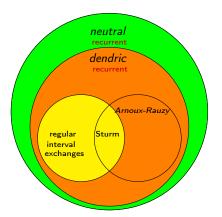
Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of recurrent dendric languages is closed under maximal bifix decoding.



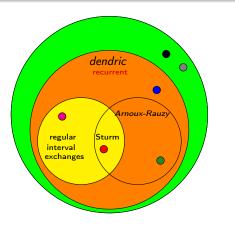
Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)]

The family of recurrent neutral languages is closed under maximal bifix decoding.



Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of recurrent neutral languages is closed under maximal bifix decoding.



- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci

Return words

A (right) return word to w in \mathcal{L} is a nonempty word u such that $wu \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

$$\mathcal{R}(\mathbf{w}) = \{ \mathbf{u} \in \mathcal{A}^+ \mid \mathbf{w}\mathbf{u} \in \mathcal{L} \cap (\mathcal{A}^+\mathbf{w} \setminus \mathcal{A}^+\mathbf{w}\mathcal{A}^+) \}$$

Example (Fibonacci)

$$\mathcal{R}(\mathbf{b}) = \{\mathbf{a}\underline{\mathbf{b}}, \mathbf{a}\mathbf{a}\underline{\mathbf{b}}\}$$

 $\varphi(a)^{\omega} = abaaba\underline{b}aabaabaabaabaabaabaabaabaab \cdots$

Return words

A (right) return word to w in \mathcal{L} is a nonempty word u such that $wu \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

$$\mathcal{R}(\mathbf{w}) = \{ \mathbf{u} \in \mathcal{A}^+ \mid \mathbf{w}\mathbf{u} \in \mathcal{L} \cap (\mathcal{A}^+\mathbf{w} \setminus \mathcal{A}^+\mathbf{w}\mathcal{A}^+) \}$$

Example (Fibonacci)

$$\mathcal{R}(aa) = \{b\underline{aa}, bab\underline{aa}\}$$

 $\varphi(a)^{\omega} = abaababaababaababaabaabaabaabaab \cdots$

Cardinality of return words

Theorem [Vuillon (2001)]

Let \mathcal{L} be a Sturmian language. For every $w \in \mathcal{L}$, one has

$$\operatorname{\mathsf{Card}} \left(\mathcal{R}(w) \right) = 2.$$

Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]

Let \mathcal{L} be a recurrent neutral language. For every $w \in \mathcal{L}$, one has

$$\operatorname{\mathsf{Card}} \left(\mathcal{R}(w) \right) = \operatorname{\mathsf{Card}} \left(\mathcal{A} \right).$$

Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]

Let $\mathcal L$ be a . For every $w \in \mathcal L$, one has

$$\operatorname{\mathsf{Card}} \left(\mathcal{R}(w) \right) = \operatorname{\mathsf{Card}} \left(\mathcal{A} \right).$$

Corollary

A neutral (dendric) language is recurrent if and only if it is uniformly recurrent

<u>Proof.</u> A recurrent language \mathcal{L} is uniformly recurrent if and only if $\mathcal{R}(w)$ is finite for all $w \in \mathcal{L}$.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015),

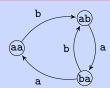
Let $\mathcal L$ be a recurrent dendric (actually just connected) language containing the alphabet $\mathcal A$. For any $w\in \mathcal L$, the set $\mathcal R(w)$ generates the free group $\mathbb F_{\mathcal A}$.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let $\mathcal L$ be a recurrent dendric (actually just suffix-connected) language containing the alphabet $\mathcal A$. For any $w\in \mathcal L$, the set $\mathcal R(w)$ generates the free group $\mathbb F_{\mathcal A}$.

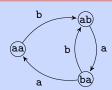
Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A} . For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.



Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

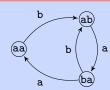
Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A} . For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.



$$\Gamma_{oldsymbol{arepsilon}}=\langle \mathtt{a},\mathtt{b}
angle=\mathbb{F}_{\mathcal{A}}$$

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A} . For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

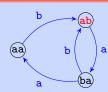


$$\Gamma_{a} = \langle a, ba \rangle$$

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A} . For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.

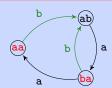
Example (Fibonacci, $\mathcal{L} = \{ \varepsilon, \mathtt{a}, \mathtt{b}, \mathtt{aa}, \mathtt{ab}, \mathtt{ba}, \mathtt{aab}, \mathtt{baa}, \mathtt{baa}, \mathtt{bab}, \ldots \})$



$$\Gamma_{ab} = \langle a(ba)^* ab \rangle$$

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

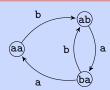
Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A} . For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.



$$G_2(\mathcal{L}) \rightsquigarrow G_1(\mathcal{L})$$

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015), Goulet-Ouellet (2021)]

Let \mathcal{L} be a recurrent dendric (actually just suffix-connected) language containing the alphabet \mathcal{A} . For any $w \in \mathcal{L}$, the set $\mathcal{R}(w)$ generates the free group $\mathbb{F}_{\mathcal{A}}$.



$$G_2(\mathcal{L}) \rightsquigarrow G_1(\mathcal{L}) \rightsquigarrow G_0(\mathcal{L})$$

The Return Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Ridone (2015)]

Let \mathcal{L} be a recurrent dendric language. For every $w \in \mathcal{L}$, $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(b) = \{ab, aab\}$ is a basis of the free group. Indeed,

$$a = aab (ab)^{-1}$$

$$b = a^{-1} ab$$

The Return Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Ridone (2015)]

Let \mathcal{L} be a recurrent dendric language. For every $w \in \mathcal{L}$, $\mathcal{R}(w)$ is a basis of the free group $\mathbb{F}_{\mathcal{A}}$.

Example (Fibonacci)

The set $\mathcal{R}(aa) = \{aab, aabab\}$ is a basis of the free group. Indeed,

$$a = aab (aabab)^{-1} aab$$

$$b = a^{-1} a^{-1} aab$$

Děkuji za pozornost*

