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Abstract. We study balanced sequences over a d-letter alphabet. Each
such sequence v is described by a Sturmian sequence and two constant
gap sequences y and y′. We provide an algorithm which for a given y,
y′ and a quadratic slope of a Sturmian sequence computes the critical
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1 Introduction

An infinite sequence v over a finite alphabet is called balanced if for each pair u,
v of its factors having the same length and for each letter a of the alphabet, the
number of occurrences of a in u and v differs at most by one. Balanced aperiodic
sequences over a binary alphabet were introduced already in 1940 by Hedlund
and Morse under the name Sturmian sequences (see [7]). Balanced sequences
over a d-letter alphabet were characterized by Hubert in [8]; in particular he
showed that each aperiodic balanced sequence over a d-letter alphabet can be
mapped by a letter-to-letter projection π to a Sturmian sequence. In this paper
we focus on the critical exponent of a balanced sequence v. Roughly speaking,
the critical exponent E(v) describes the maximal repetition of factors in v. For
Sturmian sequences, the formula to evaluate the critical exponent was provided
by Carpi and de Luca in [3] (see also [4]). Recently, Rampersad, Shallit and
Vandomme in [9] and Baranwal and Shallit in [1] and [2] started looking for
balanced sequences over a d-letter alphabet having the least critical exponent.
They used the automated theorem prover Walnut to show that the smallest
possible critical exponent of a balanced sequence over d letters is d−2

d−3 for d =
5, . . . , 8. For d = 9, 10 they showed that the least critical exponent can not be
smaller than d−2

d−3 and conjectured that this value is attained by the sequences
x9 and x10 (see Example 5).

In [5], we gave a general method to compute the critical exponent E(v) and
the asymptotic critical exponent E∗(v) of any uniformly recurrent sequence v.
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Our method is based on looking for the shortest return words to bispecial factors
in v. The asymptotic critical exponent E∗(v) reflects repetitions of factors of
length growing to infinity. Since the letter-to-letter projection π maps every
sufficiently long bispecial factor in a balanced sequence v to a bispecial factor in
the underlying Sturmian sequence, we could apply our method to compute the
asymptotic critical exponent of balanced sequences.

In this contribution we refine our approach to all bispecial factors, not only
the long enough ones (Propositions 3, 5 and 6) and deduce an algorithm for
computing the critical exponent of balanced sequences associated with Stur-
mian sequences with quadratic slopes (Section 6). In particular, we confirm the
conjectured property of the sequences x9 and x10 (Example 7).

2 Preliminaries

An alphabet A is a finite set of symbols called letters. A (finite) word over A of
length n is a string u = u0u1 · · ·un−1, where ui ∈ A for all i = 0, 1, . . . , n − 1.
The length of u is denoted by |u|. The set of all finite words over A together
with the operation of concatenation forms a monoid, denoted by A∗. Its neutral
element is the empty word ε and we denote A+ = A∗ \ {ε}. If u = xyz for some
x, y, z ∈ A∗, then x is a prefix of u, z is a suffix of u and y is a factor of u. To any
word u over A with cardinality #A = d, we assign its Parikh vector ~V (u) ∈ Nd

defined as (~V (u))a = |u|a for all a ∈ A, where |u|a is the number of letters a
occurring in u. A sequence over A is an infinite string u = u0u1u2 · · · , where
ui ∈ A for all i ∈ N. In this paper we always denote sequences by bold letters.
The shift of u = u0u1u2 · · · is the sequence σ(u) = u1u2u3 · · · . A sequence u is
eventually periodic if u = vwww · · · = v(w)ω for some v ∈ A∗ and w ∈ A+. It is
periodic if v = ε. If u is not eventually periodic, then it is aperiodic. A factor of
u = u0u1u2 · · · is a word u such that u = uiui+1ui+2 · · ·uj−1 for some i, j ∈ N,
i ≤ j. The number i is called an occurrence of the factor u in u. If each factor of
u has infinitely many occurrences in u, the sequence u is recurrent. Moreover, if
for each factor the distances between its consecutive occurrences are bounded,
u is said to be uniformly recurrent.

The language L(u) of a sequence u is the set of all its factors. A factor w of
u is right special if wa,wb are in L(u) for at least two distinct letters a, b ∈ A.
Analogously, we define a left special factor. A factor is bispecial if it is both left
and right special.

The central notion of our contribution is the critical exponent of an infinite
sequence. Let z ∈ A+ be a prefix of a periodic sequence uω with u ∈ A+, and
let us suppose that u is minimal in length with this property. We say that z has
fractional root u and exponent e = |z|/|u|. We usually write z = ue.

Definition 1. Given a sequence u, we define the critical exponent of u as

E(u) = sup{e ∈ Q : there exist x, y ∈ L(u), with |x| > 0 and y = xe}.
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If E(u) < +∞, we define the asymptotic critical exponent of u as

E∗(u) = lim
n→∞

sup{e ∈ Q : there exist x, y ∈ L(u), with |x| > n and y = xe} .

Otherwise E∗(u) = E(u) = +∞.

In [5] we find a formula to compute E(u) and E∗(u) for a uniformly recurrent
aperiodic sequence u. This tool uses the notion of return words.

Let us consider a factor w of a recurrent sequence u = u0u1u2 · · · . Let i < j
be two consecutive occurrences of w in u. Then the word uiui+1 · · ·uj−1 is a
return word to w in u. The set of all return words to w in u is denoted by
Ru(w). If u is uniformly recurrent, then the set Ru(w) is finite for each prefix
w. In this case u can be written as a concatenation u = rd0rd1rd2 · · · of return
words to w. The derived sequence of u to w is the sequence du(w) = d0d1d2 · · ·
over the alphabet of cardinality #Ru(w).

Proposition 1 ([5]). Let u be a uniformly recurrent aperiodic sequence. Let
(wn)n∈N be a sequence of all bispecial factors of u ordered by their length. For
every n ∈ N, let vn be a shortest return word to wn in u. Then

E(u) = 1 + sup
n∈N

{
|wn|
|vn|

}
and E∗(u) = 1 + lim sup

n→∞

{
|wn|
|vn|

}
.

3 Balanced sequences

A sequence u over the alphabet A is balanced if for every letter a ∈ A and every
pair of factors u, v ∈ L(u) with |u| = |v|, we have

∣∣|u|a − |v|a∣∣ ≤ 1. Aperiodic
balanced sequences over binary alphabet, i.e., Sturmian sequences, can be char-
acterized by many equivalent definitions. The definition we will need is based
on return words. Vuillon in [10] shows that an infinite recurrent sequence u is
Sturmian if and only if each of its factors has exactly two return words. More-
over, the derived sequence to a factor of a Sturmian sequence is Sturmian too.
A Sturmian sequence u is called standard if each bispecial factor of u is a prefix
of u. To any Sturmian sequence u′ there exists a standard Sturmian sequence u
such that L(u) = L(u′). Balanced sequences over alphabets of higher cardinality
can be constructed from Sturmian sequences. To describe the construction we
need the following definition.

Definition 2. A sequence y over an alphabet A is a constant gap sequence if
for each letter a ∈ A appearing in y there is a positive integer, denoted gapy(a),
such that the distance between successive occurrences of a in y is always gapy(a).

Any constant gap sequence is periodic. We denote by Per(y) the minimal
period of y. Note that gapy(a) divides Per(y) for each letter a appearing in y.
Given a constant gap sequence y and a word y ∈ L(y) we denote by gapy(y)
the length of the gap between two successive occurrences of y in y. Note that
gapy(y) = lcm{gapy(a) : a ∈ A and a occurs in y}. Moreover gapy(y) divides
Per(y) for every factor y ∈ L(y).
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Example 1. In the sequel we will deal with the following constant gap sequences
y = (01)ω and y′ = (234567284365274863254768)ω. The sequence y is evi-
dently a constant gap sequence because gapy(0) = gapy(1) = 2. The sequence
y′ is also a constant gap sequence because gapy′(a) = 6 for a ∈ {2, 4, 6} and
gapy′(a) = 8 for a ∈ {3, 5, 7, 8}. Moreover, for every y ∈ L(y′) with |y| ≥ 2
we have gapy′(y) = 24. The minimal periods are respectively Per(y) = 2 and
Per(y′) = 24.

Given a constant gap sequence y we define for every positive integer n the
set gap(y, n) = {i : ∃ y ∈ L(y), |y| = n, gapy(y) = i} . It is clear that
gap(y, 0) = {1} for every constant gap sequence y.

Example 2. Let y,y′ be the sequences in Example 1. One has gap(y, n) = {2}
for every n ≥ 1, gap(y′, 1) = {6, 8} and gap(y′, n) = {24} for every n ≥ 2.

Theorem 1 ([8]). A recurrent aperiodic sequence v is balanced if and only if
v is obtained from a Sturmian sequence u over {a, b} by replacing the a’s in u
by a constant gap sequence y over some alphabet A, and replacing the b’s in u
by a constant gap sequence y′ over some alphabet B disjoint from A.

Let us recall that the frequencies of letters in any Sturmian sequence u are
always well defined and irrational. We will assume here, without loss of generality,
that ρa < ρb and adopt the convention that the first component of the Parikh
vector of a factor of u corresponds to the least frequent letter of u and the second
component to the most frequent letter (even if we consider a Sturmian sequence
over binary alphabets other than {a, b}).

Definition 3. Let u be a Sturmian sequence over the alphabet {a, b}, and y,y′

be two constant gap sequences over two disjoint alphabets A and B. The colouring
of u by y and y′, denoted v = colour(u,y,y′), is the sequence over A∪B obtained
by the procedure described in Theorem 1.

For v = colour(u,y,y′) we use the notation π(v) = u and π(v) = u for
any v ∈ L(v) and the corresponding u ∈ L(u). Symmetrically, given a word
u ∈ L(u), we denote by π−1(u) = {v ∈ L(v) : π(v) = u}. We say that u (resp.
u) is a projection of v (resp. v).

Example 3. Let us consider the sequence x9 (see Example 5 later for a more
precise definition) obtained as colouring by the constant gap sequences y and y′

given in Example 1 of a Sturmian sequence u starting as follows:

u = bbabbabbabbbabbabbabbbabbabbabbabbbabbabbabbbabbabb · · · .

Thus x9 starts as follows:

x9 = 230451670284136052174806312504716820341560728143065 · · · .

Such a sequence is balanced according to Theorem 1.
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The language of balanced sequences has certain symmetries. In particular,
the following result is proved in [5, Corollary 1].

Lemma 1 ([5]). Let v = colour(u,y,y′) and v ∈ L(v). For any i, j ∈ N the
word v′ obtained from π(v) by replacing the a’s by σi(y) and the b’s by σj(y′)
is in L(v).

Note that L(v) does not depend on the sequence u itself but only on L(u).
Having in mind the formula for computing the critical exponent given in Propo-
sition 1, we focus on return words to factors of balanced sequences.

In the sequel we will use the following notation:(
a
b

)
mod

(
n
n′

)
:=

(
a mod n
b mod n′

)
.

Proposition 2. Let u, f ∈ L(u) such that fu ∈ L(u) and u is a prefix of fu.
Then the two statements are equivalent:

1. there exist w and v such that vw ∈ L(v), w is a prefix of vw, |w| = |u| and
π(vw) = fu;

2. ~V (f) =

(
0
0

)
mod

(
n
n′

)
for some n ∈ gap(y, |u|a) and n′ ∈ gap(y′, |u|b).

Proof. Let v and w be as in Item 1. Then u is a prefix and a suffix of π(vw)
and f = π(v). By Lemma 1, the factor w occurring as a prefix of vw is obtained
from u by colouring the a’s with σs(y) and the b’s with σt(y′) for some s, t ∈ N.
Hence, the same factor w occurring as a suffix of vw is obtained from u by
colouring the a’s with σS(y) and the b’s with σT (y′), where S = s + |f |a and
T = t+ |f |b. Hence the prefixes of length |u|a of σs(y) and σS(y) coincide, and
similarly the prefixes of length |u|b of σt(y′) and σT (y′) coincide. This implies
that |f |a is divisible by some n ∈ gap(y, |u|a) and that |f |b is divisible by some
n′ ∈ gap(y′, |u|b). In other words, |f |a = 0 mod n and |f |b = 0 mod n′.

Let f, n and n′ be as in Item 2. Let us consider y ∈ L(y) and y′ ∈ L(y′) such
that gapy(y) = n with |y| = |u|a and gapy(y′) = n′ with |y′| = |u|b. Let s, t ∈ N
be such that y is a prefix of σs(y) and y′ is a prefix of σt(y′). Colouring the
letters a’s in fu with σs(y) and the letters b’s with σt(y′), we get, by Lemma 1,
a factor x of v. Since |f |a is a multiple of gapy(y) and |f |b is a multiple of
gapy(y′), the prefix and the suffix of length |u| of x coincide, i.e., x = vw, w is
a prefix of vw, |w| = |u| and π(vw) = fu.

As we have already mentioned, any factor of a Sturmian sequence has ex-
actly two return words and thus any piece of u between occurrences of u is a
concatenation of these two return words. This implies the following observation.

Observation 1 Let r and s be respectively the most and the least frequent return
words to u in u. If fu ∈ L(u) and u is a prefix of fu, then ~V (f) = k~V (r)+`~V (s),
where

(
`
k

)
is the Parikh vector of a factor of the derived sequence du(u).
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4 Shortest return words to factors in balanced sequences

The length of the return words to factors of a Sturmian sequence u is well-
known. Our aim in this section is to find a formula for the length of the shortest
return words to factors of a colouring of u. As occurrences of a factor u in a
Sturmian sequence u and occurrences of factors from π−1(u) in any colouring of
u coincide, we can therefore be able to give a formula based on the knowledge
of the length of return words in u. Proposition 2 and Observation 1 justify the
following definition.

Definition 4. Let u ∈ L(u) and let r and s be respectively the most and the
least frequent return words to u in u. We denote S(u) = S1(u) ∩ S2(u) ∩ S3 ,
where

S1(u) =

{(
`
k

)
:

(
`
k

)
is the Parikh vector of a factor of du(u)

}
;

S2(u) =
⋃

n∈gap(y,|u|a)

⋃
n′∈gap(y′,|u|b)

{(
`
k

)
: k~V (r) + `~V (s) =

(
0
0

)
mod

(
n
n′

)}
;

S3 =

{(
`
k

)
: 1 ≤ k + ` ≤ Per(y)Per(y′)

}
.

Using the formula provided in Proposition 1, we can treat all bispecial factors
of the same length simultaneously.

Proposition 3. Let v = colour(u,y,y′) and u ∈ L(u). The shortest words in
the set {v : v ∈ Rv(w) and π(w) = u} have length

|v| = min{k|r|+ `|s| :
(
`
k

)
∈ S(u)}.

Proof. First, let us show that the length of any return word in v to a fac-
tor from π−1(u) is contained in the set

{
k|r|+ `|s| :

(
`
k

)
∈ S1(u) ∩ S2(u)

}
. By

Proposition 2 and Observation 1, a vector
(
`
k

)
belongs to S1(u) ∩ S2(u) if and

only if k~V (r) + `~V (s) is the Parikh vector of π(v), where v is a factor between
two (possibly not consecutive) occurrences of a factor w ∈ π−1(u) in v. Ob-
viously, the length of v is k|r| + `|s|. It is evident that if we consider above
|v| = min{k|r|+ `|s|}, where

(
`
k

)
∈ S1(u) ∩ S2(u), then v is a return word to a

factor w ∈ π−1(u).
To finish the proof, we have to show that the minimum value of |v| is attained

for k and ` satisfying 1 ≤ k + ` ≤ Per(y)Per(y′). Let
(
`
k

)
∈ S1(u) ∩ S2(u)

and k + ` > Per(y)Per(y′). Thus ~V (d) =
(
`
k

)
for some d = d1d2d3 · · · dk+` ∈

L(du(u)). For every i = 1, 2, . . . , k + `, we denote
(
`i
ki

)
= ~V (d1d2 · · · di). We

assign to each i the vector Xi = ki~V (r)+`i~V (s). Since the number of equivalence
classes mod ( nn′ ) is nn′ ≤ Per(y)Per(y′), there exist i, j with 1 ≤ i < j ≤ k+ `
such that Xi = Xj mod ( nn′ ). Denote

(
`′

k′

)
the Parikh vector of di+1di+2 · · · dj .

Obviously,
(
`′

k′

)
∈ S1(u), 1 ≤ j− i = k′+ `′ < k+ ` and k′ ≤ k and `′ ≤ `. Hence
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k′|r| + `′|s| < k|r| + `|s|. Since k′~V (r) + `′~V (s) = Xj − Xi = ( 0
0 ) mod ( nn′ ),

the vector
(
`′

k′

)
∈ S2(u). Therefore, the minimum length can not be achieved for

k + ` > Per(y)Per(y′).

Since a constant gap sequence is periodic, it is clear that any long enough
factor in the sequence is neither right special nor left special. Let us define, for
a given constant gap sequence y, the number

β(y) = max{|u| : u is a bispecial factor of y}.

It immediately follows that for n > β(y), we have gap(y, n) = {Per(y)}.

Example 4. Let us consider the sequences y and y′ from Example 1. One can
easily check that β(y) = 0 and β(y′) = 1.

The following result is analogous to [5, Lemma 3].

Lemma 2. Let v = colour(u,y,y′) and w ∈ L(v).

1. If π(w) is bispecial in u, then w is bispecial in v.
2. If w is bispecial in v, |π(w)|a > β(y) and |π(w)|b > β(y′), then π(w) is

bispecial in u. Moreover, in this case π(Rv(w)) = π(Rv(w′)) for each w′ ∈
L(v) with π(w′) = π(w).

If a projection of a bispecial factor w in v is bispecial in L(u), we can deduce

an explicit formula for 1 + |w|
|v| , where |v| is the length of a shortest return word

to w in v. These values are crucial for the computation of E(v) and E∗(v).
First, we list some important facts on Sturmian sequences. They are partially

taken from [6]. Recall our convention for the frequencies of letters ρa < ρb. The
language of the Sturmian sequence u is fully described by the coefficients of the
continued fraction of the number θ associated with u, that is

θ = θ(u) :=
ρa
ρb

= [0, a1, a2, a3, . . .].

The relation to the slope α of u is α = 1
1+θ . The Parikh vectors of the bispecial

factors in u and the corresponding return words can be easily expressed using
the convergents pN

qN
to θ.

Proposition 4 ([6]). Let θ = [0, a1, a2, a3, . . .] be the irrational number asso-
ciated with a standard Sturmian sequence u and b a bispecial factor of u. Then

1. there exists a unique pair (N,m) ∈ N2 with 0 ≤ m < aN+1 such that the
Parikh vectors of the most frequent return word r to b, of the least frequent
return word s to b and of b itself are

~V (r) =

(
pN
qN

)
, ~V (s) =

(
mpN + pN−1
mqN + qN−1

)
and ~V (b) = ~V (r) + ~V (s)−

(
1
1

)
;
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2. the derived sequence du(b) to b in u is Sturmian and the irrational number
associated with du(b) is θ′ = [0, aN+1 −m, aN+2, aN+3, . . .].

Let us recall that the nominator pN and the denominator qN of the N th

convergent to θ satisfy for all N ≥ 1 the recurrence relation XN = aNXN−1 +
XN−2, but that they differ in their initial values: p−1 = 1, p0 = 0; q−1 = 0, q0 = 1.

The following statement is a direct consequence of Propositions 3 and 4.

Proposition 5. Let v = colour(u,y,y′) and
(
pN
qN

)
N

be the sequence of con-

vergents to the irrational number θ associated with u. Let (N,m) be the pair
assigned in Proposition 4 to a bispecial factor b ∈ L(u). Then, a shortest return
word v to a factor w ∈ π−1(b) satisfies

I(N,m) := 1 +
|w|
|v|

= 1 + max

{
(1 +m)QN +QN−1 − 2

(k + `m)QN + `QN−1
:
(
`
k

)
∈ S(b)

}
, (1)

where QN := pN + qN and QN−1 := pN−1 + qN−1.

The following lemma helps us to recognize which vector is the Parikh vector
of a factor of a given Sturmian sequence. This is important to decide whether(
`
k

)
belongs to S1(b). The lemma can be shown using the facts that θ = ρa

ρb
and

that u is balanced.

Lemma 3. Let u be a Sturmian sequence with associated irrational number θ.
Then u contains a factor u such that |u|b = k and |u|a = ` if and only if
(k − 1)θ − 1 < ` < (k + 1)θ + 1 and k, ` ∈ N.

Example 5. In the sequel, we will illustrate our method for computing the critical
exponent on the balanced sequences x9 and x10 introduced in [9] as candidates to
be the balanced sequences having the minimal critical exponent over respectively
a 9- and a 10-letter alphabet. Let us define x9 and x10.

– x9 = colour(u,y,y′), where u is the standard Sturmian sequence associated
with θ = [0, 2, 3, 2ω], and y,y′ are the constant gap sequences introduced in
Example 1. Prefixes of u and x9 are displayed in Example 3.

– x10 = colour(u′,y,y′′), where u′ is the standard Sturmian sequence asso-
ciated with θ = [0, 4, 2, 3ω], y is the constant gap sequence introduced in
Example 1 and y′′ = (234567284963254768294365274869)ω.

5 Computation of the Asymptotic Critical Exponent

From now on we consider a standard Sturmian sequence u with associated ir-
rational number θ having eventually periodic continued fraction expansion. The
goal of this section is to compute the asymptotic critical exponent of a sequence
v obtained by colouring of u. By Proposition 1, to determine E∗(v) we only
need to consider long enough bispecial factors w.
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For this purpose, we write the continued fraction expansion of θ as

θ = [0, a1, a2, . . . , ah, (z0, z1, . . . , zM−1)ω] , (2)

where the preperiod h is chosen so that each bispecial factor b associated with
(N,m), N ≥ h, satisfies |b|a > β(y) and |b|b > β(y′).

We then decompose the set W of all nonempty bispecial factors of v =
colour(u,y,y′) into two subsets:
W long := {w ∈ W : π(w) bispecial in u assigned to (N,m) with N ≥ h} .
Wshort :=W \W long.
Using Proposition 5 and Lemma 2 in order to compute E∗(v), we need to

manipulate the numbers I(N,m) defined in Equation (1).
Our approach consists in partitioning the set of all possible pairs (N,m),

N ≥ h, into a finite number of subsets such that S(b) is the same for each
Sturmian bispecial factor b assigned to a pair in the given subset. A suitable
partition uses the following equivalence relation on the first component of the
pair.

Definition 5. Let N1, N2 ∈ N and N1, N2 ≥ h. We say that N1 is equivalent to
N2, and write N1 ∼ N2, if the following three conditions are satisfied:

1. N1 = N2 mod M ,

2.

(
pN1−1
qN1−1

)
=

(
pN2−1
qN2−1

)
mod

(
Per(y)
Per(y′)

)
,

3.

(
pN1

qN1

)
=

(
pN2

qN2

)
mod

(
Per(y)
Per(y′)

)
.

The properties of the equivalence ∼ are summarized in the following lemma.
They follow from the definition of convergents to θ and from the periodicity of
the continued fraction expansion of θ.

Lemma 4. Let ∼ be the equivalence on the set {N ∈ N : N ≥ h} introduced in
Definition 5 and let H denote the number of equivalence classes.

1. If N1 ∼ N2, then aN1+1 = aN2+1.
2. N1 ∼ N2 if and only if N1 + 1 ∼ N2 + 1.
3. N1 ∼ N2 if and only if N2 = N1 mod H.
4. H = min {i ∈ N, i > 0 : h+ i ∼ h} ≤MPer(y)2Per(y′)2.
5. H is divisible by M .

Definitions 4 and 5 together with Lemma 4 ensure the following property.

Corollary 1. Let b(1) and b(2) be bispecial factors of u and (N1,m1) and (N2,m2),
with N1 ≥ h and N2 ≥ h, be the pairs assigned to b(1) and b(2) respectively.

If N1 ∼ N2 and m1 = m2, then S(b(1)) = S(b(2)).

Let us define a partition of the setW long into subsets C(i,m), where 0 ≤ i <
H and 0 ≤ m < zi mod M , as follows: if (h+ i+NH,m) is the pair assigned to
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a bispecial factor b = π(w) in u, then we put w into the subset C(i,m). Using
Propositions 1 and 5, we have

E∗(v) = max {E∗(i,m) : 0 ≤ i < H, 0 ≤ m < zi mod M} , (3)

where E∗(i,m) := lim sup
N→∞

I(h+ i+NH, m).

To compute E∗(i,m), we need, according to Equation (1), to determine

lim
N→∞

QN−1

QN
. A direct consequence of the Perron-Frobenius theorem serves this

purpose.

Lemma 5. Let A ∈ N2×2 be a primitive matrix with detA = ±1, and (SN )N ,
(TN )N be two sequences of integers given by the recurrent relation (SN+1, TN+1) =
(SN , TN )A for each N ∈ N, with S0, T0 ∈ N such that S0 + T0 > 0. Denote by
( xy ) an eigenvector of A to the non-dominant eigenvalue λ. Then

1. lim
N→∞

SN

TN
= − yx , and

2. SN + y
xTN = λN (S0 + y

xT0) for each N ∈ N.

Proof. As A is a primitive matrix with non-negative entries, the components
x and y of an eigenvector to the non-dominant eigenvalue have opposite signs.
In particular x, y 6= 0. Obviously, (SN , TN ) = (S0, T0)AN for each N ∈ N.
Multiplying both sides of the equation by the eigenvector ( xy ), we obtain xSN +
yTN = λN (xS0 + yT0), i.e., Item 2 is proven.

As |λ| < 1, Item 2 implies that lim
N→∞

xTN

(
SN

TN
+ y

x

)
= lim
N→∞

(xSN + yTN ) =

0. Since lim
N→∞

TN = +∞, necessarily lim
N→∞

(
SN

TN
+ y

x

)
= 0. This proves Item 1.

Periodicity of the continued fraction expansion of θ and the previous lemma
ensure that the sequences SN := QMN+h+i−1 and TN := QMN+h+i satisfy the
recurrent relation (SN+1, TN+1) = (SN , TN )A(i) with

A(i) =
(
0 1
1 zi

) (
0 1
1 zi+1

)
· · ·
(
0 1
1 zM−1

) (
0 1
1 z0

)
· · ·
(
0 1
1 zi−1

)
, (4)

and hence also the existence of the limit

Li = lim
N→∞

SN
TN

= lim
N→∞

QHN+h+i−1

QHN+h+i
for i = 0, 1, . . . ,H − 1. (5)

Moreover, the non-dominant eigenvalue λ of A(i) satisfies

SN − LiTN = λN (S0 − LiT0) for each N ∈ N . (6)

By Corollary 1, for all bispecial factors w in C(i,m) we obtain the same set
S(π(w)). Let us denote S(i,m) := S(π(w)). Formula (1) then immediately gives

E∗(i,m) = 1 + max

{
1 +m+ Li
k + `m+ `Li

:
(
`
k

)
∈ S(i,m)

}
. (7)
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Example 6. Let us evaluate E∗(x9), where x9 is the sequence defined in Exam-
ple 5. It is easy to find that H = 8 and there are 16 distinct subsets C(i,m)
for i ∈ {0, 1, . . . , 7} and m ∈ {0, 1}. As θ = [0, 2, 3, 2ω] has period 1, the re-
currence relation for (QN )N is QN+1 = 2QN + QN−1 for N ≥ 2. In particular

Li = lim
N→∞

QN−1

QN
=
√

2 − 1 for each i. Listing all elements of S(i,m) is more

laborious (but possible to do by hand as well). Thanks to a program imple-
mented by our student Daniela Opočenská we find that E∗(x9) = E∗(2, 1). Since

S(2, 1) = {( 6
10 )}, we have E∗(x9) = E∗(2, 1) = 1+ 2+L0

16+6L0
= 1+ 2

√
2−1
14

.
= 1, 1306.

Using the same program we also find that E∗(x10) = 1 +
√
13
26

.
= 1, 1387.

6 Computation of the critical exponent

In order to evaluate the critical exponent of v = colour(u,y,y′), we have to
determine, by Proposition 1,

E(v) = 1 + sup

{
|w|
|v|

: w ∈ L(v), w bispecial and v ∈ Rv(w)

}
.

To find the maximum value of |w||v| among w ∈ Wshort and v ∈ Rv(w) we use

Propositions 3 and 5. To determine sup
{
|w|
|v| : w ∈ W long and v ∈ Rv(w)

}
we

use the partition of W long into subsets C(i,m) which have been introduced in
the previous section to count the asymptotic critical exponent. For each C(i,m)
we have to find

E(i,m) := sup {I(h+ i+NH, m) : N ∈ N} ≥ E∗(i,m)

and then to determine the maximal value among E(i,m). We show that I(h +
i+NH,m) may exceed E∗(i,m) only for a finite number of indices N ∈ N.

Proposition 6. Let λ be the non-dominant eigenvalue of the matrix A(i) defined
in Equation (4) and Li be the limit given in Equation (5). Denote µ = |λ|H/M <
1. If N0 ∈ N satisfies µN0 |Qh+i−1 − LiQh+i| ≤ 2Li, then I(h + i + NH,m) ≤
E∗(i,m) for all N ≥ N0 and 0 ≤ m < zi mod M .

Proof. Equation (6) gives |Qh+i+NH−1 − LiQh+i+NH | = µN |Qh+i−1 − LiQh+i| .
Thus, it is enough to show the implication:

If I(h+ i+NH,m) > E∗(i,m), then |Qh+i+NH−1 − LiQh+i+NH | > 2Li.
For this sake, we abbreviate notation by putting S = Qh+i+NH−1, T =

Qh+i+NH and L = Li. Recall that 0 < Li < 1. Let
(
`
k

)
∈ S(i,m) such that

I(h+ i+NH,m) = 1 +
(1 +m)T + S − 2

(k + `m)T + `S
> E∗(i,m) ≥ 1 +

1 +m+ L

k + `m+ `L
.

Thus we have (k−`)(S−LT ) > 2(k+`m+`L) ≥ 2L|k−`|, hence |S−LT | > 2L.
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Example 7. Let us show that E(x9) = 7
6 . To do that we have to consider the

sets of short and long bispecial factors.

Wshort: It is easy to check that π
(
Wshort

)
=
{
a, b, ab, ba, b2, b3, b2ab2, b2ab2ab2

}
.

For each element w in Wshort we have to prove that 1 + |w|
|v| ≤ 1 + 1

6 , i.e.,

that |w||v| ≤
1
6 , where v is a shortest return word to w.

Let π(w) = a, which is not a bispecial factor in u. We use Proposition 3.
Looking into the prefix of u (as in Example 3) we see that the return words
to a are r = ab2 and s = ab3. By Definition 4, each vector

(
`
k

)
∈ S(a)

satisfies k + ` ≥ 1 and k ( 1
2 ) + ` ( 1

3 ) = ( 0
0 ) mod ( 2

1 ) since gap(y, 1) = {2}
and gap(y′, 0) = {1}. This implies for each solution that k + ` ≥ 2. Since

3k + 4` ≥ 3k + 3` ≥ 6, we have |w||v| = max
{

|a|
|ab2|k+|ab3|` :

(
`
k

)
∈ S(a)

}
≤

max
{

1
3k+4` : k + ` ≥ 2

}
≤ 1

6 .

On the other hand, |w||v| ≥
1

3·2+4·0 = 1
6 as the solution

(
`
k

)
= ( 0

2 ) is the

Parikh vector of a factor of any Sturmian sequence, in particular of du(a).
Note that the value 1/6 is attained for any w with π(w) = a. For instance
we can consider w = 0 and v = 045167.

Let π(w) = ab. Again, Ru(ab) = {ab2, ab3}. We have gap(y, 1) = {2} and
gap(y′, 1) = {6, 8}. Thus

(
`
k

)
∈ S(ab) satisfies

k ( 1
2 ) + ` ( 1

3 ) = ( 0
0 ) mod ( 2

6 or 8 ) . (8)

If k + ` ≥ 4, then |ab|
|ab2|k+|ab3|` = 2

3k+4` ≤
2

3k+3` ≤
2
3·4 = 1

6 .

When 1 ≤ k + ` ≤ 3, the only vector
(
`
k

)
satisfying Equation (8) is ( 2

0 ).
However, this is never the Parikh vector of a Sturmian factor (cf. Lemma 3).

Let π(w) = b2ab2. Then b = b2ab2 is a bispecial factor of u associated
with (N,m) = (1, 1). We have gap(y, 1) = {2} and gap(y′, 4) = {24}. By
Proposition 4 we know the Parikh vectors of r and s, thus

(
`
k

)
∈ S(b) satisfies

k ( 1
2 ) + ` ( 1

3 ) = ( 0
0 ) mod ( 2

24 ) . (9)

It is not difficult to see that 5
3k+4` ≤

1
6 .

Similar computations show that |w||v| ≤
1
6 for each w ∈ Wshort and v ∈ Rv(w).

W long: From Example 6 it follows that E∗(x9)
.
= 1, 1306 < 7

6 . Apply Proposition 6.

We have µ = (
√

2−1)8. Since µ|Q1−L0Q2| = µ|3− (
√

2−1)10| ≤ 2(
√

2−1)
and |Q2−L0Q3| = |10−(

√
2−1)23| ≤ 2(

√
2−1), we have I(2+i+NH,m) ≤

E∗(i,m) ≤ E∗(x9) for all i,m and N besides i = 0, N = 0, i.e., we have to
consider separately the bispecial factors associated with the pairs (2, 0) and
(2, 1). Again, both I(2, 0) and I(2, 1) are smaller than 7

6 .

A similar computation can be done for the sequence x10. In this case we can
show that E(x10) = 1+ 1

7 and that the value 8
7 is attained for instance for w = 2

and v = 2345067.
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