String attractors for factors of the Thue-Morse word

Francesco Dolce
FIT, Czech Technical University in Prague, Czech Republic
dolcefra@fit.cvut.cz

Abstract

In 2020 Kutsukake et al. showed that every for every $n \geq 4$ the prefix of length 2^{n} of the Thue-Morse word has a string attractor of size 4 . In this paper we extend their result by constructing a smallest string attractor for any given factor of the Thue-Morse word. In particular, we show that these string attractors have size at most 5 and that this upper bound is sharp.

Keywords: string attractors • Thue-Morse word • factorial languages

1 Introduction

String attractors were introduced by Kempa and Prezza in [6] in the context of dictionary-based data compression. A string attractor for a word w is a set of positions of the word such that all factors of w have an occurrence containing at least one of the elements of the set. Intuitively, the more repetitive is w the lower is the size of a smallest string attractor for w. Actually, the smallest size of a string attractor for a word is a lower bound for several other repetitiveness measures associated with the most common compression schemes, including the number of phrases in the LZ77 parsing and the number of equal-letter runs produced by the Burrows-Wheeler Transform (see 6|12|10).

While it is trivial to construct a string attractor for a given word (e.g., by taking all possible positions), finding a smallest one is a NP-complete problem.

Mantaci et al. studied in [10] the size of a smallest string attractor of several infinite families of words. In particular they showed that every standard Sturmian word different than a letter has a smallest string attractor of size 2 (see also [5] for a generalization of this results to episturmian words), while the de Brujin word of length n has a smallest string attractor of size $\frac{n}{\log n}$. In the same paper they also studied the well-known Thue-Morse word \mathbf{t}, also known as Prouhet-Thue-Morse word, since first studied by Prouhet before being rediscovered by Thue and Morse, between others (see 1316 11]). In a preliminary version of their paper (9) Mantaci et al. conjectured that prefixes of size 2^{n} of \mathbf{t} have a smallest string attractor of size n. This conjecture has been proven to be wrong by Katsukake et al. in [7, who showed that for any such prefix it is possible to find a string attractor of size at most 4.

Schaeffer and Shallit introduced in [15] the notion of string attractor profile function for infinite words by evaluating the size of a smallest attractor for each
prefix (see also [14]). If instead of prefixes we consider a generic factor of a (finite or infinite) word the situation get more complicated. Indeed, the measure of a smallest string attractor is not monotone, meaning that a factor w of a word u can have a smallest string attractor bigger than a string attractor of u (see Proposition 2).

In this article we prove and explicitly construct a smallest string attractor for any given factor of the Thue-Morse word. In particular, our main result is the following.

Theorem 1. Let w be a non-empty finite factor of \mathbf{t}. Then there exists a string attractor for w of size at most 5 .

2 Preliminaries

For all undefined notation we refer to [8]. Let \mathcal{A} be an alphabet, that is is a finite set of symbols called letters. A (finite) word over \mathcal{A} of length n is a concatenation $u=u_{1} \cdots u_{n}$, where $u_{i} \in \mathcal{A}$ for all $i \in\{1, \ldots, n\}$. The length of u is denoted by $|u|$. The set of all finite words over \mathcal{A} together with the operation of concatenation form a monoid, denoted by \mathcal{A}^{*}, whose neutral element is the empty word ε. We also denote $\mathcal{A}^{+}=\mathcal{A}^{*} \backslash\{\varepsilon\}$. Similarly, given a set of words $S \subset \mathcal{A}^{*}$, we denote by S^{*} (resp., S^{+}) the set of all possible concatenations (resp., non-empty concatenations) of elements of S. When $\mathcal{A}=\{\mathrm{a}, \mathrm{b}\}$ is a binary alphabet we denote by \bar{w} the word obtained from w by changing every a in b and vice versa. Formally \bar{w} is obtained from w by applying the involution ${ }^{-}: a \mapsto b ; b \mapsto a$.

Let $u=p f s$ for some $p, f, s \in \mathcal{A}^{*}$. We call p a prefix of w, s a suffix of w and f a factor of w. The prefix p (resp. suffix s) is called proper if it is different than u. If both p and s are non-empty we call f an internal factor of u. The set $\operatorname{Pref}(u)$ (resp., $\operatorname{Suf}(u)$) is the set of all non-empty prefixes (resp., suffixes) of u. The language of u, denoted by $\mathcal{L}(u)$, is the set of all finite factors of u.

An infinite word over \mathcal{A} is a sequence $\mathbf{u}=u_{1} u_{2} \cdots$, where $u_{i} \in \mathcal{A}$ for every positive integer i. The notions above (prefix, suffix, etc.) naturally extend to infinite words.

Example 1. The Thue-Morse word is the infinite binary word
$\mathbf{t}=\lim _{n \rightarrow \infty} t_{n}=$ abbabaabbaababbabaababbaabbabaabbaababbaabbabaabab \cdots,
where $t_{0}=$ a and $t_{n+1}=t_{n} \overline{t_{n}}$ for any $n>0$. Note that for any $n \in \mathbb{N}$ we have $\left|t_{n}\right|=\left|\overline{t_{n}}\right|=2^{n}$.

Given a set $M \subset \mathbb{Z}$ and an integer $q \in \mathbb{Z}$, we denote $M+q=\{m+q \mid m \in M\}$.

3 String attractors

Let $w, u \in \mathcal{A}^{+}$, with $w \in \mathcal{L}(u)$, we say that w has an occurrence starting at position i in u, if it is possible to write $w=u_{i} u_{i+1} \cdots u_{i+|w|-1}$, with the convention that the empty word has an occurrence at every position. Clearly a word
w could have multiple occurrences in u. Given a position j with $1 \leq j \leq|u|$, we also say that an occurrence of w in u contains the position j if such occurrence starts at position i with $i \leq j<i+|w|$.

Example 2. Let us consider the words t_{n} as in Example 1. The word $w=\mathrm{bba}$ has three occurrences in $t_{4}=$ abbabaabbaababba starting respectively at positions 2,8 and 14 . The second occurrence is the only one containing the position 10 .

Given a word $u \in \mathcal{A}^{+}$a set Γ of positions is a string attractor for u if for every factor $w \in \mathcal{L}(u)$ there exists a $\gamma \in \Gamma$ such that at least one occurrence of w is of the form $w=u_{i} u_{i+1} \cdots u_{i+|w|-1}$ with $i \leq \gamma<i+|w|$.

The set $\{1,2, \ldots,|u|\}$ is trivially a string attractor for a word u. On the other hand, a trivial lower bound for the size of a string attractor is given by the number of different letters appearing in u. Moreover, if Γ is a string attractor for u, so is Γ^{\prime} for every superset $\Gamma^{\prime} \supset \Gamma$. Note that a word can have different string attractors of the same size and, more generally, different string attractors that are not included into each other.

Example 3. Let t_{n} and $\overline{t_{n}}$ be defined as in Example 1. The set $\Gamma_{0}=\{1\}$ is a string attractor for both words $t_{0}=\underline{\mathrm{a}}$ and $\overline{t_{0}}=\underline{\mathrm{b}}$ (the positions of the string attractor are underlined). Similarly, the set $\Gamma_{1}=\{1,2\}$ is a string attractor for $t_{1}=\underline{\mathrm{ab}}$ and for $\overline{t_{1}}=\underline{\mathrm{ba}}$. Such string attractor is the smallest one, since both letters a and b must be covered.

The set $\Gamma_{2}=\{1,2,4\}$ is a string attractor for the word $t_{2}=\underline{\text { abba }}$ (resp., for $\overline{t_{2}}$). Notice that $\Gamma_{2}^{\prime}=\{2,4\}$ is also a string attractor for $t_{2}=$ abba (resp., for $\left.\overline{t_{2}}\right)$. Since both letters appear in t_{2}, the minimal size for a string attractor is 2 . It is easy to check that $\{2,5,7\}$ is a string attractor for the word $t_{3}=$ abbabaab (resp., for $\overline{t_{3}}$), while the same word does not have any string attractor of size 2 . A larger string attractor for t_{3} is given by $\Gamma_{3}=\{2,3,4,6\}$.

It is possible to check that the sets $\Gamma_{4}=\{4,6,8,12\}, \Gamma_{5}=\{8,12,16,24\}$, $\Gamma_{6}=\{16,24,32,48\}$ and $\Gamma_{7}=\{32,48,64,96\}$ are smallest string attractors respectively for the words $t_{4}=$ abbabaabbbaababba (resp., for $\overline{t_{4}}$), t_{5} (resp., for $\overline{t_{5}}$), t_{6} (resp. $\overline{t_{6}}$) and t_{7} (resp., $\overline{t_{7}}$).

The following two interesting combinatorial results are proved in 10, Propositions 12 and 14].

Proposition 1 ([10]). Let $u, v \in \mathcal{A}^{+}, \Gamma_{u}$ a string attractor for u and $\Gamma_{v} a$ string attractor for v. Then $\Gamma_{u} \cup\{|u|\} \cup\left(\Gamma_{v}+|u|\right)$ is a string attractor for uv.

Example 4. Let $t_{2}, \overline{t_{2}}$ and Γ_{2}^{\prime} as in Example 3. A string attractor for $t_{3}=t_{2} \overline{t_{2}}$ is given by $\Gamma_{2}^{\prime} \cup\{4\} \cup\left(\Gamma_{2}^{\prime}+4\right)=\{2,4,6,8\}$. Note that such a string attractor is not a smallest one.

Proposition 2 ([10]). The size of a smallest string attractor for a word is not a monotone measure.

The previous proposition says that if w is a factor of u, then it could be possible for u to have a string attractor of size smaller than the size of a smallest string attractor for w.

Example 5. Let t_{n} be as in Example 1. As seen in Example 3, the word t_{7} has a smallest string attractor of size 4 . However, it is possible to check that the word $w=$ abaababbaaabbabaabbbaababbaabbabaababbabaabbaababbab $=\mathrm{a} \overline{t_{4}} \overline{t_{5}} \mathrm{~b} \in$ $\mathcal{L}\left(t_{7}\right)$ has no string attractor of size 4 . Note that $\Gamma=\{9,13,25,33,41\}$ is a string attractor of size 5 of w.

4 Proof of the main result

In [2] Brlek shows several combinatorial results concerning the factors in $\mathcal{L}(\mathbf{t})$. In particular he provides an explicit formula of the factor complexity of \mathbf{t}. Part of it is stated in the following.

Proposition 3 ([2]). Let $n \in \mathbb{N}$ and $w \in \mathcal{L}\left(t_{n}\right)$ with $|w| \geq 2^{n-2}+1$. The word t_{n} has exactly one occurrence of w.

An important ingredient of our proof is [7, Theorem 2].
Theorem 2 ([7]). Let $n \geq 4$. The set

$$
\Gamma_{n}=\left\{2^{n-2}, 3 \cdot 2^{n-3}, 2^{n-1}, 3 \cdot 2^{n-2}\right\}
$$

is a string attractor both for t_{n} and $\overline{t_{n}}$.
Note that in their papers Kutsukake et al. only state the result for t_{n}, but the same argument actually works also for $\overline{t_{n}}$.

We are now ready to prove Theorem 1 .
Proof of Theorem 11. It can easily checked that every factor of t_{n} (resp., of $\overline{t_{n}}$) with $n \leq 5$ has a string attractor of size at most 4 . Let us suppose the property true for all factors in $\mathcal{L}\left(t_{n}\right) \cup \mathcal{L}\left(\overline{t_{n}}\right)$ and let us consider the case of $w \in \mathcal{L}\left(t_{n+1}\right)=\mathcal{L}\left(t_{n} \overline{t_{n}}\right)$, with $n \geq 6$ (the case $w \in \mathcal{L}\left(\overline{t_{n+1}}\right)$ being symmetrical).

If $w \in \mathcal{L}\left(t_{n}\right) \cup \mathcal{L}\left(\overline{t_{n}}\right)$, then the result follows by induction. Thus, we can suppose that w has an occurrence in t_{n+1} containing the center of $t_{n} \overline{t_{n}}$, i.e., the last letter of the prefix t_{n}. In the following remaining part of the proof we consider all possible such factors of t_{n+1} by increasing their size. The idea is to write each factor as $w=\lambda t \rho$, with the central factor t of the form t_{k} or $\overline{t_{k}}$ for a certain $k \in \mathbb{N}$, and $\lambda=s t^{\prime}$ and $\rho=t^{\prime \prime} p$, where $t^{\prime}, t^{\prime \prime} \in\left\{t_{i}, \overline{t_{i}} \mid i \in \mathbb{N}\right\}^{*}$ (more precisely we have $t^{\prime}=t_{h_{\ell}}^{\prime} \cdots t_{h_{1}}^{\prime}$ and $t^{\prime \prime}=t_{j_{1}}^{\prime \prime} \cdots t_{j_{r}}^{\prime \prime}$ with $h_{\ell}<\ldots<h_{1}$ and $j_{1}>\ldots>j_{r}$), and s (resp., p) is a suffix (resp., a prefix) of a some element in $\left\{t_{i}, \overline{t_{i}} \mid i \in \mathbb{N}\right\}$.

Since the center of $t_{n} \overline{t_{n}}$ is also the center of $t_{n-2} \overline{t_{n-2}}$, if $w \in \mathcal{L}\left(t_{n-2} \overline{t_{n-2}}\right)=$ $\mathcal{L}\left(t_{n-1}\right)$, we can conclude by induction. Let us thus suppose that $w \notin \mathcal{L}\left(t_{n-1}\right)$. We can write w either as $w=\lambda t_{n-2} \rho$, with $\lambda \in \operatorname{Suf}\left(t_{n-1} \overline{t_{n-2}}\right)$ and $\rho \in \operatorname{Pref}\left(\overline{t_{n}}\right)$,
or as $w=\lambda \overline{t_{n-2}} \rho$ with $\lambda \in \operatorname{Suf}\left(t_{n}\right)$ and $\rho \in \operatorname{Pref}\left(t_{n-2} t_{n-1}\right)$. Let us focus on the former case. Since $\left|\lambda t_{n-2}\right|>2^{n-2}$ then $w \notin \mathcal{L}\left(t_{n}\right)$ according to Proposition 3 .

In the following we extend, step by step, ρ to the right, and, for every fixed ρ, we extend λ to the left. While the first step is fully developed, we let the reader check the details of Steps 2 to 7 .

Step 1. Let us start considering $\rho=p$ with $p \in \operatorname{Pref}\left(\overline{t_{n}}\right)$.
i) Let $w=s t_{n-2} p$, with $s \in \operatorname{Suf}\left(\overline{t_{n-4}}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. Then

$$
\Gamma=\Gamma_{n-2}+|\lambda|
$$

where $\lambda=s$, is a string attractor for w (see Figure 1 . where we represent only the central factor $\overline{t_{n-1}} \overline{t_{n-1}}$ of $\left.t_{n+1}\right)$. Indeed, let $v \in \mathcal{L}(w)$. If $v \in \mathcal{L}\left(t_{n-2}\right)$, then, by Theorem 2, one of its occurrences contains at least one of the positions of the string attractor Γ_{n-2} shifted by $|\lambda|=|s|$ (see Figure 1).
If v has an occurrence appearing to the left of the left-most position in Γ, then $v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4}\right) \subset \mathcal{L}\left(t_{n-2}\right)$, and thus it also has another occurrence containing at least one of the positions of $\Gamma_{n-2}+|\lambda|$ (see Figure 1). Similarly, if v has an occurrence appearing to the right of the right-most position in Γ, then $v \in \mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right) \subset \mathcal{L}\left(t_{n-2}\right)$ and thus v has another occurrence containing at least one of the positions of $\Gamma_{n-2}+|\lambda|$.

Fig. 1. A smallest string attractor Γ for a factor $w=s t_{n-2} p$ of t_{n+1}, with $s \in$ $\operatorname{Suf}\left(\overline{t_{n-4}}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$.
ii) Let $w=s \overline{t_{n-4}} t_{n-2} p$, with $s \in \operatorname{Suf}\left(t_{n-4}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. Then

$$
\Gamma=\left(\left(\Gamma_{n-2} \backslash\left\{3 \cdot 2^{n-4}\right\}\right) \cup\{0\}\right)+|\lambda|
$$

where $\lambda=s \overline{t_{n-4}}$, is a string attractor for w (see Figure 2, where we represent only the central factor $\overline{t_{n-1}} \overline{t_{n-1}}$ of $\left.t_{n+1}\right)$. Indeed, let $v \in \mathcal{L}(w)$. If $v \in$ $\mathcal{L}\left(t_{n-2}\right)$, then, using Theorem 2 , we have that v has an occurrence containing at least one of the positions of Γ_{n-2} shifted by $|\lambda|$; if the only position
contained by such occurrence is $3 \cdot 2^{n-4}+|\lambda|$, then $v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4}\right)$, hence v has another occurrence containing the position $|\lambda|$.
If v has an occurrence appearing to the left of the left-most position in Γ, then $v \in \mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right) \subset \mathcal{L}\left(t_{n-2}\right)$ and we can conclude using again Theorem 2. If v has an occurrence appearing to the right of the right-most position of Γ, i.e., $2^{n-3}+|\lambda|$, then $v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4} \overline{t_{n-4}}\right)$: either v is fully contained in $\mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right) \subset \mathcal{L}\left(t_{n-2}\right)$ and we can conclude, or v has another occurrence containing the position $|\lambda|$ (see Figure 2).

Fig. 2. A smallest string attractor Γ for a factor $w=s \overline{t_{n-4}} t_{n-2} p$ of t_{n+1}, with $s \in \operatorname{Suf}\left(t_{n-4}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. The position of $\Gamma_{n-2}+|\lambda|$ that is not in Γ is in white.
iii) Let $w=s t_{n-3} t_{n-2} p$, with $s \in \operatorname{Suf}\left(\overline{t_{n-5}}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. Then

$$
\Gamma=\left(\left(\Gamma_{n-2} \backslash\left\{2^{n-4}, 3 \cdot 2^{n-4}\right\}\right) \cup\left\{-2^{n-4}, 0\right\}\right)+|\lambda|
$$

where $\lambda=s t_{n-3}$, is a string attractor for w. Indeed, let $v \in \mathcal{L}(w)$. Similarly to the previous case, if $v \in \mathcal{L}\left(t_{n-2}\right)$, then, by Theorem $2 v$ has an occurrence containing at least one of the positions of Γ_{n-2} shifted by $|\lambda|$; if the only position contained in the occurrence of v is $2^{n-4}+|\lambda|$, then $v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4}\right)$ and thus there is another occurrence of v containing the position $-2^{n-4}+|\lambda|$; if the only position contained in the occurrence of v is $3 \cdot 2^{n-4}+|\lambda|$, then $v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4}\right)$ and thus there is another occurrence of v containing the position $|\lambda|$.
If v appears to the left of the left-most position in Γ, then we can conclude since $v \in \mathcal{L}\left(\overline{t_{n-5}} \overline{t_{n-5}} t_{n-5}\right) \subset \mathcal{L}\left(t_{n-2}\right)$. If v appears between the positions $-2^{n-4}+|\lambda|$ and $|\lambda|$, then $v \in \mathcal{L}\left(\overline{t_{n-4}}\right) \subset \mathcal{L}\left(t_{n-2}\right)$. If v appears to the right of the right-most position in Γ, i.e., $2^{n-3}+|\lambda|$, then $v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4} \overline{t_{n-4}}\right)$: either v is fully contained in $\mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right) \subset \mathcal{L}\left(t_{n-2}\right)$, or v has another occurrence containing the position $|\lambda|$.
iv) Let $w=s \overline{t_{n-5}} t_{n-3} t_{n-2} p$, with $s \in \operatorname{Suf}\left(t_{n-3} \overline{t_{n-4}} t_{n-5}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. Then

$$
\Gamma=\left(\left(\Gamma_{n-2} \backslash\left\{3 \cdot 2^{n-5}, 3 \cdot 2^{n-4}\right\}\right) \cup\left\{-2^{n-3}, 0\right\}\right)+|\lambda|,
$$

where $\lambda=s \overline{t_{n-5}} t_{n-3}$, is a string attractor for w. Indeed, let $v \in \mathcal{L}(w)$. As above, if $v \in \mathcal{L}\left(t_{n-2}\right)$, then, by Theorem $2, v$ has an occurrence containing at least one of the positions of Γ_{n-2} shifted by $|\lambda|$; if the only position contained in the occurrence is $3 \cdot 2^{n-5}+|\lambda|$ (resp., $3 \cdot 2^{n-4}+|\lambda|$) then v has another occurrence containing the position $-2^{n-3}+|\lambda|$ (resp., $|\lambda|$).
If v appears to the left of the left-most position of Γ, then $v \in \mathcal{L}\left(t_{n-3} \overline{t_{n-3}}\right)=$ $\mathcal{L}\left(t_{n-2}\right)$ and we can conclude. If v appears between the positions $-2^{n-3}+|\lambda|$ and $|\lambda|$, then $v \in \mathcal{L}\left(t_{n-3}\right) \subset \mathcal{L}\left(t_{n-2}\right)$ and we can conclude. If v appears to the right of the right-most position of Γ (i.e., $2^{n-3}+|\lambda|$) then it is contained $\operatorname{in} \mathcal{L}\left(\overline{t_{n-4}} t_{n-4} \overline{t_{n-4}}\right)$: either v is fully contained in $\mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right) \subset \mathcal{L}\left(t_{n-2}\right)$ and we can conclude, or v has another occurrence containing the position $|\lambda|$.
v) Let $w=s t_{n-3} \overline{t_{n-1}} p$, with $s \in \operatorname{Suf}\left(\overline{t_{n-3}}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. Then

$$
\Gamma=\left(\left(\Gamma_{n-1} \backslash\left\{3 \cdot 2^{n-4}\right\}\right) \cup\left\{-2^{n-4}\right\}\right)+|\lambda| .
$$

where $\lambda=s t_{n-3}$, is a string attractor for w. Indeed, let $v \in \mathcal{L}(w)$. If $v \in \mathcal{L}\left(\overline{t_{n-1}}\right)$ then, by Theorem 2, v has an occurrence containing at least one of the positions of Γ_{n-1} shifted by $|\lambda|$; if the only position contained in the occurrence is $3 \cdot 2^{n-4}+|\lambda|$, then $v \in \mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right)$ and thus there is another occurrence of v containing the position $-2^{n-4}+|\lambda|$.
If v appears to the left of the left-most position of Γ (resp., between $-2^{n-4}+$ $|\lambda|$ and $2^{n-3}+|\lambda|$; resp., to the right of the right-most position of Γ), then it is contained in $\mathcal{L}\left(\overline{t_{n-4}} t_{n-4} t_{n-4}\right)$ (resp., $v \in \mathcal{L}\left(\overline{t_{n-4}} \overline{t_{n-4}} t_{n-4}\right)$; resp., $\left.v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4} \overline{t_{n-4}}\right)\right)$ thus it is also contained in $\mathcal{L}\left(\overline{t_{n-1}}\right)$ and we can conclude.
vi) Let $w=s \overline{t_{n-2}} \overline{t_{n-1}} p$, with $s \in \operatorname{Suf}\left(t_{n-4}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. This is the first case when it is not enough to "move" some of the positions of a string attractor of the form Γ_{k}, with $k \in \mathbb{N}$. Indeed, as shown in Example 5, in this case it is not possible to have a string attractor of size 4 . On the other hand the set

$$
\Gamma=\left(\left(\Gamma_{n-1} \backslash\left\{3 \cdot 2^{n-4}\right\}\right) \cup\left\{-2^{n-3},-2^{n-4}\right\}\right)+|\lambda|
$$

where $\lambda=s \overline{t_{n-2}}$, is a string attractor for w (see Figure 3). Indeed, let $v \in \mathcal{L}(w)$. If $v \in \mathcal{L}\left(\overline{t_{n-1}}\right)$ then, by Theorem $2, v$ has an occurrence containing at least one of the positions of Γ_{n-1}; if the only position contained in the occurrence is $3 \cdot 2^{n-4}+|\lambda|$, then $v \in \mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right)$ and thus there exists another occurrence of v containing $-2^{n-4}+|\lambda|$.
All the other cases are proved as in the previous cases: namely if v appears to the left of $-2^{n-3}+|\lambda|$, (resp., between $-2^{n-3}+|\lambda|$ and $-2^{n-4}+|\lambda|$; resp., between $-2^{n-4}+|\lambda|$ and $2^{n-3}+|\lambda|$; resp., to the right of $\left.3 \cdot 2^{n-3}+|\lambda|\right)$ then $v \in \mathcal{L}\left(t_{n-4} \overline{t_{n-4}} t_{n-4}\right)$ (resp., $v \in \mathcal{L}\left(t_{n-4}\right) ;$ resp., $v \in \mathcal{L}\left(\overline{t_{n-4}} \overline{t_{n-4}} t_{n-4}\right)$; resp., $\left.v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4} \overline{t_{n-4}}\right)\right)$, thus it appears in $\mathcal{L}\left(\overline{t_{n-1}}\right)$ and we can conclude using Theorem 2 .
vii) Let $w=s t_{n-4} \overline{t_{n-2}} \overline{t_{n-1}} p$, with $s \in \operatorname{Suf}\left(t_{n-3} \overline{t_{n-4}}\right)$ and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. As in the previous case, it is possible to check that there exist no string

Fig. 3. A smallest string attractor Γ for a factor $w=s \overline{t_{n-2}} \overline{t_{n-1}} p$ of t_{n+1}, with $s \in \operatorname{Suf}\left(t_{n-4}\right)$, and $p \in \operatorname{Pref}\left(\overline{t_{n-4}}\right)$. The position of $\Gamma_{n-1}+|\lambda|$ that is not in Γ is in white.
attractor of size 4 . However, the set

$$
\Gamma=\left(\left(\Gamma_{n-1} \backslash\left\{3 \cdot 2^{n-4}\right\}\right) \cup\left\{-2^{n-2},-2^{n-4}\right\}\right)+|\lambda|,
$$

where $\lambda=s t_{n-4} \overline{t_{n-2}}$, is a string attractor for w. Indeed, let $v \in \mathcal{L}(w)$. If $v \in \mathcal{L}\left(\overline{t_{n-1}}\right)$, then, by Theorem $2, v$ has an occurrence containing at least one of the positions of Γ_{n-1}; if the only position contained in the occurrence is $3 \cdot 2^{n-4}+|\lambda|$, then $v \in \mathcal{L}\left(t_{n-4} \overline{t_{n-4}}\right)$ and thus there exists another occurrence of v containing $-2^{n-4}+|\lambda|$.
All the other cases are proved as in the previous cases: namely if v appears to the left of $-2^{n-2}+|\lambda|$, (resp., between $-2^{n-2}+|\lambda|$ and $-2^{n-4}+|\lambda|$; resp., between $-2^{n-4}+|\lambda|$ and $2^{n-3}+|\lambda|$; resp., to the right of $\left.3 \cdot 2^{n-3}+|\lambda|\right)$ then $v \in$ $\mathcal{L}\left(t_{n-2}\right)$ (resp., $v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4} t_{n-4}\right)$; resp., $v \in \mathcal{L}\left(\overline{t_{n-4}} \overline{t_{n-4}} t_{n-4}\right) ;$ resp., $\left.v \in \mathcal{L}\left(\overline{t_{n-4}} t_{n-4} \overline{t_{n-4}}\right)\right)$, thus it appears in $\mathcal{L}\left(\overline{t_{n-1}}\right)$ and we can conclude.

The seven cases above are summarized in Table 1. Note that in all previous cases $\overline{t_{n-4}}$ is a prefix of p, and hence a prefix of ρ.

Step 2. We now consider the case of ρ containing $\overline{t_{n-4}}$ as a proper prefix. The seven possible cases of factors are summarized in Table 2. Note that in all these cases t_{n-4} is a prefix of p, and hence $\overline{t_{n-3}}=\overline{t_{n-4}} t_{n-4}$ is a prefix of ρ.

Step 3. We now consider the case of ρ containing as a proper prefix $\overline{t_{n-3}}$. The six possible cases of factors are summarized in Table 3 Note that in all these cases t_{n-5} is a prefix of p, and hence $\overline{t_{n-3}} t_{n-5}$ is a prefix of ρ.

Step 4. We now consider the case of ρ containing as a proper prefix $\overline{t_{n-3}} t_{n-5}$. The six possible cases of factors are summarized in Table 4. Note that in all these cases $\overline{t_{n-5}} \overline{t_{n-4}} t_{n-4}$ is a prefix of p, and hence $\overline{t_{n-2}} t_{n-4}$ is a prefix of ρ.

Step 5. We now consider the case of ρ containing as a proper prefix $\overline{t_{n-2}} t_{n-4}$. Since $t_{n-2} \overline{t_{n-2}}=t_{n-1}$ is a factor of w, in the first two cases weconsider as starting point for constructing a string attractor Γ_{n-1} instead of Γ_{n-2} (for the remaining two cases we have as central factor $t=\overline{t_{n-1}}$, so we also use $\left.\Gamma_{n-1}\right)$.

Suf (\cdot)	t^{\prime}	t	$t^{\prime \prime}$	$\operatorname{Pref}(\cdot)$	Γ^{\prime}	$\Gamma^{\prime \prime}$	$\|\Gamma\|$
$\overline{t_{n-4}}$	ε	t_{n-2}	ε	$\overline{t_{n-4}}$	\emptyset	\emptyset	4
t_{n-4}	$\overline{t_{n-4}}$	t_{n-2}	ε	$\overline{t_{n-4}}$	$\left\{3 \cdot 2^{n-4}\right\}$	$\{0\}$	4
$\overline{t_{n-5}}$	t_{n-3}	t_{n-2}	ε	$\overline{t_{n-4}}$	$\left.\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-4}, \\ 0\end{array}\right\}$	4
$t_{n-3} \overline{t_{n-4}} t_{n-5}$	$\overline{t_{n-5}} t_{n-3}$	t_{n-2}	ε	$\overline{t_{n-4}}$	$\left\{\begin{array}{c}3 \cdot 2^{n-5}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-3}, \\ 0\end{array}\right\}$	4
$\overline{t_{n-3}}$	t_{n-3}	$\overline{t_{n-1}}$	ε	$\overline{t_{n-4}}$	$\left\{3 \cdot 2^{n-4}\right\}$	$\left\{-2^{n-4}\right\}$	4
t_{n-4}	$\overline{t_{n-2}}$	$\overline{t_{n-1}}$	ε	$\overline{t_{n-4}}$	$\left\{3 \cdot 2^{n-4}\right\}$	$\left\{\begin{array}{c}-2^{n-3}, \\ -2^{n-4}\end{array}\right\}$	5
$t_{n-3} \overline{t_{n-4}}$	$t_{n-4} \overline{t_{n-2}}$	$\overline{t_{n-1}}$	ε	$\overline{t_{n-4}}$	$\left\{3 \cdot 2^{n-4}\right\}$	$\left\{\begin{array}{c}-2^{n-4}, \\ -2^{n-2}\end{array}\right\}$	5

Table 1. Summary of Step 1 of the proof of Theorem 1 For a factor of the form $w=s t^{\prime} t t p$, with $s \in \operatorname{Suf}(\cdot), p \in \operatorname{Pref}(\cdot)$, a smallest string attractor is $\Gamma=\left(\left(\Gamma_{k} \backslash \Gamma^{\prime}\right) \cup \Gamma^{\prime \prime}\right)+\left|s t^{\prime}\right|$, with k the integer such that $t=t_{k}$ or $\overline{t_{k}}$.

Suf (\cdot)	t^{\prime}	t	$t^{\prime \prime}$	$\operatorname{Pref}(\cdot)$	Γ^{\prime}	$\Gamma^{\prime \prime}$	$\|\Gamma\|$
$\overline{t_{n-4}}$	ε	t_{n-2}	$\overline{t_{n-4}}$	t_{n-4}	$\left\{3 \cdot 2^{n-5}\right\}$	$\left\{9 \cdot 2^{n-5}\right\}$	4
t_{n-4}	$\overline{t_{n-4}}$	t_{n-2}	$\overline{t_{n-4}}$	t_{n-4}	$\left\{\begin{array}{c}3 \cdot 2^{n-5}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}0, \\ 9 \cdot 2^{n-5}\end{array}\right\}$	4
$\overline{t_{n-5}}$	t_{n-3}	t_{n-2}	$\overline{t_{n-4}}$	t_{n-4}	$\left\{2^{n-4}\right\}$	$\left\{-2^{n-4}\right\}$	4
$t_{n-3} \overline{t_{n-4}} t_{n-5}$	$\overline{t_{n-5}} t_{n-3}$	t_{n-2}	$\overline{t_{n-4}}$	t_{n-4}	$\left\{\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-5}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-3}, \\ -2^{n-4}\end{array}\right\}$	4
$\overline{t_{n-3}}$	t_{n-3}	$\overline{t_{n-1}}$	$\overline{t_{n-4}}$	$t_{n-4} t_{n-3} t_{n-2}$	$\left\{\begin{array}{c}3 \cdot 2^{n-4}, \\ 3 \cdot 2^{n-3}\end{array}\right\}$	$\left\{\begin{array}{c}0, \\ 2^{n-1}\end{array}\right\}$	4
t_{n-4}	$\overline{t_{n-2}}$	$\overline{t_{n-1}}$	$\overline{t_{n-4}}$	$t_{n-4} t_{n-3} t_{n-2}$	$\left\{\begin{array}{c}2^{n-3}, \\ 3 \cdot 2^{n-4}, \\ 3 \cdot 2^{n-3}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-3}, \\ 0, \\ 2^{n-1}\end{array}\right\}$	4
$t_{n-3} \overline{t_{n-4}}$	$t_{n-4} \overline{t_{n-2}}$	$\overline{t_{n-1}}$	$\overline{t_{n-4}}$	$t_{n-4} t_{n-3} t_{n-2}$	$\left\{\begin{array}{c}3 \cdot 2^{n-4}, \\ 3 \cdot 2^{n-3}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-2}, \\ 0, \\ 2^{n-1}\end{array}\right\}$	5

Table 2. Summary of Step 2 of the proof of Theorem 1 For a factor of the form $w=s t^{\prime} t t p$, with $s \in \operatorname{Suf}(\cdot), p \in \operatorname{Pref}(\cdot)$, a smallest string attractor is $\Gamma=\left(\left(\Gamma_{k} \backslash \Gamma^{\prime}\right) \cup \Gamma^{\prime \prime}\right)+\left|s t^{\prime}\right|$, with k the integer such that $t=t_{k}$ or $\overline{t_{k}}$.

The four possible cases of factors are summarized in Table 5. Note that in all these cases $\overline{t_{n-4}} \overline{t_{n-3}}$ is a prefix of p, and hence $\overline{t_{n-1}}$ is a prefix of ρ.

Step 6. We now consider the case of ρ containing as a proper prefix $\overline{t_{n-1}}$. As in the previous step, we have $t_{n-2} \overline{t_{n-2}}=t_{n-1}$ is a factor of w. For this reason, in the first of the three cases considered we construct the string attractor starting by a shift of Γ_{n-1} (for the remaining cases we also use Γ_{n-1} following the same construction of steps above). The three possible cases of factors are summarized in Table 6. Note that in all these cases t_{n-3} is a prefix of p.

Suf(\cdot)	t^{\prime}	t	$t^{\prime \prime}$	Pref(\cdot)	Γ^{\prime}	$\Gamma^{\prime \prime}$	$\|\Gamma\|$
$\overline{t_{n-4}}$	ε	t_{n-2}	$\overline{t_{n-3}}$	t_{n-5}	$\left\{\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}2^{n-2}, \\ 5 \cdot 2^{n-5}\end{array}\right\}$	4
t_{n-4}	$\overline{t_{n-4}}$	t_{n-2}	t_{n-3}	t_{n-5}	$\left\{\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-5} \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-5}, \\ 2^{n-2}, \\ 5 \cdot 2^{n-4}\end{array}\right\}$	4
$\overline{t_{n-5}}$	t_{n-3}	t_{n-2}	t_{n-3}	t_{n-5}	$\left\{\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-4}, \\ 2^{n-2}, \\ 5 \cdot 2^{n-4}\end{array}\right\}$	5
$t_{n-3} \overline{t_{n-4}} t_{n-5}$	$\overline{t_{n-5}} t_{n-3}$	t_{n-2}	t_{n-3}	t_{n-5}	$\left\{\begin{array}{c}3 \cdot 2^{n-5}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-3}, \\ 5 \cdot 2^{n-4}\end{array}\right\}$	4
$\overline{t_{n-3}}$	t_{n-3}	$\overline{t_{n-1}}$	$\overline{t_{n-3}}$	$t_{n-3} t_{n-2}$	$\left\{\begin{array}{c}3 \cdot 2^{n-4} \\ 3 \cdot 2^{n-3}\end{array}\right\}$	$\left\{\begin{array}{c}0, \\ 2^{n-1}\end{array}\right\}$	4
t_{n-2}	$\overline{t_{n-2}}$	t_{n-1}	t_{n-3}	$t_{n-3} t_{n-2}$	$\left\{\begin{array}{c}2^{n-3}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-3} \\ 2^{n-1}\end{array}\right\}$	4

Table 3. Summary of Step 3 of the proof of Theorem 1 For a factor of the form $w=s t^{\prime} t t p$, with $s \in \operatorname{Suf}(\cdot), p \in \operatorname{Pref}(\cdot)$, a smallest string attractor is $\Gamma=\left(\left(\Gamma_{k} \backslash \Gamma^{\prime}\right) \cup \Gamma^{\prime \prime}\right)+\left|s t^{\prime}\right|$, with k the integer such that $t=t_{k}$ or $\overline{t_{k}}$.

Suf(\cdot)	t^{\prime}	t	$t^{\prime \prime}$	Pref(\cdot)	Γ^{\prime}	$\Gamma^{\prime \prime}$	$\|\Gamma\|$
$\overline{t_{n-4}}$	ε	t_{n-2}	$\overline{t_{n-3}} t_{n-5}$	$\overline{t_{n-5}} \overline{t_{n-4}} t_{n-4}$	$\left\{\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-5}\end{array}\right\}$	$\left\{\begin{array}{c}2^{n-2}, \\ 3 \cdot 2^{n-3}\end{array}\right\}$	4
t_{n-4}	$\overline{t_{n-4}}$	t_{n-2}	$\overline{t_{n-3}} t_{n-5}$	$\overline{t_{n-5}} \overline{t_{n-4}} t_{n-4}$	$\left\{\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-5} \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}0, \\ 2^{n-2}, \\ 3 \cdot 2^{n-4}\end{array}\right\}$	4
$\overline{t_{n-5}}$	t_{n-3}	t_{n-2}	$\overline{t_{n-3}} t_{n-5}$	$\overline{t_{n-5}} \overline{t_{n-4}} t_{n-2}$	$\left\{\begin{array}{c}2^{n-4}, \\ 3 \cdot 2^{n-5}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-4}, \\ 3 \cdot 2^{n-3}\end{array}\right\}$	4
$t_{n-3} \overline{t_{n-4}} t_{n-5}$	$\overline{t_{n-5}} t_{n-3}$	t_{n-2}	$\overline{t_{n-3}} t_{n-5}$	$\overline{t_{n-5}} \overline{t_{n-4}} t_{n-2}$	$\left\{\begin{array}{c}3 \cdot 2^{n-5} \\ 3 \cdot 2^{n-4}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-3}, \\ 5 \cdot 2^{n-4} \\ 3 \cdot 2^{n-3}\end{array}\right\}$	5
$\overline{t_{n-3}}$	t_{n-3}	$\overline{t_{n-1}}$	$\overline{t_{n-3}} t_{n-5}$	$\overline{t_{n-5}} \overline{t_{n-4}} t_{n-2}$	$\left\{\begin{array}{c}3 \cdot 2^{n-4}, \\ 3 \cdot 2^{n-3}\end{array}\right\}$	$\left\{\begin{array}{c}0, \\ 2^{n-1}\end{array}\right\}$	4
t_{n-2}	$\overline{t_{n-2}}$	$\overline{t_{n-1}}$	$\overline{t_{n-3}} t_{n-5}$	$\overline{t_{n-5}} \overline{t_{n-4}} t_{n-2}$	$\left\{\begin{array}{c}2^{n-3}, \\ 3 \cdot 2^{n-4} \\ 3 \cdot 2^{n-3}\end{array}\right\}$	$\left\{\begin{array}{c}-2^{n-3}, \\ 0, \\ 2^{n-1}\end{array}\right\}$	4

Table 4. Summary of Step 4 of the proof of Theorem 1 For a factor of the form $w=s t^{\prime} t t p$, with $s \in \operatorname{Suf}(\cdot), p \in \operatorname{Pref}(\cdot)$, a smallest string attractor is $\Gamma=\left(\left(\Gamma_{k} \backslash \Gamma^{\prime}\right) \cup \Gamma^{\prime \prime}\right)+\left|s t^{\prime}\right|$, with k the integer such that $t=t_{k}$ or $\overline{t_{k}}$.

Step 7. As last step we consider the case of ρ containing as a proper prefix $\overline{t_{n-1}} t_{n-3}$. Similarly to the previous step, since $t_{n-2} \overline{t_{n-2}}=t_{n-1}$ is a factor of w, we construct the string attractor starting from a shift of Γ_{n-1} also in the first of the three cases. The three possible cases of factors are summarized in Table 7 .

Thus we proved the result for all factors $w \in \mathcal{L}\left(t_{n+1}\right)$ containing $x t_{n-2} y$, with x the last letter of $\overline{t_{n-2}}$ and y the first letter of $\overline{t_{n}}$, as a proper factor. The case $w=\lambda \overline{t_{n-2}} \rho$ with $\lambda \in \operatorname{Suf}\left(t_{n}\right)$ and $\rho \in \operatorname{Pref}\left(t_{n-2} t_{n-1}\right)$ is proved in a symmetrical way.

$\operatorname{Suf}(\cdot)$	t^{\prime}	t	$t^{\prime \prime}$	$\operatorname{Pref}(\cdot)$	Γ^{\prime}	$\Gamma^{\prime \prime}$	$\|\Gamma\|$
$\overline{t_{n-4}}$	ε	t_{n-1}	t_{n-4}	$\overline{t_{n-4}} \overline{t_{n-3}}$	$\left\{3 \cdot 2^{n-4}\right\}$	$\left\{2^{n-1}\right\}$	4
$\overline{t_{n-3}} t_{n-4}$	$\overline{t_{n-4}}$	t_{n-1}	t_{n-4}	$\overline{\overline{t_{n-4}}} \overline{t_{n-3}}$	$\left\{3 \cdot 2^{n-4}\right\}$	$\left\{\begin{array}{c}0, \\ 2^{n-1}\end{array}\right\}$	5
t_{n-3}	ε	$\overline{t_{n-1}}$	$\overline{t_{n-2}} t_{n-4}$	$\overline{t_{n-4}} \overline{t_{n-3}}$	$\left\{3 \cdot 2^{n-4}\right\}$	$\left\{2^{n-1}\right\}$	4
$t_{n-2} \overline{t_{n-3}}$	t_{n-3}	$\overline{t_{n-1}}$	$\overline{t_{n-2}} t_{n-4}$	$\overline{t_{n-4}} \overline{t_{n-3}}$	$\left\{\begin{array}{c}3 \cdot 2^{n-4}, \\ 3 \cdot 2^{n-3}\end{array}\right\}$	$\left\{\begin{array}{c}0, \\ 2^{n-1}\end{array}\right\}$	4

Table 5. Summary of Step 5 of the proof of Theorem 1 For a factor of the form $w=s t^{\prime} t t p$, with $s \in \operatorname{Suf}(\cdot), p \in \operatorname{Pref}(\cdot)$, a smallest string attractor is $\Gamma=\left(\left(\Gamma_{n-1} \backslash \Gamma^{\prime}\right) \cup \Gamma^{\prime \prime}\right)+\left|s t^{\prime}\right|$.
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|c|}\hline \operatorname{Suf}(\cdot) & t^{\prime} & t & t^{\prime \prime} & \operatorname{Pref}(\cdot) & \Gamma^{\prime} & \Gamma^{\prime \prime} & |\Gamma| \\
\hline \overline{t_{n-2}} & \varepsilon & t_{n-1} & t_{n-2} & t_{n-3} & \left\{\begin{array}{c}2^{n-3}, \\
3 \cdot 2^{n-4}\end{array}\right\} & \left\{\begin{array}{c}2^{n-1}, \\
5 \cdot 2^{n-3}\end{array}\right\} & 4 \\
\hline t_{n-3} & \varepsilon & \overline{t_{n-1}} & \overline{t_{n-1}} & t_{n-3} & \left\{\begin{array}{c}3 \cdot 2^{n-4}, \\
3 \cdot 2^{n-3}\end{array}\right\} & \left\{\begin{array}{c}2^{n-1}, \\
7 \cdot 2^{n-3}\end{array}\right\} & 4 \\
\hline t_{n-2} \overline{t_{n-3}} & t_{n-3} & \overline{t_{n-1}} & \overline{t_{n-1}} & t_{n-3} & \left\{\begin{array}{c}3 \cdot 2^{n-4}, \\
2^{n-2}, \\
3 \cdot 2^{n-3}\end{array}\right\}\end{array}
$$\right\}\left\{\begin{array}{c}0,

2^{n-1},

3 \cdot 2^{n-2}\end{array}\right\}\)| |
| :---: |

Table 6. Summary of Step 6 of the proof of Theorem 1 For a factor of the form $w=s t^{\prime} t t p$, with $s \in \operatorname{Suf}(\cdot), p \in \operatorname{Pref}(\cdot)$, a smallest string attractor is $\Gamma=\left(\left(\Gamma_{n-1} \backslash \Gamma^{\prime}\right) \cup \Gamma^{\prime \prime}\right)+\left|s t^{\prime}\right|$.
\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|c|}\hline \operatorname{Suf}(\cdot) & t^{\prime} & t & t^{\prime \prime} & \operatorname{Pref}(\cdot) & \Gamma^{\prime} & \Gamma^{\prime \prime} & |\Gamma| \\
\hline \overline{t_{n-2}} & \varepsilon & t_{n-1} & t_{n-2} t_{n-3} & \overline{t_{n-3}} \overline{t_{n-2}} & \left\{\begin{array}{c}3 \cdot 2^{n-4}, \\
3 \cdot 2^{n-3}\end{array}\right\} & \left\{\begin{array}{c}2^{n-1}, \\
3 \cdot 2^{n-2}\end{array}\right\} & 4 \\
\hline t_{n-3} & \varepsilon & \overline{t_{n-1}} & \overline{t_{n-1}} t_{n-3} & \overline{t_{n-3}} \overline{\overline{t_{n-2}}} & \left\{\begin{array}{c}2^{n-3}, \\
3 \cdot 2^{n-4}\end{array}\right\} & \left\{\begin{array}{c}2^{n-1}, \\
2^{n}\end{array}\right\} & 4 \\
\hline t_{n-2} \overline{t_{n-3}} & t_{n-3} & \overline{t_{n-1}} & \overline{t_{n-1}} t_{n-3} & \overline{t_{n-3}} \overline{t_{n-2}} & \left\{\begin{array}{c}2^{n-3}, \\
3 \cdot 2^{n-4}, \\
3 \cdot 2^{n-3}\end{array}
$$\right\} \& \left\{\begin{array}{c}0,

2^{n-1},

2^{n}\end{array}\right\}\end{array}\right\} 4\)| 4 |
| :--- |

Table 7. Summary of Step 7 of the proof of Theorem 1 For a factor of the form $w=s t^{\prime} t t p$, with $s \in \operatorname{Suf}(\cdot), p \in \operatorname{Pref}(\cdot)$, a smallest string attractor is $\Gamma=\left(\left(\Gamma_{n-1} \backslash \Gamma^{\prime}\right) \cup \Gamma^{\prime \prime}\right)+\left|s t^{\prime}\right|$.

5 Future works and different approaches

The Thue-Morse word has been generalized to larger alphabets in several different ways. One possible generalization is the one given in [2], where \mathbf{t}_{m} is defined over an alphabet $\mathcal{A}_{m}=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ of cardinality m as the fixed point $\mathbf{t}_{m}=\lim _{n \rightarrow \infty} \varphi_{m}^{n}\left(a_{1}\right)$, where $\varphi_{m}\left(a_{k}\right)=a_{k} \cdots a_{m} a_{1} \cdots a_{k-1}$ for every $1 \leq k \leq m$.

For instance, we have $\mathbf{t}_{3}=$ abcbcacabbcacababccababcabc \cdots over the ternary alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.

Conjecture 1. For every $m \in \mathbb{N}$ there exist an integer K_{m} such that every nonempty factor of \mathbf{t}_{m} has a string attractor of size at most K_{m}.

Recently Dvořáková proved that every factor of an episturmian word has a sting attractor having size the number of distinct letters appearing in the factor (see [5]). In particular, every factor of a Sturmian word different from a letter has a string attractor of size 2 . Such result is based on the construction of (standard) episturmian words by iterated palindromic closure (see [4]). We believe that a similar approach could be used also for the Thue-Morse word, using pseudo-palindromic closure instead (see [31]).

Acknowledgements. This research received funding from the Ministry of Education, Youth and Sports of the Czech Republic through the project CZ.02.1.01/0.0/0.0/16_019/0000765. To check some of the examples we used a code written by undergraduate student Veronika Hendrychová.

References

1. Alexandre Blondin Massé, Geneviève Paquin, Hugo Tremblay, and Laurent Vuillon. On generalized pseudostandard words over binary alphabets. J. Integer Seq., 16(2):Article 13.2.11, 28, 2013.
2. Srečko Brlek. Enumeration of factors in the Thue-Morse word. Discrete Applied Mathematics, 24(1-3):83-96, 1989.
3. Aldo de Luca and Alessandro De Luca. Pseudopalindrome closure operators in free monoids. Theoret. Comput. Sci., 362(1-3):282-300, 2006.
4. Xavier Droubay, Jacques Justin, and Giuseppe Pirillo. Episturmian words and some constructions of de Luca and Rauzy. Theoret. Comput. Sci., 255(1-2):539553, 2001.
5. Ľubomíra Dvoráková. String attractors of episturmian sequences. https://arxiv.org/pdf/2211.01660v2.pdf, 2022.
6. Dominik Kempa and Nicola Prezza. At the roots of dictionary compression: string attractors. In STOC'18-Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages 827-840. ACM, New York, 2018.
7. Kanaru Kutsukake, Takuya Matsumoto, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. On repetitiveness measures of Thue-Morse words. Lecture Notes in Computer Science, 12303 LNCS:213-220, 2020.
8. M. Lothaire. Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2002.
9. Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone, and Marinella Sciortino. String attractors and combinatorics on words. In ICTS, CEUR Workshop Proceedins, volume 2504, pages 57-71, 2019.
10. Sabrina Mantaci, Antonio Restivo, Giuseppe Romana, Giovanna Rosone, and Marinella Sciortino. A combinatorial view on string attractors. Theoret. Comput. Sci., 850:236-248, 2021.
11. Harold Marston Morse. Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc., 22(1):84-100, 1921.
12. Gonzalo Navarro. Indexing highly repetitive collections. In Combinatorial algorithms, volume 7643 of Lecture Notes in Comput. Sci., pages 274-279. Springer, Heidelberg, 2012.
13. Eugène Prouhet. Mémoire sur quelques relations entre les puissances des nombres. C.R. Acad. Sci., 31:225, 1851.
14. Antonio Restivo, Giuseppe Romana, and Marinella Sciortino. String attractors and infinite words. In LATIN 2022: Theoretical Informatics, pages 426-442. Springer International Publishing, 2022.
15. Luke Schaeffer and Jeffrey Shallit. String attractors for automatic sequences. https://arxiv.org/pdf/2012.06840.pdf, 2021.
16. Axel Thue. Über unendliche zeichenreihenal. orske vid. Selsk. Skr. Mat. Nat. Kl., 7:1-22, 1906.
