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Abstract. In 2020 Kutsukake et al. showed that every for every n ≥ 4
the prefix of length 2n of the Thue-Morse word has a string attractor of
size 4. In this paper we extend their result by constructing a smallest
string attractor for any given factor of the Thue-Morse word. In partic-
ular, we show that these string attractors have size at most 5 and that
this upper bound is sharp.
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1 Introduction

String attractors were introduced by Kempa and Prezza in [6] in the context of
dictionary-based data compression. A string attractor for a word w is a set of
positions of the word such that all factors of w have an occurrence containing
at least one of the elements of the set. Intuitively, the more repetitive is w the
lower is the size of a smallest string attractor for w. Actually, the smallest size
of a string attractor for a word is a lower bound for several other repetitiveness
measures associated with the most common compression schemes, including the
number of phrases in the LZ77 parsing and the number of equal-letter runs
produced by the Burrows-Wheeler Transform (see [6,12,10]).

While it is trivial to construct a string attractor for a given word (e.g., by
taking all possible positions), finding a smallest one is a NP-complete problem.

Mantaci et al. studied in [10] the size of a smallest string attractor of several
infinite families of words. In particular they showed that every standard Sturmian
word different than a letter has a smallest string attractor of size 2 (see also [5]
for a generalization of this results to episturmian words), while the de Brujin
word of length n has a smallest string attractor of size n

logn . In the same paper
they also studied the well-known Thue-Morse word t, also known as Prouhet-
Thue-Morse word, since first studied by Prouhet before being rediscovered by
Thue and Morse, between others (see [13,16,11]). In a preliminary version of
their paper ([9]) Mantaci et al. conjectured that prefixes of size 2n of t have a
smallest string attractor of size n. This conjecture has been proven to be wrong
by Katsukake et al. in [7], who showed that for any such prefix it is possible to
find a string attractor of size at most 4.

Schaeffer and Shallit introduced in [15] the notion of string attractor profile
function for infinite words by evaluating the size of a smallest attractor for each
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prefix (see also [14]). If instead of prefixes we consider a generic factor of a (finite
or infinite) word the situation get more complicated. Indeed, the measure of a
smallest string attractor is not monotone, meaning that a factor w of a word
u can have a smallest string attractor bigger than a string attractor of u (see
Proposition 2).

In this article we prove and explicitly construct a smallest string attractor
for any given factor of the Thue-Morse word. In particular, our main result is
the following.

Theorem 1. Let w be a non-empty finite factor of t. Then there exists a string
attractor for w of size at most 5.

2 Preliminaries

For all undefined notation we refer to [8]. Let A be an alphabet, that is is a finite
set of symbols called letters. A (finite) word over A of length n is a concatenation
u = u1 · · ·un, where ui ∈ A for all i ∈ {1, . . . , n}. The length of u is denoted by
|u|. The set of all finite words overA together with the operation of concatenation
form a monoid, denoted by A∗, whose neutral element is the empty word ε.
We also denote A+ = A∗ \ {ε}. Similarly, given a set of words S ⊂ A∗, we
denote by S∗ (resp., S+) the set of all possible concatenations (resp., non-empty
concatenations) of elements of S. When A = {a, b} is a binary alphabet we
denote by w the word obtained from w by changing every a in b and vice versa.
Formally w is obtained from w by applying the involution · : a 7→ b; b 7→ a.

Let u = pfs for some p, f, s ∈ A∗. We call p a prefix of w, s a suffix of w
and f a factor of w. The prefix p (resp. suffix s) is called proper if it is different
than u. If both p and s are non-empty we call f an internal factor of u. The set
Pref(u) (resp., Suf(u)) is the set of all non-empty prefixes (resp., suffixes) of u.
The language of u, denoted by L(u), is the set of all finite factors of u.

An infinite word over A is a sequence u = u1u2 · · · , where ui ∈ A for every
positive integer i. The notions above (prefix, suffix, etc.) naturally extend to
infinite words.

Example 1. The Thue-Morse word is the infinite binary word

t = lim
n→∞

tn = abbabaabbaababbabaababbaabbabaabbaababbaabbabaabab · · ·,

where t0 = a and tn+1 = tn tn for any n > 0. Note that for any n ∈ N we have
|tn| = |tn| = 2n.

Given a setM ⊂ Z and an integer q ∈ Z, we denoteM+q = {m+q |m ∈ M}.

3 String attractors

Let w, u ∈ A+, with w ∈ L(u), we say that w has an occurrence starting at
position i in u, if it is possible to write w = uiui+1 · · ·ui+|w|−1, with the conven-
tion that the empty word has an occurrence at every position. Clearly a word
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w could have multiple occurrences in u. Given a position j with 1 ≤ j ≤ |u|, we
also say that an occurrence of w in u contains the position j if such occurrence
starts at position i with i ≤ j < i+ |w|.

Example 2. Let us consider the words tn as in Example 1. The word w = bba has
three occurrences in t4 = abbabaabbaababba starting respectively at positions
2, 8 and 14. The second occurrence is the only one containing the position 10.

Given a word u ∈ A+ a set Γ of positions is a string attractor for u if for
every factor w ∈ L(u) there exists a γ ∈ Γ such that at least one occurrence of
w is of the form w = uiui+1 · · ·ui+|w|−1 with i ≤ γ < i+ |w|.

The set {1, 2, . . . , |u|} is trivially a string attractor for a word u. On the
other hand, a trivial lower bound for the size of a string attractor is given by the
number of different letters appearing in u. Moreover, if Γ is a string attractor
for u, so is Γ ′ for every superset Γ ′ ⊃ Γ . Note that a word can have different
string attractors of the same size and, more generally, different string attractors
that are not included into each other.

Example 3. Let tn and tn be defined as in Example 1. The set Γ0 = {1} is a
string attractor for both words t0 = a and t0 = b (the positions of the string
attractor are underlined). Similarly, the set Γ1 = {1, 2} is a string attractor for
t1 = ab and for t1 = ba. Such string attractor is the smallest one, since both
letters a and b must be covered.

The set Γ2 = {1, 2, 4} is a string attractor for the word t2 = abba (resp., for
t2). Notice that Γ ′

2 = {2, 4} is also a string attractor for t2 = abba (resp., for
t2). Since both letters appear in t2, the minimal size for a string attractor is 2.
It is easy to check that {2, 5, 7} is a string attractor for the word t3 = abbabaab

(resp., for t3), while the same word does not have any string attractor of size 2.
A larger string attractor for t3 is given by Γ3 = {2, 3, 4, 6}.

It is possible to check that the sets Γ4 = {4, 6, 8, 12}, Γ5 = {8, 12, 16, 24},
Γ6 = {16, 24, 32, 48} and Γ7 = {32, 48, 64, 96} are smallest string attractors
respectively for the words t4 = abbabaabbaababba (resp., for t4), t5 (resp., for
t5), t6 (resp. t6) and t7 (resp., t7).

The following two interesting combinatorial results are proved in [10, Propo-
sitions 12 and 14].

Proposition 1 ([10]). Let u, v ∈ A+, Γu a string attractor for u and Γv a
string attractor for v. Then Γu ∪ {|u|} ∪ (Γv + |u|) is a string attractor for uv.

Example 4. Let t2, t2 and Γ ′
2 as in Example 3. A string attractor for t3 = t2 t2

is given by Γ ′
2 ∪ {4} ∪ (Γ ′

2 + 4) = {2, 4, 6, 8}. Note that such a string attractor is
not a smallest one.

Proposition 2 ([10]). The size of a smallest string attractor for a word is not
a monotone measure.
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The previous proposition says that if w is a factor of u, then it could be
possible for u to have a string attractor of size smaller than the size of a smallest
string attractor for w.

Example 5. Let tn be as in Example 1. As seen in Example 3, the word t7 has a
smallest string attractor of size 4. However, it is possible to check that the word
w = abaababbaabbabaabbaababbaabbabaababbabaabbaababbab = a t4 t5 b ∈
L(t7) has no string attractor of size 4. Note that Γ = {9, 13, 25, 33, 41} is a
string attractor of size 5 of w.

4 Proof of the main result

In [2] Brlek shows several combinatorial results concerning the factors in L(t).
In particular he provides an explicit formula of the factor complexity of t. Part
of it is stated in the following.

Proposition 3 ([2]). Let n ∈ N and w ∈ L(tn) with |w| ≥ 2n−2+1. The word
tn has exactly one occurrence of w.

An important ingredient of our proof is [7, Theorem 2].

Theorem 2 ([7]). Let n ≥ 4. The set

Γn = {2n−2, 3 · 2n−3, 2n−1, 3 · 2n−2}

is a string attractor both for tn and tn.

Note that in their papers Kutsukake et al. only state the result for tn, but
the same argument actually works also for tn.

We are now ready to prove Theorem 1.

Proof of Theorem 1. It can easily checked that every factor of tn (resp., of tn) with
n ≤ 5 has a string attractor of size at most 4. Let us suppose the property true for
all factors in L(tn)∪L(tn) and let us consider the case of w ∈ L(tn+1) = L(tn tn),
with n ≥ 6 (the case w ∈ L(tn+1) being symmetrical).

If w ∈ L(tn) ∪ L(tn), then the result follows by induction. Thus, we can
suppose that w has an occurrence in tn+1 containing the center of tn tn, i.e.,
the last letter of the prefix tn. In the following remaining part of the proof we
consider all possible such factors of tn+1 by increasing their size. The idea is to
write each factor as w = λ t ρ, with the central factor t of the form tk or tk for
a certain k ∈ N, and λ = st′ and ρ = t′′p, where t′, t′′ ∈ {ti, ti | i ∈ N}∗ (more
precisely we have t′ = t′hℓ

· · · t′h1
and t′′ = t′′j1 · · · t

′′
jr

with hℓ < . . . < h1 and
j1 > . . . > jr), and s (resp., p) is a suffix (resp., a prefix) of a some element in
{ti, ti | i ∈ N}.

Since the center of tn tn is also the center of tn−2 tn−2, if w ∈ L(tn−2tn−2) =
L(tn−1), we can conclude by induction. Let us thus suppose that w /∈ L(tn−1).
We can write w either as w = λ tn−2 ρ, with λ ∈ Suf(tn−1 tn−2) and ρ ∈ Pref(tn),
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or as w = λ tn−2 ρ with λ ∈ Suf(tn) and ρ ∈ Pref(tn−2 tn−1). Let us focus on the
former case. Since |λtn−2| > 2n−2 then w /∈ L(tn) according to Proposition 3.

In the following we extend, step by step, ρ to the right, and, for every fixed ρ,
we extend λ to the left. While the first step is fully developed, we let the reader
check the details of Steps 2 to 7.

Step 1. Let us start considering ρ = p with p ∈ Pref(tn).

i) Let w = s tn−2 p, with s ∈ Suf(tn−4) and p ∈ Pref(tn−4). Then

Γ = Γn−2 + |λ|,

where λ = s, is a string attractor for w (see Figure 1, where we represent only
the central factor tn−1 tn−1 of tn+1). Indeed, let v ∈ L(w). If v ∈ L(tn−2),
then, by Theorem 2, one of its occurrences contains at least one of the
positions of the string attractor Γn−2 shifted by |λ| = |s| (see Figure 1).
If v has an occurrence appearing to the left of the left-most position in Γ ,
then v ∈ L(tn−4 tn−4) ⊂ L(tn−2), and thus it also has another occurrence
containing at least one of the positions of Γn−2+|λ| (see Figure 1). Similarly,
if v has an occurrence appearing to the right of the right-most position in
Γ , then v ∈ L(tn−4 tn−4) ⊂ L(tn−2) and thus v has another occurrence
containing at least one of the positions of Γn−2 + |λ|.

tn−1 tn−1

tn−2 tn−2tn−2 tn−2

tn−3 tn−3 tn−3 tn−3tn−3 tn−3 tn−3 tn−3

tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4

tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5

s p

v v

Fig. 1. A smallest string attractor Γ for a factor w = s tn−2 p of tn+1, with s ∈
Suf(tn−4) and p ∈ Pref(tn−4).

ii) Let w = s tn−4 tn−2 p, with s ∈ Suf(tn−4) and p ∈ Pref(tn−4). Then

Γ =
((
Γn−2 \ {3 · 2n−4}

)
∪ {0}

)
+ |λ|,

where λ = s tn−4, is a string attractor for w (see Figure 2, where we represent
only the central factor tn−1 tn−1 of tn+1). Indeed, let v ∈ L(w). If v ∈
L(tn−2), then, using Theorem 2, we have that v has an occurrence containing
at least one of the positions of Γn−2 shifted by |λ|; if the only position
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contained by such occurrence is 3 · 2n−4 + |λ|, then v ∈ L(tn−4 tn−4), hence
v has another occurrence containing the position |λ|.
If v has an occurrence appearing to the left of the left-most position in Γ ,
then v ∈ L(tn−4 tn−4) ⊂ L(tn−2) and we can conclude using again The-
orem 2. If v has an occurrence appearing to the right of the right-most
position of Γ , i.e., 2n−3 + |λ|, then v ∈ L(tn−4 tn−4 tn−4): either v is fully
contained in L(tn−4 tn−4) ⊂ L(tn−2) and we can conclude, or v has another
occurrence containing the position |λ| (see Figure 2).

tn−1 tn−1

tn−2 tn−2tn−2 tn−2

tn−3 tn−3 tn−3 tn−3tn−3 tn−3 tn−3 tn−3

tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4

tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5 tn−5

s p

v v

Fig. 2. A smallest string attractor Γ for a factor w = s tn−4 tn−2 p of tn+1, with
s ∈ Suf(tn−4) and p ∈ Pref(tn−4). The position of Γn−2 + |λ| that is not in Γ is in
white.

iii) Let w = s tn−3 tn−2 p, with s ∈ Suf(tn−5) and p ∈ Pref(tn−4). Then

Γ =
((
Γn−2 \ {2n−4, 3 · 2n−4}

)
∪ {−2n−4, 0}

)
+ |λ|,

where λ = s tn−3, is a string attractor for w. Indeed, let v ∈ L(w). Similarly
to the previous case, if v ∈ L(tn−2), then, by Theorem 2, v has an occurrence
containing at least one of the positions of Γn−2 shifted by |λ|; if the only
position contained in the occurrence of v is 2n−4+|λ|, then v ∈ L(tn−4 tn−4)
and thus there is another occurrence of v containing the position −2n−4+|λ|;
if the only position contained in the occurrence of v is 3 · 2n−4 + |λ|, then
v ∈ L(tn−4 tn−4) and thus there is another occurrence of v containing the
position |λ|.
If v appears to the left of the left-most position in Γ , then we can conclude
since v ∈ L(tn−5 tn−5 tn−5) ⊂ L(tn−2). If v appears between the positions
−2n−4 + |λ| and |λ|, then v ∈ L(tn−4) ⊂ L(tn−2). If v appears to the right
of the right-most position in Γ , i.e., 2n−3 + |λ|, then v ∈ L(tn−4 tn−4 tn−4):
either v is fully contained in L(tn−4 tn−4) ⊂ L(tn−2), or v has another
occurrence containing the position |λ|.

iv) Let w = s tn−5 tn−3 tn−2 p, with s ∈ Suf(tn−3 tn−4 tn−5) and p ∈ Pref(tn−4).
Then

Γ =
((
Γn−2 \ {3 · 2n−5, 3 · 2n−4}

)
∪ {−2n−3, 0}

)
+ |λ|,
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where λ = s tn−5 tn−3, is a string attractor for w. Indeed, let v ∈ L(w). As
above, if v ∈ L(tn−2), then, by Theorem 2, v has an occurrence containing
at least one of the positions of Γn−2 shifted by |λ|; if the only position
contained in the occurrence is 3 · 2n−5 + |λ| (resp., 3 · 2n−4 + |λ|) then v has
another occurrence containing the position −2n−3 + |λ| (resp., |λ|).
If v appears to the left of the left-most position of Γ , then v ∈ L(tn−3 tn−3) =
L(tn−2) and we can conclude. If v appears between the positions −2n−3+|λ|
and |λ|, then v ∈ L(tn−3) ⊂ L(tn−2) and we can conclude. If v appears to
the right of the right-most position of Γ ( i.e., 2n−3+|λ|) then it is contained
inL(tn−4 tn−4 tn−4): either v is fully contained in L(tn−4 tn−4) ⊂ L(tn−2)
and we can conclude, or v has another occurrence containing the position
|λ|.

v) Let w = s tn−3 tn−1 p, with s ∈ Suf(tn−3) and p ∈ Pref(tn−4). Then

Γ =
((
Γn−1 \ {3 · 2n−4}

)
∪ {−2n−4}

)
+ |λ|.

where λ = s tn−3, is a string attractor for w. Indeed, let v ∈ L(w). If
v ∈ L(tn−1) then, by Theorem 2, v has an occurrence containing at least
one of the positions of Γn−1 shifted by |λ|; if the only position contained
in the occurrence is 3 · 2n−4 + |λ|, then v ∈ L(tn−4 tn−4) and thus there is
another occurrence of v containing the position −2n−4 + |λ|.
If v appears to the left of the left-most position of Γ (resp., between −2n−4+
|λ| and 2n−3 + |λ|; resp., to the right of the right-most position of Γ ),
then it is contained in L(tn−4 tn−4 tn−4) (resp., v ∈ L(tn−4 tn−4 tn−4); resp.,
v ∈ L(tn−4 tn−4 tn−4)) thus it is also contained in L(tn−1) and we can
conclude.

vi) Let w = s tn−2 tn−1 p, with s ∈ Suf(tn−4) and p ∈ Pref(tn−4). This is the
first case when it is not enough to “move” some of the positions of a string
attractor of the form Γk, with k ∈ N. Indeed, as shown in Example 5, in
this case it is not possible to have a string attractor of size 4. On the other
hand the set

Γ =
((
Γn−1 \ {3 · 2n−4}

)
∪ {−2n−3, −2n−4}

)
+ |λ|,

where λ = s tn−2, is a string attractor for w (see Figure 3). Indeed, let
v ∈ L(w). If v ∈ L(tn−1) then, by Theorem 2, v has an occurrence containing
at least one of the positions of Γn−1; if the only position contained in the
occurrence is 3 · 2n−4 + |λ|, then v ∈ L(tn−4 tn−4) and thus there exists
another occurrence of v containing −2n−4 + |λ|.
All the other cases are proved as in the previous cases: namely if v appears
to the left of −2n−3+ |λ|, (resp., between −2n−3+ |λ| and −2n−4+ |λ|; resp.,
between −2n−4 + |λ| and 2n−3 + |λ|; resp., to the right of 3 · 2n−3 + |λ|)
then v ∈ L(tn−4 tn−4 tn−4) (resp., v ∈ L(tn−4); resp., v ∈ L(tn−4 tn−4 tn−4);
resp., v ∈ L(tn−4 tn−4 tn−4)), thus it appears in L(tn−1) and we can conclude
using Theorem 2.

vii) Let w = s tn−4 tn−2 tn−1 p, with s ∈ Suf(tn−3 tn−4) and p ∈ Pref(tn−4).
As in the previous case, it is possible to check that there exist no string
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tn tn

tn−1 tn−1tn−1 tn−1

tn−2 tn−2 tn−2 tn−2tn−2 tn−2 tn−2 tn−2

tn−3 tn−3 tn−3 tn−3 tn−3 tn−3 tn−3 tn−3tn−3 tn−3 tn−3 tn−3 tn−3 tn−3 tn−3 tn−3

tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4 tn−4

s p

Fig. 3. A smallest string attractor Γ for a factor w = s tn−2 tn−1 p of tn+1, with
s ∈ Suf(tn−4), and p ∈ Pref(tn−4). The position of Γn−1 + |λ| that is not in Γ is in
white.

attractor of size 4. However, the set

Γ =
((
Γn−1 \ {3 · 2n−4}

)
∪ {−2n−2, −2n−4}

)
+ |λ|,

where λ = s tn−4 tn−2, is a string attractor for w. Indeed, let v ∈ L(w). If
v ∈ L(tn−1), then, by Theorem 2, v has an occurrence containing at least one
of the positions of Γn−1; if the only position contained in the occurrence is
3·2n−4+|λ|, then v ∈ L(tn−4 tn−4) and thus there exists another occurrence
of v containing −2n−4 + |λ|.
All the other cases are proved as in the previous cases: namely if v appears
to the left of −2n−2+ |λ|, (resp., between −2n−2+ |λ| and −2n−4+ |λ|; resp.,
between−2n−4+|λ| and 2n−3+|λ|; resp., to the right of 3·2n−3+|λ|) then v ∈
L(tn−2) (resp., v ∈ L(tn−4 tn−4 tn−4); resp., v ∈ L(tn−4 tn−4 tn−4); resp.,
v ∈ L(tn−4 tn−4 tn−4)), thus it appears in L(tn−1) and we can conclude.

The seven cases above are summarized in Table 1. Note that in all previous
cases tn−4 is a prefix of p, and hence a prefix of ρ.

Step 2. We now consider the case of ρ containing tn−4 as a proper prefix.
The seven possible cases of factors are summarized in Table 2. Note that in all
these cases tn−4 is a prefix of p, and hence tn−3 = tn−4 tn−4 is a prefix of ρ.

Step 3. We now consider the case of ρ containing as a proper prefix tn−3.
The six possible cases of factors are summarized in Table 3. Note that in all
these cases tn−5 is a prefix of p, and hence tn−3 tn−5 is a prefix of ρ.

Step 4.We now consider the case of ρ containing as a proper prefix tn−3 tn−5.
The six possible cases of factors are summarized in Table 4. Note that in all these
cases tn−5 tn−4 tn−4 is a prefix of p, and hence tn−2 tn−4 is a prefix of ρ.

Step 5.We now consider the case of ρ containing as a proper prefix tn−2 tn−4.
Since tn−2tn−2 = tn−1 is a factor of w, in the first two cases weconsider as
starting point for constructing a string attractor Γn−1 instead of Γn−2 (for the
remaining two cases we have as central factor t = tn−1, so we also use Γn−1).
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Suf(·) t′ t t′′ Pref(·) Γ ′ Γ ′′ |Γ |
tn−4 ε tn−2 ε tn−4 ∅ ∅ 4

tn−4 tn−4 tn−2 ε tn−4 { 3 · 2n−4 } { 0 } 4

tn−5 tn−3 tn−2 ε tn−4

{
2n−4,
3 · 2n−4

} {
−2n−4,

0

}
4

tn−3 tn−4 tn−5 tn−5 tn−3 tn−2 ε tn−4

{
3 · 2n−5,
3 · 2n−4

} {
−2n−3,

0

}
4

tn−3 tn−3 tn−1 ε tn−4 { 3 · 2n−4 } {−2n−4 } 4

tn−4 tn−2 tn−1 ε tn−4 {3 · 2n−4}
{
−2n−3,
−2n−4

}
5

tn−3 tn−4 tn−4 tn−2 tn−1 ε tn−4 { 3 · 2n−4 }
{
−2n−4,
−2n−2

}
5

Table 1. Summary of Step 1 of the proof of Theorem 1. For a factor of the
form w = s t′ t t p, with s ∈ Suf(·), p ∈ Pref(·), a smallest string attractor is
Γ = ((Γk \ Γ ′) ∪ Γ ′′) + |s t′|, with k the integer such that t = tk or tk.

Suf(·) t′ t t′′ Pref(·) Γ ′ Γ ′′ |Γ |
tn−4 ε tn−2 tn−4 tn−4 { 3 · 2n−5 } { 9 · 2n−5 } 4

tn−4 tn−4 tn−2 tn−4 tn−4

{
3 · 2n−5,
3 · 2n−4

} {
0,

9 · 2n−5

}
4

tn−5 tn−3 tn−2 tn−4 tn−4 { 2n−4 } {−2n−4 } 4

tn−3 tn−4 tn−5 tn−5 tn−3 tn−2 tn−4 tn−4

{
2n−4,
3 · 2n−5

} {
−2n−3,
−2n−4

}
4

tn−3 tn−3 tn−1 tn−4 tn−4 tn−3 tn−2

{
3 · 2n−4,
3 · 2n−3

} {
0,

2n−1

}
4

tn−4 tn−2 tn−1 tn−4 tn−4 tn−3 tn−2


2n−3,

3 · 2n−4,
3 · 2n−3




−2n−3,
0,

2n−1

 4

tn−3 tn−4 tn−4 tn−2 tn−1 tn−4 tn−4 tn−3 tn−2

{
3 · 2n−4,
3 · 2n−3

} 
−2n−2,

0,
2n−1

 5

Table 2. Summary of Step 2 of the proof of Theorem 1. For a factor of the
form w = s t′ t t p, with s ∈ Suf(·), p ∈ Pref(·), a smallest string attractor is
Γ = ((Γk \ Γ ′) ∪ Γ ′′) + |s t′|, with k the integer such that t = tk or tk.

The four possible cases of factors are summarized in Table 5. Note that in all
these cases tn−4 tn−3 is a prefix of p, and hence tn−1 is a prefix of ρ.

Step 6. We now consider the case of ρ containing as a proper prefix tn−1. As
in the previous step, we have tn−2 tn−2 = tn−1 is a factor of w. For this reason, in
the first of the three cases considered we construct the string attractor starting
by a shift of Γn−1 (for the remaining cases we also use Γn−1 following the same
construction of steps above). The three possible cases of factors are summarized
in Table 6. Note that in all these cases tn−3 is a prefix of p.
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Suf(·) t′ t t′′ Pref(·) Γ ′ Γ ′′ |Γ |

tn−4 ε tn−2 tn−3 tn−5

{
2n−4,
3 · 2n−4

} {
2n−2,
5 · 2n−5

}
4

tn−4 tn−4 tn−2 tn−3 tn−5


2n−4,

3 · 2n−5,
3 · 2n−4




−2n−5,
2n−2,
5 · 2n−4

 4

tn−5 tn−3 tn−2 tn−3 tn−5

{
2n−4,
3 · 2n−4

} 
−2n−4,
2n−2,
5 · 2n−4

 5

tn−3 tn−4 tn−5 tn−5 tn−3 tn−2 tn−3 tn−5

{
3 · 2n−5,
3 · 2n−4

} {
−2n−3,
5 · 2n−4

}
4

tn−3 tn−3 tn−1 tn−3 tn−3 tn−2

{
3 · 2n−4,
3 · 2n−3

} {
0,

2n−1

}
4

tn−2 tn−2 tn−1 tn−3 tn−3 tn−2

{
2n−3,
3 · 2n−4

} {
−2n−3,
2n−1

}
4

Table 3. Summary of Step 3 of the proof of Theorem 1. For a factor of the
form w = s t′ t t p, with s ∈ Suf(·), p ∈ Pref(·), a smallest string attractor is
Γ = ((Γk \ Γ ′) ∪ Γ ′′) + |s t′|, with k the integer such that t = tk or tk.

Suf(·) t′ t t′′ Pref(·) Γ ′ Γ ′′ |Γ |

tn−4 ε tn−2 tn−3 tn−5 tn−5 tn−4 tn−4

{
2n−4,

3 · 2n−5

} {
2n−2,

3 · 2n−3

}
4

tn−4 tn−4 tn−2 tn−3 tn−5 tn−5 tn−4 tn−4


2n−4,

3 · 2n−5,

3 · 2n−4




0,

2n−2,

3 · 2n−4

 4

tn−5 tn−3 tn−2 tn−3 tn−5 tn−5 tn−4 tn−2

{
2n−4,

3 · 2n−5

} {
−2n−4,

3 · 2n−3

}
4

tn−3 tn−4 tn−5 tn−5 tn−3 tn−2 tn−3tn−5 tn−5 tn−4 tn−2

{
3 · 2n−5,

3 · 2n−4

} 
−2n−3,

5 · 2n−4,

3 · 2n−3

 5

tn−3 tn−3 tn−1 tn−3 tn−5 tn−5 tn−4 tn−2

{
3 · 2n−4,

3 · 2n−3

} {
0,

2n−1

}
4

tn−2 tn−2 tn−1 tn−3tn−5 tn−5 tn−4 tn−2


2n−3,

3 · 2n−4,

3 · 2n−3


−2n−3,

0,

2n−1

 4

Table 4. Summary of Step 4 of the proof of Theorem 1. For a factor of the
form w = s t′ t t p, with s ∈ Suf(·), p ∈ Pref(·), a smallest string attractor is
Γ = ((Γk \ Γ ′) ∪ Γ ′′) + |s t′|, with k the integer such that t = tk or tk.

Step 7. As last step we consider the case of ρ containing as a proper prefix
tn−1 tn−3. Similarly to the previous step, since tn−2 tn−2 = tn−1 is a factor of w,
we construct the string attractor starting from a shift of Γn−1 also in the first of
the three cases. The three possible cases of factors are summarized in Table 7.

Thus we proved the result for all factors w ∈ L(tn+1) containing x tn−2 y,
with x the last letter of tn−2 and y the first letter of tn, as a proper factor.
The case w = λ tn−2 ρ with λ ∈ Suf(tn) and ρ ∈ Pref(tn−2 tn−1) is proved in a
symmetrical way.
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Suf(·) t′ t t′′ Pref(·) Γ ′ Γ ′′ |Γ |
tn−4 ε tn−1 tn−4 tn−4 tn−3 { 3 · 2n−4 } { 2n−1 } 4

tn−3 tn−4 tn−4 tn−1 tn−4 tn−4 tn−3 { 3 · 2n−4 }
{

0,
2n−1

}
5

tn−3 ε tn−1 tn−2 tn−4 tn−4 tn−3 { 3 · 2n−4 } { 2n−1 } 4

tn−2 tn−3 tn−3 tn−1 tn−2tn−4 tn−4 tn−3

{
3 · 2n−4,
3 · 2n−3

} {
0,

2n−1

}
4

Table 5. Summary of Step 5 of the proof of Theorem 1. For a factor of the
form w = s t′ t t p, with s ∈ Suf(·), p ∈ Pref(·), a smallest string attractor is
Γ = ((Γn−1 \ Γ ′) ∪ Γ ′′) + |s t′|.

Suf(·) t′ t t′′ Pref(·) Γ ′ Γ ′′ |Γ |

tn−2 ε tn−1 tn−2 tn−3

{
2n−3,
3 · 2n−4

} {
2n−1,
5 · 2n−3

}
4

tn−3 ε tn−1 tn−1 tn−3

{
3 · 2n−4,
3 · 2n−3

} {
2n−1,
7 · 2n−3

}
4

tn−2 tn−3 tn−3 tn−1 tn−1 tn−3


3 · 2n−4,
2n−2,
3 · 2n−3




0,
2n−1,
3 · 2n−2

 4

Table 6. Summary of Step 6 of the proof of Theorem 1. For a factor of the
form w = s t′ t t p, with s ∈ Suf(·), p ∈ Pref(·), a smallest string attractor is
Γ = ((Γn−1 \ Γ ′) ∪ Γ ′′) + |s t′|.

Suf(·) t′ t t′′ Pref(·) Γ ′ Γ ′′ |Γ |

tn−2 ε tn−1 tn−2 tn−3 tn−3 tn−2

{
3 · 2n−4,
3 · 2n−3

} {
2n−1,
3 · 2n−2

}
4

tn−3 ε tn−1 tn−1 tn−3 tn−3 tn−2

{
2n−3,
3 · 2n−4

} {
2n−1,
2n

}
4

tn−2 tn−3 tn−3 tn−1 tn−1 tn−3 tn−3 tn−2


2n−3,

3 · 2n−4,
3 · 2n−3




0,
2n−1,
2n

 4

Table 7. Summary of Step 7 of the proof of Theorem 1. For a factor of the
form w = s t′ t t p, with s ∈ Suf(·), p ∈ Pref(·), a smallest string attractor is
Γ = ((Γn−1 \ Γ ′) ∪ Γ ′′) + |s t′|.

5 Future works and different approaches

The Thue-Morse word has been generalized to larger alphabets in several dif-
ferent ways. One possible generalization is the one given in [2], where tm is de-
fined over an alphabet Am = {a1, a2, . . . , am} of cardinality m as the fixed point
tm = limn→∞ φn

m(a1), where φm(ak) = ak · · · ama1 · · · ak−1 for every 1 ≤ k ≤ m.
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For instance, we have t3 = abcbcacabbcacababccababcabc · · · over the ternary
alphabet {a, b, c}.

Conjecture 1. For every m ∈ N there exist an integer Km such that every non-
empty factor of tm has a string attractor of size at most Km.

Recently Dvořáková proved that every factor of an episturmian word has
a sting attractor having size the number of distinct letters appearing in the
factor (see [5]). In particular, every factor of a Sturmian word different from a
letter has a string attractor of size 2. Such result is based on the construction
of (standard) episturmian words by iterated palindromic closure (see [4]). We
believe that a similar approach could be used also for the Thue-Morse word,
using pseudo-palindromic closure instead (see [3,1]).

Acknowledgements. This research received funding from the Ministry
of Education, Youth and Sports of the Czech Republic through the project
CZ.02.1.01/0.0/0.0/16 019/0000765. To check some of the examples we used
a code written by undergraduate student Veronika Hendrychová.
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